Large time-varying parameter VARs^a By Gary Koop and Dimitris Korobilis

Comments by Sylvia Kaufmann

Bundesbank - ifo workshop Uncertainty and Forecasting in Macroeconomics Eltville, 1-2 June 2012

^aThe comments do not necessarily reflect the views of the SNB

Contribution of the paper

• introduce forgetting factors (λ_t, α)

$$
P_{t|t-1} = \frac{1}{\lambda} P_{t-1|t-1} \qquad \pi_{t|t-1,j} = \frac{\pi_{t|t-1,j}^{\alpha}}{\sum_{l=1}^{J} \pi_{t|t-1,l}^{\alpha}}
$$

$$
\pi_{t|t,j} = \frac{\pi_{t|t-1,j} p_j (y_t | y^{t-1})}{\sum_{l=1}^{J} \pi_{t|t-1,l} p_l (y_t | y^{t-1})}
$$

to speed up real-time model estimation and selection

• choose (not update) the prior shrinkage parameter *γ* to adjust flexibly to changing model dimensions

$$
\underline{V}_i = \begin{cases} \frac{\gamma}{r^2} \text{ for coefficients on lag } r \text{ for } r = 1, \dots, p \\ \underline{a} \text{ for the intercepts} \end{cases}
$$

Comments

Above all...

this is a very useful approach

Comments

Above all...

this is a very useful approach

Some comments on:

- *•* Parametrization
- *•* Empirical application
- *•* Performance

Parametrization

In a TVP-VAR for $t = 1, \ldots, T$:

$$
y_t = b_{0t} + B_{1t}y_{t-1} + \dots + B_{pt}y_{t-p} + \varepsilon_{it}
$$

$$
\varepsilon_t \sim \text{ i.i.d } N(0, \Sigma_t)
$$

$$
\beta_t = vec([b_{0t} B_{1t} \dots B_{pt}])
$$

in B_{it} on-diagonals might change less than off-diagonals in Σ_t this is less clear

Parametrization

• the extension for *λ* might be coefficient specific and not time-specific

$$
\lambda_t = \lambda_{\min} + (1 - \lambda_{\min}) L^{f_t}
$$

\n
$$
\lambda_{it} = \lambda_{\min} + (1 - \lambda_{\min}) L^{f_{it}}
$$

\n
$$
f_{it} = \begin{cases}\n-NINT\left(\tilde{\varepsilon}_{t-1}\tilde{\varepsilon}_{t-1}\right) & \text{if } \tilde{\varepsilon}_{i,t-1} = \max\left(\tilde{\varepsilon}_{t-1}\right) \\
0 & \text{otherwise}\n\end{cases}
$$

• Minnesota prior could differ between on- and off-diagonal coefficients

see figure 1: the shrinkage prior implies that the standard deviation of autoregressive coefficients changes from 0.22 (small TVP-VAR) to 0.14 (large TVP-VAR) $V_i = \gamma \tau_i / r^2$, $\tau_i = 1$ for on-diagonals, a weight related to data moments for off-diagonals.

Empirical application

- *•* Mean adjustment and standardization are necessary because of the parametrization of a common *λ* and *γ*
- *•* But: time-varying mean and standard deviations of variables
- And: Why include a constant if data are mean-adjusted?

It would be interesting to know whether λ_t is similar across the TVP-VARs of different dimension (Figure 2).

Are λ_t and $\pi_{t|t,j}$ correlated? It seems that small VARs correlate with periods of high λ_t s (Figure 2 and 3).

Performance

- Simulation exercises: time comparison $(?)$
- How does the approach perform in the presence of breaks, do the parameter estimates adjust quickly?
- With a 10 variable system (including inflation), you would have to evaluate 3570 models in each period

To finish:

If I had a (some) wish(es), I would like to

To finish:

If I had a (some) wish(es), I would like to

- work with the 10 variable system
- make λ coefficient specific, λ_i ,
- make γ on- or off-diagonal specific,

To finish:

If I had a (some) wish(es), I would like to

- work with the 10 variable system
- make λ coefficient specific, λ_i ,
- make *γ* on- or off-diagonal specific,

- and estimate a TVP-VAR which indicates the actually important variables for forecasting inflation, and restricting the insignificant coefficients to zero (chosen/evaluated by means of predictive likelihood).