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Abstract

We show that occasionally binding collateral constraints on housing wealth drive an

asymmetry in the relationship between house prices and economic activity. The sensitivity

of macroeconomic aggregates to movements in housing prices can be large when housing

wealth is low, and small when housing wealth is high. We develop this argument in a

nonlinear general equilibrium model estimated with full information Bayesian methods.

As collateral constraints became slack during the housing boom of 2001-2006, expanding

housing wealth made little contribution to consumption growth. By contrast, the housing

collapse that followed tightened the constraints and sharply exacerbated the recession of

2008-2009. The empirical relevance of this asymmetry is corroborated by the results of

panel regressions on state- and MSA-level data.
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1 Introduction

Collateral constraints drive an asymmetry in the relationship between house prices and eco-

nomic activity, and are a central mechanism to explain the collapse of the Great Recession.

When housing wealth is high, collateral constraints are slack, and the sensitivity of borrowing

and spending to changes in house prices is positive but not large. Conversely, when hous-

ing wealth is low, collateral constraints are tight, and borrowing and expenditures move with

house prices in a more pronounced fashion. We develop and corroborate this argument in two

steps. First, we construct a nonlinear general equilibrium model and estimate it with Bayesian

likelihood methods. The estimated model implies that, as collateral constraints became slack

during the housing boom of 2001-2006, expanding housing wealth made a small contribution to

consumption growth. By contrast, the subsequent housing collapse tightened the constraints

and sharply exacerbated the recession of 2008-2009. Second, we present evidence from panel

regressions on state- and MSA-level data that corroborates the asymmetry inferred from the

estimated model.

The starting point for our analysis is a workhorse macro model along the lines of Christiano,

Eichenbaum, and Evans (2005) and Smets and Wouters (2007). The model features nominal

price and wage rigidities, a monetary authority that uses an interest rate rule, habit formation

in consumption, and investment adjustment costs. To this framework we add three main

elements. First, we allow for the dual role of housing, as a durable good, and as collateral for

“impatient”households. The total supply of housing is fixed, but housing reallocation takes

place across “patient” and “impatient” households in response to an array of shocks which also

influence the price of housing. Second, the housing collateral constraint binds only occasionally.

The estimation of the model involves inferring when the collateral constraint is binding and

when it is slack through observations that do not include the Lagrange multiplier for the

constraint. Third, monetary policy is constrained by the zero lower bound. Our assumption

that housing is in fixed supply and plays no role in production has the important advantage

that the model behaves essentially like a typical model for monetary policy analysis when

the borrowing constraint is slack. During these periods, housing prices passively respond to

movements in the macroeconomy and only exert a negligible feedback effect on other macro

variables. By contrast, when the constraint is found to be binding, the interaction of house

prices with borrowing and spending decisions has a first-order effect on the macroeconomy.

We use Bayesian likelihood methods to validate the model against U.S. data. The nonlinear

solution of the model allows us to capture the state-dependent effects of shocks based on

whether housing wealth is high or low, and whether the zero lower bound on nominal interest

2



rates binds or not. We quantify the contribution of collateral constraints to business cycles by

simulating a version of the model in which parameters are set so that the collateral constraints

are slack for all of the agents. The analysis shows that during the 1990-1991 and the 2008-

2009 recessions, as collateral constraints became binding, they exacerbated the contraction in

consumption substantially. The amplification due to collateral constraints is so large in the

2008-2009 period that, in their absence, the zero lower bound would not have been reached.

The task of isolating the asymmetric effect of changes in house prices using only national

data is fraught with difficulty. Figure 1 offers a first look at national house prices. It shows the

evolution of U.S. house prices over the period 1976-2011. The top panel superimposes the time

series of U.S. house prices and of U.S. aggregation consumption expenditures. The correlation

coefficient is 0.55, a substantial but not extreme level. The bottom panel is a scatterplot of

changes in consumption and changes in house prices. It highlights that most of the positive

correlation seems to be driven by periods when house prices are below average, both during

the 1992-1993 period, and during the 2007-2009 recession. When periods with house price

decreases are included, there is a strong positive correlation between consumption and house

prices. However, excluding periods with declines in house prices results in almost no correlation

between consumption and house prices.

Barring the Great Recession, house price declines have been rare at the national level.

Regional data exhibit greater variation in housing prices. Accordingly, we corroborate the

results of the estimated general equilibrium model using a panel and cross-sectional regressions

at the regional level. We verify that the asymmetries uncovered using the estimated model and

the national data are just as pronounced when using regional data.1

For the regional analysis, we choose measures of activity to match our model counterparts

for consumption, employment and credit. Part of our empirical analysis looks for instruments

for house price changes as a way to isolate housing preference shocks from other shocks that

are more likely to jointly move both housing and other endogenous variables, as done by Mian

and Sufi (2011). In all cases, we find statistically significant differences in the reaction of the

activity measure of interest to changes in housing prices depending on whether housing prices

are high or low.2

Our analysis is related to two distinct bodies of work. Numerous recent papers develop

general equilibrium models to study the nexus between financial frictions and macroeconomic

1 We are keenly aware that house prices are endogenous both in theory and in the data. Our modeling
strategy attributes most of the variation in house prices to shocks to housing preferences, as in recent work by
Liu, Wang, and Zha (2013).

2 We classify house prices as high in a particular state when house prices are above a state-specific linear
trend and have experimented with alternative definitions with little change in the asymmetries uncovered.
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outcomes at the national level. Our analysis of regional data builds on an expanding literature

that has linked changes in measures of economic activity, such as consumption and employment,

to changes in house prices.

A spate of recent papers has quantified the importance of financial shocks in exacerbating

the Great Recession using a general equilibrium framework. For instance, see Del Negro,

Eggertsson, Ferrero, and Kiyotaki (2011), Jermann and Quadrini (2012), Christiano, Motto,

and Rostagno (2013). The common thread among these papers is that financial shocks are key

drivers of the Great Recession. The occasionally binding nature of the constraints we consider

sets our work apart. In our model, financial constraints endogenously become slack or binding,

so that financial shocks are not required to effectively counteract or enhance an otherwise

constant set of financial constraints. In this respect, our work extends the basic mechanisms

in Mendoza (2010) who also considers occasionally binding financial constraints in a calibrated

small open economy setting with an exogenous interest rate. Our extensions make it possible to

construct quantitatively meaningful counterfactual exercises and to consider policy alternatives

in an empirically validated model for the United States. We use the model to gauge the effects

of policies aimed at the housing market in the context of a deep recession.

Regarding the regional analysis, other papers also point towards an prominent role for hous-

ing as collateral in influencing both consumption and employment. Recent contributions include

Case, Quigley, and Shiller (2005), Campbell and Cocco (2007), Mian and Sufi (2011), Mian,

Rao, and Sufi (2012), and Abdallah and Lastrapes (2012). Despite the emphasis on collateral

constraints, this literature has failed to recognize that such a channel implies asymmetric rela-

tionships for house price increases and declines with other measures of aggregate activity and

has not embedded this channel in a model for policy analysis.3

Section 2 presents a basic, partial-equilibrium model that illustrates how collateral con-

straints may imply an asymmetry in the relationship between house prices and consumption.

Section 3 considers an empirically-validated general equilibrium model. Sections 4 and 5 de-

scribe the estimation method and results, respectively. Section 6 presents additional evidence

on asymmetries in the relationship between house prices and other measures of economic ac-

tivity based on state and MSA-level data. Section 7 considers an experiment which highlights

how the same policy – a transfer to indebted borrowers – can have opposite effects depending

on whether house prices are high or low. Section 8 concludes.

3 Our paper is also related to the work of Lustig and van Nieuwerburgh (2010), who find that in times when
US housing collateral is scarce nationally, regional consumption is about twice as sensitive to income shocks.
However, the channel they emphasize – time variation in risk-sharing among regions – is different from ours.
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2 The Basic Model: Collateral Constraints and Asymmetries

To fix ideas regarding the fundamental asymmetry introduced by collateral constraints, it is use-

ful to work through a basic model and analyze its implications for how consumption responds to

changes in house prices. Throughout this section, we sidestep obvious general equilibrium con-

siderations and assume that the price of housing is exogenous. We relax all these assumptions

in the full DSGE model of the next section.

Consider the problem of a household that has to choose profiles for goods consumption ct,

housing ht, and borrowing bt. The household’s problem is to maximize

E0

∞∑
t=0

βt (log ct + j log ht) , (1)

where E0 is the conditional expectation operator. The household is subject to the following

constraints:

ct + qtht = y + bt −Rbt−1 + qt (1− δh)ht−1; (2)

bt ≤ mqtht; (3)

log qt = ρq log qt−1 + εq,t. (4)

The first constraint is the budget constraint. Income y is fixed and normalized to one. The term

bt denotes one-period debt. The gross one-period interest rate is R. Housing, which depreciates

at rate δh, has a price qt in unit of consumption. The second constraint is a borrowing constraint

that limits borrowing to a maximum fraction m of housing wealth. The third equation describes

the price of housing, qt, which follows an AR(1) stochastic process, where εq,t is a zero-mean,

i.i.d. process with variance σ2
q.

Denoting with λt the Lagrange multiplier on the borrowing constraint, the Euler equation

for consumption is given by:
1

ct
= βREt

(
1

ct+1

)
+ λt. (5)

To develop the intuition for our result, it is useful to consider a log-linear approximation of

equation (5) in a steady state without shocks. Under the assumption that βR < 1, the borrowing

constraint binds and leverage (the ratio of debt to housing wealth) is at its upper bound

given by the maximum loan-to-value ratio (LTV) m. In that steady state, λ > 0, and c =

y−((R− 1)m− δh) qh. Solving this equation forward and linearizing, one obtains the following
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expression for consumption in percent deviation from steady state, ĉt:

ĉt = −1− βR

λ
Et

(
λt − λ+ βR

(
λt+1 − λ

)
+ β2R2

(
λt+2 − λ

)
+ ...

)
. (6)

Expressing the Euler equation as above shows that consumption depends negatively on current

and future expected borrowing constraints. As shown by equation (3), increases in qt will loosen

the borrowing constraint. So long as they keep λt positive, increases and decreases in qt will have

roughly symmetric effects on ct. However, large enough increases in qt lead to a fundamental

asymmetry. The multiplier λt cannot fall below zero. Consequently, large increases in qt can

bring λt to its lower bound and will have proportionally smaller effects on ct than decreases in

qt. Intuitively, an impatient borrower prefers a consumption profile that is declining over time.

A temporary jump in house prices will enable such a profile (high c today, low c tomorrow)

without borrowing all the way up to the limit.

More formally, the household’s state at time t is its housing ht−1, debt bt−1 and the cur-

rent realization of the house price qt, and the optimal decision are given by the consumption

choice ct = C (qt, ht−1, bt−1) , the housing choice ht = H (qt, ht−1, bt−1) and the debt choice

bt = B (qt, ht−1, bt−1) that maximize expected utility subject to (2) and (3), given the house

price process. Figure 2 shows the optimal leverage and the consumption function obtained

from the model outlined above.4 As the figure illustrates, high house prices are associated with

slack borrowing constraints, and with a lower sensitivity of consumption to changes in house

prices. Instead, when household borrowing is constrained – an outcome that is more likely

when house prices are low and the initial stock of debt is high – the sensitivity of consumption

to changes in house prices becomes large. This idea is developed further both in the full model

and in the empirical analysis to follow.

3 The Full Model: Demand Effects in General Equilibrium

To quantify the importance of the asymmetric relationship between house prices and consump-

tion, we embed the basic mechanisms described in Section 2 in an estimated general equilibrium

model. The starting point for our analysis is a workhorse macro model along the lines of Chris-

tiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007). The model features

4 The policy functions depicted in Figure 2 are obtained from standard global solution methods (value function
iteration). The calibrated parameters are β = 0.988, j= 0.12, m= 0.925, R = 1.01, δ = 0.01. The resulting
steady-state housing wealth to quarterly income ratio is 6. For the house price process we set ρq = 0.96 and
σq = 0.0175, in order to match a standard deviation of the quarterly growth rate of house prices equal to 1.77
percent, as in the data.
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nominal price and wage rigidities, a monetary authority using a Taylor rule, habit formation in

consumption and investment adjustment costs. To this framework we add three main elements.

First, housing has a dual role: it is a durable good (which enter the utility function separately

from consumption and labor), and it serves as collateral for “impatient”households. The total

supply of housing is fixed (its price varies endogenously), but housing reallocation takes place

across “patient”and “impatient ”households in response to an array of shocks. Second, we allow

for the collateral constraint on borrowing to bind only occasionally. The estimation exercise

allows us to infer when the constraint binds using observations that do not include the hidden

Lagrange multiplier on the constraint.Third, in line with U.S. experience since 2008, monetary

policy is potentially constrained by the zero lower bound.

Our assumption that housing is in fixed supply and plays no role in production (unlike in the

work of Liu, Wang, and Zha (2013) and Iacoviello and Neri (2010)) has the important advantage

that the model behaves essentially like the one in Christiano, Eichenbaum, and Evans (2005)

when the borrowing constraint is found to be slack. With a slack borrowing constraint, housing

prices only passively respond to movements in the macroeconomy, but play no feedback effect

on other macro variables.

Below, we sketch the key features of the model. Appendix A provides additional details as

well as the list of all necessary conditions for an equilibrium.

3.1 Households

Within each group of patient and impatient households, a representative household maximizes:

E0

∑∞
t=0 β

tzt

(
Γ log (ct − εct−1) + jt log ht −

τ

1 + η
n1+η
t

)
; (7)

E0

∑∞
t=0 (β

′)
t
zt

(
Γ′ log

(
c′t − εc′t−1

)
+ jt log h

′
t −

τ

1 + η
n′1+η
t

)
. (8)

Variables accompanied by the prime symbol refer to patient households. The terms c, h, n are

consumption, housing, and hours. The discount factors are β and β′. By definition, β′ < β. The

term jt captures shocks to housing preferences, and the term zt captures a shock to intertemporal

preferences. These shocks follows:

log jt =
(
1− ρj

)
log j+ ρj log jt−1 + uj,t, (9)

log zt = ρz log zt−1 + uz,t. (10)
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where uj,t and uz,t are n.i.i.d. processes with variance σ2
j and σ2

z. Above, ε measures habits

in consumption. The scaling factors Γ = (1− ε) / (1− βε) and Γ′ = (1− ε) / (1− β′ε) ensure

that the marginal utilities of consumption are 1/c and 1/c′ in the non-stochastic steady state.

Patient households maximize their utility subject to:

ct + qtht − bt + it =
wtnt

Xw,t

− Rt−1bt−1

πt

+ qtht−1 +Rk,tkt−1 +Divt, (11)

where investment and capital are linked by:

kt = at

(
it − ϕ

(it − it−1)
2

i

)
+ (1− δ) kt−1, (12)

log at = ρk log at−1 + uk,t (13)

where uk,t is a n.i.i.d process with variance σ2
k. Patient agents choose consumption ct, investment

it, capital kt (which depreciates at the rate δ), housing ht (priced at qt), hours nt and borrowing

bt (loans if bt is negative) to maximize utility subject to (11) and to (12). The term at is an

investment-specific shock. Loans are set in nominal terms and yield a riskless nominal return of

Rt. The real wages is wt, the real rental rate is Rk,t. The terms Xw,t denotes the markup (due

to monopolistic competition in the labor market) between the wage paid by the wholesale firm

and the wage paid to the households, which accrues to the labor unions. Finally, πt = Pt/Pt−1 is

the gross inflation rate, Divt are lump-sum profits from final good firms and from labor unions.

The formulation in (12) allows for convex investment adjustment costs, measured by ϕ.

Impatient households do not accumulate capital and do not own finished good firms or land.

Their budget constraint is given by:

c′t + qth
′
t − b′t =

w′
tn

′
t

X ′
w,t

+ qth
′
t−1 −

Rt−1b
′
t−1

πt

+Div′t; (14)

Impatient households also face a borrowing constraint that limits the amount they can borrow,

b′t, to a fraction m of the house value. We start from the constraint of the basic model of Section

2 and extend it with an eye to empirical realism. Specifically, we allow for – but do not impose

– the possibility that borrowing constraints adjust to reflect the market value of the housing

8



stock only sluggishly.5 Accordingly, the constraint takes the form:

b′t ≤ γ
b
′
t−1

πt

+ (1− γ)mqth
′
t (15)

where γ measures the degree of inertia in the borrowing limit, and m is the steady-state loan-

to-value ratio. When γ is greater than zero, such specification mimics the common practice

that borrowing constraints are fully reset only for those who move or refinance their mortgage.

While our model lacks the heterogeneity at the microeconomic level that could capture this

phenomenon, this specification captures the empirical finding that measures of aggregate debt

lag house prices movements. For instance, a regression of household mortgage debt on its lag

and on housing wealth yields coefficients of 0.89 on lagged debt, and of 0.10 on housing wealth.

Both coefficients are statistically significant (t − statistics of 45 and 7 respectively), and the

R2 is 0.97. 6

3.2 Firms

To allow for nominal price rigidities, the model differentiates between competitive flexible

price/wholesale firms that produce wholesale goods, and a final good firm that operates in

the final good sector under monopolistic competition. Wholesale firms hire labor and capital

to produce wholesale goods Yt. They solve:

max
Yt

Xp,t

− wtnt − w′
tn

′
t −Rk,tkt−1. (16)

Above, Xp,t is the price markup of final over wholesale goods. The production technology is:

Yt = n
(1−σ)(1−α)
t n

′σ(1−α)
t kα

t−1. (17)

5 An interpretation of this form of the borrowing constraint is that, with multi-period debt contracts, the
borrowing constraint on housing is reset only for households that acquire new housing goods or choose to
refinance. Of course, in the face of home equity line of credits, adjustments of the borrowing constraint may
also reflect lenders’ perceived changes in the value of the collateral. Justiniano, Primiceri, and Tambalotti
(2013), who study the determinants of household leveraging and deleveraging in a calibrated dynamic general
equilibrium model, adopt an analogous specification.

6 Mortgage debt and housing wealth are from Table B.100 of the Financial Accounts. We divide both series
by the GDP deflator and detrend them with an HP filter (with λ = 10, 000). The regression – over the 1980Q1–
2011Q4 period – might not capture adequately the specification in the borrowing constraint for three reasons.
First, the Financial Accounts data are on aggregate housing wealth – housing wealth held both by borrowers and
savers. Second, the data on debt include gross mortgage debt – debt held both by borrowers without any other
financial assets, and by savers who hold other financial assets alongside mortgage debt. Last, the constraint
above may not bind in periods of high housing prices, thus weakening the link between housing wealth and
mortgage debt.
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In (17), the non-housing sector produces output with labor and capital. The parameter σ

measures the labor income share that accrues in the economy to impatient households. When

σ approaches zero, the model boils down to a model without collateral effects.7

3.3 Nominal Rigidities and Monetary Policy

There are Calvo-style price rigidities and wage rigidities in the final good sector. Final good

firms buy wholesale goods Yt from wholesale firms in a competitive market, differentiate the

goods at no cost, and sell them at a markup Xp,t over the marginal cost. The CES aggregates

of these goods are converted back into homogeneous consumption and investment goods by

households. Each period, a fraction 1− θπ of retailers set prices optimally, while a fraction θπ

cannot do so, and index prices to the steady state inflation π. The resulting consumption-sector

Phillips curve is:

log (πt/π) = βEt log (πt+1/π)− επ log
(
Xp,t/Xp

)
+ up,t, (18)

where επ = (1− θπ) (1− βθπ) /θπ measures the sensitivity of inflation to changes in the markup,

Xp,t, relative to its steady-state value, Xp, whereas the term up,t denotes an iid price markup

shock, up,t ∼ N
(
0, σ2

p

)
.

Wage setting is modeled in an analogous way. Households supply homogeneous labor services

to unions. The unions differentiate labor services as in Smets and Wouters (2007), set wages

subject to a Calvo scheme and offer labor services to labor packers who reassemble these

services into the homogeneous labor composites nc and n′
c. Wholesale firms hire labor from

these packers. The pricing rules set by the union imply the following wage Phillips curves:

log (ωt/π) = βEt log (ωt+1π)− εw log
(
Xw,t/Xw

)
+ uw,t, (19)

log (ω′
t/π) = β′Et log

(
ω′
t+1/π

)
− ε′w log

(
X ′

w,t/X
′
w

)
+ uw,t (20)

where ωt = wtπt

wt−1
and ω′

t =
w′

tπt

wt−1
denote wage inflation for each household type, and uw,t ∼

N (0, σ2
w) denotes an iid wage markup shock.

Monetary policy follows a modified Taylor rule that allows for interest rate smoothing and

responds to year-on-year inflation and lagged GDP in deviation from steady state, subject to

7 We have estimated an alternative specification allowing for TFP shocks in equation 17 in a version of the
model with variable utilization of capital. The results – further discussed in the Appendix – were similar to
those reported here.

10



the zero lower bound (ZLB):

Rt = max

[
1, RrR

t−1

(
πA
t

πA

)(1−rR)rπ (Yt−1

Y

)(1−rR)rY

R
1−rR
r,t ur,t

]
. (21)

The term R is the steady-state nominal real interest rate in gross terms, and ur,t ∼ N (0, σ2
r)

denotes an iid monetary policy shock.8

4 Estimation of the Full Model

We use Bayesian estimation methods to size a subset of the deep structural parameters of

the model. Importantly, we estimate the parameter that determines the share of impatient

households. The parameters that are not estimated are calibrated in a standard fashion by

matching steady–state targets.

4.1 Calibration

Some parameter choices are based on information complementary to the estimation sample.

Their values are standard and are reported in Table 1. We set β = 0.995, implying a steady

state 2% annual real interest rate. The capital share α = 0.3 and the depreciation rate δ = 0.025

implying a steady-state capital to annual output ratio of 2.1 and an investment to output ratio

of 0.2. The weight on housing in the utility function j is set at 0.04, implying a ratio of housing

wealth to annual output around 1.5. The maximum loan-to-value ratio m is set at 0.9. The

labor disutility parameter η is set at 1, implying a unitary Frisch labor supply elasticity. The

steady-state gross price and wage markups Xp and Xw are both set at 1.2. Finally, we set

π = 1.005 implying a 2% annual rate of inflation. The other parameters of the model are

estimated using Bayesian estimation methods.

4.2 Priors

We select priors commonly used in the estimation of DSGE models. Our choices hew closely to

those of Smets and Wouters (2007), with only minor exceptions. The prior distributions, the

posterior modes and confidence intervals for the estimated parameters are reported in Table 1.

A key parameter in determining the extent of the asymmetries is the discount factor of

the impatient agents, β′. Values of this parameter that fall below a certain threshold imply

8 Year-on-year inflation (expressed in quarterly units, like the interest rate) is defined as πA
t ≡ (Pt/Pt−4)

0.25
.
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that impatient agents never escape the borrowing constraint. Then, the model has no asym-

metries, regardless of the size of the shocks, and produces a large correlation between housing

price growth and consumption growth, since the borrowing constraint holds all the time with

equality. Conversely, when β′ takes on higher values, closer to discount factor of patient agents,

modest increases in house prices suffice to make the borrowing constraint slack (even though

the constraint is expected to bind in the long run). We set the prior mean for β′ at 0.9875,

– corresponding to an annualized discount rate of 5 percent –, with a standard deviation of

0.0025.

4.3 Data

The estimation of the model is based on observations for six series: total real household con-

sumption, price (GDP deflator) inflation, wage inflation, real investment, real housing prices,

and the Federal Funds Rate. The observations span the period from 1985Q1 to 2011Q4. Prior

to estimation we use a one-sided HP filter (with a value of λ = 100, 000) in order to remove the

low-frequency components of consumption, investment and housing prices. The one-sided HP

filter has two advantages: first, it yields plausible estimates of the trend and the cycle for the

variables we analyze. Second, as argued for instance by Stock and Watson (1999), the one-sided

filter is not affected by the correlation of data points with subsequent observations. Appendix

Appendix C show that our results are robust to using a linear, deterministic filter to detrend

the data.

Our model features six observables and six shocks – investment-specific shocks, wage markup,

price markup, monetary policy, intertemporal preferences, and preferences for housing.

4.4 Solution and Likelihood

The proliferation of state variables renders standard global solution algorithms inoperable.

Moreover, the occasionally binding constraint on borrowing and the non-negativity constraint

on the policy interest rate make first-order perturbation methods inapplicable. We solve the

model using the piecewise linear method sketched in Appendix B and described more fully

in Guerrieri and Iacoviello (2013). Essentially, depending on whether the zero lower bound

binds or not, and depending on whether the collateral constraint on housing binds or not,

we identify four regimes. The piecewise linear solution method involves linking the first-order

approximation of the model around the same point under each regime. Importantly, the solution

that the algorithm produces is not just linear, with different sets of coefficients depending on
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each of the four regime, but rather, it can be highly nonlinear. The dynamics in each regime

may crucially depend on how long one expects to be in that regime. In turn, how long one

expects to be in that regime depends on the state vector.

The solution of the model takes the form:

Xt = P(Xt−1, ϵt)Xt−1 +D(Xt−1, ϵt) +Q(Xt−1, ϵt)ϵt. (22)

The vector Xt collects all the variables in the model, except the innovations to the shock

processes, which are gathered in the vector ϵt. The matrix of reduced-form coefficients P

is state-dependent, as are the vector D and the matrix Q. These matrices and vector are

functions of the lagged state vector and of the current innovations. However, while the the

current innovations can trigger a change in the reduced-form coefficients, Xt is still locally

linear in ϵt.

We represent the solution in Equation (22) below in terms of observed series by premulti-

plying the state vector Xt by the matrix Ht, which selects the observed variables. Accordingly,

the vector of observed series Yt is simply Yt = HtXt.
9

Because the solution of our model is only locally linear in ϵt, we cannot use the Kalman

filter to retrieve the estimates of the innovations in ϵt. Instead, following Fair and Taylor (1983)

we recursively solve for ϵt, given Xt−1 and the current realization of Yt, the following system of

non-linear equations:10

Yt = HtP(Xt−1, ϵt)Xt−1 +HtD(Xt−1, ϵt) +HtQ(Xt−1, ϵt)ϵt. (23)

The vectorXt contains unobserved components, so the filtering scheme requires an initialization.

We assume that the initial X0 coincides with the model’s steady state and train the filter using

the first 20 observations.

Given that ϵt is assumed to be drawn from a multivariate Normal distribution with covari-

ance matrix Σ, a change in variables argument implies that the logarithmic transformation of

9 The matrix that selects the observed variables is time-varying because we drop the interest rate from the
observed vector at the zero lower bound. In that case, we also assume that monetary policy shock is zero, unless
the notional rate implied by the model is positive when the observed rate is still zero. In that case, we select
the notional rate as observed and reinstate the monetary policy shock.

10 There is in principle the possibility of multiple solutions for ϵt to the extent that Equation (23) is highly
nonlinear in ϵt. In our specific application we have found little evidence of this multiplicity. In theory, however,
our approach to constructing the likelihood does not depend crucially on a one to one mapping between Yt and
ϵt. Standard results could be invoked to allow for a general correspondence between Yt and ϵt when constructing
the likelihood function.
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the likelihood for the observed data Y T can be written as:

log(f(Y T )) = −T

2
log(det(Σ))− 1

2

T∑
t

ϵ̂′t
(
Σ−1

)
ϵ̂t −

T∑
t

log(| det(HtQt)|) (24)

In our case, the Jacobian of the inverse transformation for the change in variables, (HtQt)
−1, is

known from the model’s solution and does not require any additional calculations. By contrast,

the general approach in Fair and Taylor (1983) requires the additional numerical evaluation of

the Jacobian.11

Notice that the inverse transformation needed to form the likelihood is only given implicitly

by (HtQ(Xt−1, ϵt))ϵt − (Yt −HtP(Xt−1, ϵt)Xt−1 −HtDt) = 0. Accordingly, to size the Jaco-

bian of this inverse transformation, we invoke the implicit function theorem. To this purpose,

differentiating Equation (23) notice that:

∂Yt

∂ϵt
= HtQ(Xt−1, ϵt).

To proceed by implicit differentiation, we verify that the determinant of HtQ(Xt−1, ϵt) is

nonzero. Accordingly, the implicit transformation is locally invertible and the Jacobian of

the inverse transformation is given by:

∂ϵt
∂Yt

= (HtQt)
−1.

5 Results

5.1 Estimated Parameters

We combine the evaluation of the likelihood with prior information about the parameters in

order to construct and maximize the posterior as a function of the model’s parameters, given

the data. We then construct the posterior density of the model’s parameters using a standard

random walk Metropolis-Hastings algorithm.

The posterior modes of the estimated parameters and other statistics are reported in Table

1. Crucially, we find a sizeable fraction of impatient agents, governed by σ. Our choice of prior,

a diffuse Beta distribution, simply guarantees that this fraction remain bounded between 0 and

1. The posterior mode is estimated to be 0.42 and the 90% confidence interval ranges from

0.30 to 0.51. Accordingly, σ = 0, which would imply the exclusion of collateral constraints

11 To derive Equation (24), recognize that | det((HtQt)
−1)| = 1/| det(HtQt)|..
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from the model, is highly unlikely. Moving to the parameters that govern nominal rigidities

and monetary policy, the posterior modes for the Calvo parameters governing the frequency of

price and wage adjustment are both equal to 0.92. This high degree of price and wage rigidity

likely compensates the absence of real rigidities, such as variable capacity utilization and partial

indexation of prices and wages. The estimated interest rate reaction function gives less weight

to output and more weight to inflation than our prior, which was centered around Taylor’s

canonical values of 0.5 (for output, measured at an annual rate) and 1.5 (for inflation).

Before moving to the key results on the role of housing in recent business cycles, we take

comfort from the fact that the key empirical properties of the model variables line up well

with their data counterparts. To highlight this point, we focus on some moments in the data,

and compare them from those of our estimated model.12 In the model like in the data, the

correlation between the house prices and aggregate consumption – 0.65 in the data, 0.41 in

the mode – is higher than the correlation between house prices and investment – 0.40 in the

data, 0.10 in the model. The volatility of aggregate consumption is 1.4 percent in the model,

compared to 1.1 percent in the data. The model also captures the high volatility of house prices

– 3.2 percent in the model, 3.8 percent in the data.

Finally, in variance decomposition exercises, we find that about three quarters of the house

price volatility is driven by the housing preference shock. We elaborate on this point with two

experiments described below. We will focus first on a comparison of positive and a negative

housing shocks, and will move on to present a decomposition that highlights the role of housing

shocks in the collapse of the Great Recession.

5.2 Responses to Positive and Negative Shocks

To illustrate the fundamental source of the asymmetry in the model, and to show how the

larger model reproduces the key insights of the basic model, Figure 3 considers the effects of a

sequence of estimated shocks to housing preferences, the process jt in (9), which we interpret as

a shock to housing demand, while all parameters held at the model’s estimated posterior mode.

Between periods 1 and 8, a series of innovations to jt are set to bring about either an increase

or a decrease in house prices of 25 percent. Thereafter, the shock follows its autoregressive

process. The dashed line plots a fall in house prices which reduces the collateral capacity of

constrained households. Accordingly, those households can borrow less and are forced to curtail

their non-housing consumption even further to satisfy their borrowing constraint. On balance,

12 Here we follow conventional practice and compute the model statistics on simulated series, HP-filtered with
a standard two-sided filter with λ = 1, 600. We apply the same two-sided, HP filter also to our observables.
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the peak decline in aggregate consumption is about 3 percent. The model’s short-run nominal

and real rigidities imply that the decline in aggregate consumption translates into a decline in

the firms’ demand for labor. In equilibrium, the drop in hours worked (not shown) comes close

to reaching 3 percent below the balanced growth path. In reaction to a shock of this magnitude,

the zero lower bound on interest rates is not attained, therefore the asymmetric responses are

only driven by the collateral constraint.

The solid lines plot the responses to a shock of the same magnitude and profile but with

opposite sign. In this case, house prices increase 25 percent. Recalling the partial equilib-

rium model described in Section 2, an increase in house prices can relax borrowing constraints.

Accordingly, the borrowing constraint for the impatient household becomes slack, and the La-

grange multiplier in borrowing constraint bottoms out at zero, before taking on positive values

again as house prices return to the baseline. When the constraint is slack, the borrowing con-

straint channel remains operative only in expectation. Thus, impatient households discount

that channel more heavily the longer the constraint is expected to remain slack. As a conse-

quence, the response of consumption to the large house price increases considered in the figure

is not as dramatic as the reaction to house price declines of an equal magnitude. At peak,

the increase both in consumption is 1.5 percent, half as big as the response to the house price

decline.

In experiments not reported here, we have found modest asymmetries for other shocks that

affect house prices and consumption in our general equilibrium model. These shocks are likely

to generate significant asymmetries only insofar as they affect house prices or collateral capacity.

However, the asymmetry that we uncover is independent of the particular stochastic structure

for the model, and needs not rely on housing demand shocks only. Potentially, in any housing

model with occasionally binding constraints, one can find substantial asymmetries as long as

the model can match the observed swings in house prices.

5.3 The Asymmetric Contribution of Housing to Business Cycles

Figure 4 shows a counterfactual exercise in which the parameter σ is set to 0, so that all

households are patient. By construction, when we feed back the estimated sequence of shocks

into the original model, we can get an exact match for the observed data. This is not the

case for the counterfactual model. Housing prices are still matched, since housing services are

essentially priced by the unconstrained households. However, the evolution of consumption is

markedly different from the data in the counterfactual model. When the Lagrange multiplier

on the collateral constrained is estimated to be binding, as in the 2008-2009 recession, a large
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gap opens up between the observed and counterfactual consumption levels.

Quantitatively, our model estimates imply that, absent collateral constraint, the decline in

consumption between 2007 and the end of 2009 would have only been 2 percent. The observed

decline was more than three times larger, thus implying that collateral effects can account for

more than two thirds of the observed consumption decline. Remarkably, in the absence of

collateral constraints the recession would have been curbed to such an extent that the Federal

Funds rate would not have reached zero.13 By contrast, when the Lagrange multiplier on the

collateral constraint is estimated to be slack, there is little difference between the counterfactual

level of consumption without collateral constraints and the observed level of consumption. We

interpret this result as evidence that for most of the housing boom that ended in 2006, the rise

in house prices did relatively little to boost consumption.

Figure 5 provides an additional angle to compare our model against a model without collat-

eral constraints. Once more, to exclude the collateral constraints we imposed σ = 0, but this

time we re-estimated the restricted model. Figure 5 highlights the effects of different patterns

of shocks needed to match the data by the baseline model with occasionally binding collateral

constraints and by the restricted model. The top panels in the figure compare the evolution

of consumption and housing prices when only housing shocks are turned on. For both models,

the evolution of housing prices are in line with observed housing prices. However, the two

models differ drastically in their implications for consumption. Whereas the baseline model

comes close to matching the evolution of both housing and consumption with just the housing

shocks, housing shocks have little bearing on consumption for the model without the collateral

constraints. The bottom panels of Figure 5 compare the evolution of consumption and housing

prices from the two models when only consumption preference shocks are turned on. These

panels highlight that the restricted model is completely dependent on a sequence of consump-

tion shocks to match the consumption data. Accordingly, the proliferation of shocks that the

restricted model calls for is corroborated by a posterior odds ratio of 7 to 1 overwhelmingly in

favor of the model with collateral constraints.

In sum, we find it more compelling to argue that a decline in house prices, coupled with a

weakening of households balance sheets, were the main culprits for the collapse in consumption

during the 2008-2009 recession. By contrast, our results show that a model that excludes

13 In our sample, the interest rate is at zero from 2009Q1 until the end of sample (2011Q4). According to
the estimated model, the interest rate prescribed by the Taylor rule would be at zero only until 2011Q1. The
estimated model identifies expansionary monetary shocks in 2011Q2, Q3 and Q4, which bring the model in line
with the data. The expansionary shocks occur around the time when the FOMC statements become increasingly
explicit in announcing that the committee expected the funds rate to remain at zero for extended periods of
time.
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collateral constraints has to rely on a contagious attack of patience to explain the depth of the

Great Recession.

6 Regional Evidence on Asymmetries

Our model estimated on national- level data motivates additional empirical analysis that we

conduct using a panel of data from U.S. states and Metropolitan Statistical Areas (MSA). The

advantage of these data is that variation in house prices and economic activity is greater at the

regional than at the aggregate level, as documented for instance by Del Negro and Otrok (2007),

who find a large degree of heterogeneity across states in regard to the relative importance of

the national factors.14 The use of regional data also allays the concern that little can be learned

from national data, given the rarity of declines in house prices at the national level. Note that,

in any event, the state-level series aggregated back to the national level track their National

Income and Product Accounts (NIPA) counterparts rather well.15

To set the stage, Figure 6 shows changes in house prices and several measures of activity,

namely changes in employment in the service sector, auto sales, electricity consumption, and

mortgage originations. The figure focuses on two points in time, 2005 and 2008 for all the

50 U.S. states and the District of Columbia. For each state there are two dots in each panel:

the green dot (concentrated in the north–east region of the graph) shows the lagged percent

change in house prices and the percent change in the indicator of economic activity in 2005, at

the height of the housing boom.16 The red dot represents analogous observations for the 2008

period, in the midst of the housing crash. Fitting a piecewise linear regression to these data

yields a correlation between house prices and activity that is smaller when house prices are

high. This evidence on asymmetry is bolstered by the large cross-sectional variation in house

prices across states over the period in question.

14 In the sample period we analyze, the first principal component for annual house price growth accounts for 64
percent of the variance of house prices across the 50 U.S. states and the District of Columbia. The corresponding
numbers for employment in the service sector, auto sales, electricity consumption, and mortgage originations
are respectively 73, 90, 44, and 89 percent.

15 For instance, over the sample period, the correlation between NIPA motor vehicle consumption growth
(about 1/3 of total durable expenditure) and retail auto sales growth is 0.89; and the correlation between
services consumption growth and electricity usage growth is 0.54.

16 An analogous relationship is more tenuous for house prices and employment in the manufacturing goods
sector. Most goods are traded and are less sensitive to local house prices than services.
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6.1 State-Level Evidence

We use annual data from the early 1990s to 2011 from the 50 U.S. states and the District of

Columbia on house prices and measures of economic activity. We choose measures of economic

activity to match our model counterparts for consumption, employment and credit.

Our main specification takes the following form:

∆ log yi,t = αi + γt + βPOSIi,t∆ log hpi,t−1 + βNEG (1− Ii,t)∆ log hpi,t−1 + δXi,t−1 + εi,t (25)

where yi,t is an index of economic activity and hpi,t is the inflation-adjusted house price index

in state i in period t; αi and γt represent state and year fixed effects; and Xi,t is a vector of

additional controls. We interact changes in house prices with a state-specific indicator variable

Ii,t that, in line with the model predictions, takes value 1 when house prices are high, and value

0 when house prices are low. We classify house prices as high in a particular state when house

prices are above a state-specific linear trend separately estimated for the 1976-2011 period, a

classification that lines up with the findings of the estimated model in Figure 4. Using this

approach, the fraction of states with high house prices is about 20 percent in the 1990s, rising

gradually to peak at 100 percent in 2005 and 2006, and dropping to 27 percent at the end

of the sample. Our results were similar using two alternative definitions of Ii,t. Under the

first alternative definition, Ii,t equals 1 when real house price inflation is positive. Under the

second definition, Ii,t equals 1 when the ratio of house prices to income is high relative to its

trend (in log). In our baseline specification, we use one-year lags of house prices and other

controls to control for obvious endogeneity concerns. Our results were also little changed when

instrumenting current or lagged house prices with one or more lags.

Tables 2 to 4 present our estimates when the indicators of economic activity yi,t are employ-

ment in the service sector, auto sales, and electricity usage respectively.

Table 2 presents the results when the measure of regional economic activity is employment

in the non-tradeable service sector. We choose this measure (rather than total employment)

since U.S. states (and MSAs) trade heavily with each other, so that employment in sectors that

mainly cater to the local economy better isolates the local effects of movements in local house

prices.17 The first two columns do not control for time effects. They show that the asymmetry

17 The BLS collects state-level employment data by sectors broken down according to NAICS (Na-
tional Industry Classification System) starting from 1990. According to this classification (available at
http://www.bls.gov/ces/cessuper.htm), the goods-producing sector includes Natural Resources and mining,
construction and manufacturing. The service-producing sector includes wholesale trade, retail trade, trans-
portation, information, finance and insurance, professional and business services, education and health services,
leisure and hospitality and other services. A residual category includes unclassified sectors and public adminis-
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is strong and economically relevant, and that house prices matter, at statistically conventional

levels, both when high and when low. After controlling for time effects in the third column, the

coefficient on high house prices is little changed, but the coefficient on low house prices is lower.

A large portion of the declines in house prices in our sample took place against the background

of the zero lower bound on policy interest rates. As discussed in the model results, the zero

lower bound is a distinct source of asymmetry for the effect of change in house prices. Time

fixed effects allow us to parse out the effects of the national monetary policy reaching the zero

lower bound and, in line with our theory, compress the elasticity of employment to low house

prices. In the last two columns, after adding additional variables, the only significant coefficient

is the one on low house prices. In column five, the coefficient on high house prices is positive,

although it is low and not significantly different from zero. The coefficient on low house prices,

instead, is positive and significantly different from zero. These results imply that house prices

only matter for economic activity when they are low. The difference in the coefficient on low

and high house prices is significantly different from zero.

Table 3 reports our results when the measure of activity is retail automobile sales. Auto

sales are an excellent indicator of local demand, since autos are almost always sold to state

residents, and since durable goods are notoriously sensitive to business cycles. After adding

lagged car sales and personal income as controls, the coefficients on low and high house prices

are both positive, but the coefficient on low house prices (estimated at 0.2) is nearly three times

as large.

Table 4 reports our results using residential electricity usage as a proxy for consumption.

Even though electricity usage only accounts for 3 percent of total consumption, we take elec-

tricity usage to be a useful proxy for nondurable consumption.18 Most activities involve the use

of electricity, and electricity cannot be easily stored. Accordingly, the flow usage of electricity

may even provide a better measures of the utility flow derived from a good than the actual

purchase of the good. Even in cases when annual changes in weather conditions may affect

year-on-year consumption growth, their effect can be easily filtered out using state-level obser-

vations on heating and cooling degree days, which are conventional measures of weather-driven

electricity demand. We use these weather measures as controls in all specifications reported.

As the table shows, in all regressions low house prices affect consumption growth more than

high house prices. After time effects, lagged income growth and lagged consumption growth

tration. We exclude from the service sector wholesale trade (which on average accounts for about 6 percent of
total service sector employment) since wholesale trade does not necessarily cater to the local economy.

18 Da and Yun (2010) show that using electricity to proxy for consumption produces asset pricing implications
that are consistent with consumption-based capital asset pricing models.
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are controlled for (last column), the coefficient on high house prices is 0.11, the coefficient on

low house prices is nearly twice as large at 0.18, and their difference is statistically larger than

0 at the 10 percent significance level.

Because the effects of low and high house prices on consumption work in our model through

tightening or relaxing borrowing constraints, it is important to check whether measures of

leverage also depend asymmetrically on house prices. We perform these checks and report the

results in Appendix E, which confirms that mortgage originations depend asymmetrically on

house prices too.

6.2 MSA-Level Evidence

Tables 5 and 6 present the results of evidence across MSAs. MSAs account for about 80 percent

of the population and of employment in the entire United States. In Table 5, the results from

the MSA-level regressions reinforce those obtained at the state level. After controlling for

income, lagged employment and time effects, the elasticities of employment to house prices are

0.05 and 0.09 when house prices are high and low, respectively. These elasticities are larger

than those found at the state level.

A legitimate concern with the panel and time-series regressions discussed so far is that

the correlation between house prices and activity could be due to some omitted factor that

simultaneously drives both house prices and activity. Even if this were the case, our regressions

would still be of independent interest, since – even in absence of a causal relationship – they

would indicate that comovement between house prices and activity is larger when house prices

are low, as predicted by the model.

To support claims of causality, one needs to isolate exogenous from endogenous movements

in house prices. In Table 6, we follow the methodology and insight of Mian and Sufi (2011) and

use data from Saiz (2010) in an attempt to distinguish an independent driver of housing demand

that better aligns with its model counterpart. The insight is to use the differential elasticity

of housing supply at the MSA level as an instrument for house prices, so as to disentangle

movements in housing prices due to general changes in economic conditions from movements

in the housing market that are directly driven by shifts in housing demand in a particular

area. Because such elasticity is constant over time, we cannot exploit the panel dimension

of our dataset, and instead use the elasticity in two separate periods by running two distinct

regressions of car sales on house prices. The first regression is for the 2002-2006 housing boom

period, the second for the 2006-2010 housing bust period. In practice, we rely on the following
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differenced instrumental variable specifications:

log hpt − log hps = b0 + b1 Elasticity + εb (26)

log cart − log cars = c0 + c1 ̂(log hpt − log hps) + εc (27)

where s = 2002 and t = 2006 in the first set of regressions, and s = 2006 and t = 2010 in the

second set.

The first stage, OLS regressions show that elasticity is a powerful instrument in driving

house prices, with an R2 from the first stage regression around 0.20 in both subperiods.19 The

second stage regressions show how car sales respond to house prices dramatically more in the

second period, in line with the predictions of the model and with the results of the panel

regressions. In the 2002− 2006 period, the elasticity of car sales to house prices is 0.24. In the

2006− 2010 period, in contrast, this elasticity doubles to 0.46.

Using a higher level of data disaggregation (ZIP-code level data instead of MSAs) and a

sample that runs from 2007 to 2009, Mian, Rao, and Sufi (2012) find a large elasticity (equal

to 0.74) of auto sales to housing wealth during the housing bust, in line with our findings.

Importantly, they also find that this elasticity is smaller in zip codes with a high fraction of

non-housing wealth to total wealth. One interpretation of their result – in line with our model

– is that households in zip codes with high non-housing wealth might be, all else equal, less

likely to face binding borrowing constraints during periods of housing price declines, because

they can use other forms of wealth to support their consumption plans.

7 Debt Relief and Borrowing Constraints

So far, our theoretical and empirical results show that movements in house prices can produce

asymmetries that are economically and statistically significant. We now consider whether these

asymmetries are also important for gauging the effects of policies aimed at the housing market

in the context of a deep recession. To illustrate our ideas, we choose a simple example of

one such policy, a lump-sum transfer from patient (saver) households to impatient (borrower)

households. This policy could mimic voluntary debt relief from the creditors, or a scheme where

interest income is taxed and interest payments are subsidized in lump-sum fashion, so that the

end result is a transfer of resources from the savers to the borrowers.

We consider this experiment against two different baselines. In one case, house prices are

19 The F statistics on the first stage regressions are 69.1 and 67.2 for the first and the second period respectively,
well above the conventional threshold of 10 for evaluating weak instruments.
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assumed to be declining; in the other case, housing prices are assumed to be increasing. The

baseline housing price changes are brought about by the same preference shocks considered in

Figure 3 and discussed at length above.

Figure 7 shows the cumulative response of house prices to the baseline housing preference

shocks and to two transfer shocks from saver households to borrower households. Both transfer

shocks are unforeseen. They are sized at the same 1 percent of steady-state total consumption

in both cases. Each transfer is governed by an auto-regressive process of order 1, with coefficient

equal to 0.5. The first transfer starts in period 1. A series of unforeseen innovations to the shock

process phases in the transfer, until it reaches a peak of 1 percent of steady-state consumption.

Then, the auto-regressive component of the shock reduces the level of the transfer back to 0.

The first transfer happens against a background of housing price declines and tight borrowing

constraints. The second transfer, starting in period 50, mimics the first but happens against a

baseline with housing price increases and slack borrowing constraints.

The top left panel of Figure 7 shows house prices in deviation from their steady-state level.

The path shown is almost identical to the one in Figure 3 because the transfer shocks only have

a negligible effect on house prices. The transfer payments are timed to coincide with the series

of housing preference shocks that reduce house prices.

The remaining panels in Figure 7 show responses of key variables to the transfer shock in

deviation from the baseline path that occurs with the housing preference shock only. Thus, those

panels isolate the partial effects of the transfer shocks. The consumption response of borrower

households is dramatically different depending on the baseline variation in house prices. When

house prices decline, the borrowing constraint is tight and the marginal propensity to consume of

borrower households is elevated. When house prices increase, the borrowing constraint becomes

slack and the marginal propensity to consume of borrower households drops down closer to that

for saver households. In reaction to the transfer, consumption of the savers declines less, and less

persistently, against a baseline of housing price declines. In that case, there are expansionary

spillover effects from the increased consumption of borrowers to aggregate hours worked and

output. Taking together the responses of savers and borrowers, the partial effects of the transfer

on aggregate consumption are sizable when house prices are low, and small when house prices

are elevated. As a consequence, actions such as mortgage relief can almost pay for themselves

through their expansionary effects on economic activity in a scenario of binding borrowing

constraints.
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8 Conclusions

Numerous recent papers with an empirical focus have emphasized the importance of household

debt and the housing market in understanding the Great Recession. Our model provides a

framework to analyze these results. The estimated model explains why housing prices matter

more during severe recessions and allows the assessment of costs and benefits of alternative

policies aimed at restoring the efficient functioning of the housing market.

Our empirical and theoretical results indicate that policy measures aimed at the housing

market can produce outsize spillovers to aggregate consumption in periods when collateral

constraints are tight. These spillovers are likely to be larger than those that can be found in

samples dominated by house price increases, because these periods can severely underpredict

the sensitivity of consumption to movements in housing wealth.

Throughout the paper, we have emphasized the role of housing as collateral for households,

and on the effects of changes in housing wealth on consumption. However, the mechanism at

the heart of our argument has even broader applicability. For instance, to the extent that fixed

assets are used for collateral by entrepreneurs, local governments, or exporters, the asymme-

tries highlighted here for consumption could also be relevant for fixed investment, government

spending, or the trade balance.20

20 See for instance Adelino, Schoar, and Severino (2013), Chaney, Sraer, and Thesmar (2012) for investment;
Barboza (2011) for government spending; Klapper, Laeven, and Rajan (2012) for trade credit.
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Figure 1: House Prices and Consumption in U.S. National Data
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Note: Data sources are as follows. House Prices: Loan Performance National House Price In-
dex (SA), Haver Analytics, USLPHPIS@USECON, divided by the GDP deflator (DGDP@USECON).
Consumption: Real Personal Consumption Expenditures, from Department of Commerce, Bu-
reau of Economic Analysis (CH@USECON). In the bottom panel, consumption growth and
house price growth are expressed in deviation from their sample mean. The data sample is
from 1976Q1 to 2011Q4.
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Figure 2: House Prices and Consumption in the Basic Model
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levels of debt, the household is constrained for a larger range of realizations of house prices,
and the consumption function is steeper when house prices are low.
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Figure 3: Impulse Responses to Positive and Negative Housing Demand Shocks in the Full
DSGE Model
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Note: Horizontal axis: horizon in quarters. The simulation shows the dynamic responses to
sequence of housing demand shocks of equal size but opposite sign that move house prices up
(solid lines) and down (dashed lines) by 25 percent relative to the steady state.
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Figure 4: Historical Simulation of the Estimated Model
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Note: The simulation shows the filtered series for house prices, consumption, interest rates
and the Lagrange multiplier in the estimated model. The dashed lines show their counterfactual
paths feeding in the same shocks but in absence of constrained households (setting σ=0)

28



Figure 5: Counterfactual Consumption Paths in the Estimated Model
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Note: The top panels compare consumption and house prices in the data (dashed line)
with their model counterparts when consumption and house prices are driven by the housing
preference shock. The dash-dotted line shows the counterfactual model paths for the estimated
model with the restriction that σ = 0. The bottom panels redo the exercise for intertemporal
preference shocks.
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Figure 6: House Prices and Economic Activity by State
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Note: Each panel shows house price growth and activity growth across US states in 2005
and 2008. The “fitted” line shows the fitted values of a regression of activity growth on house
prices growth broken down into positive and negative changes.
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Figure 7: Transfer from Lenders to Borrowers with Low and High House Prices
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Note: Two unexpected lump-sum transfers from savers to borrowers sized at 1 percent of
steady-state total consumption. The first transfer (periods 1-8) happens against a baseline of
low house prices and tight collateral constraints. The second transfer (periods 51-58) happens
against a baseline of high house prices and slack collateral constraints. Housing price changes
in the baseline stem from a housing preference shock. The responses of consumption, hours,
savers’ and borrowers’ consumption are shown in deviation from baseline to isolate the partial
effect of the transfer shocks. Variables are plotted in red when the constraint is slack.
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Table 1: Parameter Values

Calibrated Parameters Value
m Maximum LTV 0.9
η labor disutility 1
β discount factor, patient agents 0.995
π steady-state gross inflation rate 1.005
α capital share in production 0.3
δ capital depreciation rate 0.025
j housing weight in utility 0.04
Xp average price markup 1.2
Xw average wage markup 1.2

Estimated Parameters Prior type, mean, std Posterior
Mode 5% Median 95%

β′ discount factor, impatient normal, 0.9875, .0025 0.9888 0.9844 0.9886 0.9927
ε habit in consumption beta, 0.5, 0.1 0.6062 0.5132 0.6205 0.7238
ϕ investment adjustment cost gamma, 5, 2 6.6388 3.9151 6.2061 9.257
σ wage share beta, 0.5, 0.15 0.4258 0.332 0.4216 0.5529
rπ inflation resp. Taylor rule normal, 1.5, 0.25 1.6695 1.4467 1.6817 1.9804
rR inertia Taylor rule beta, 0.75 0.1 0.7098 0.6317 0.6999 0.7602
rY output response Taylor rule beta, 0.125 0.025 0.0544 0.0332 0.0543 0.0883
θπ Calvo parameter, prices beta, 0.5, 0.075 0.9209 0.8967 0.9187 0.937
θw Calvo parameter, wages beta, 0.5, 0.075 0.9242 0.9021 0.9206 0.938
γ inertia borrowing constraint beta, 0.5, 0.2 0.4871 0.3317 0.4958 0.673
ρj AR(1) housing shock beta, 0.5, 0.2 0.9943 0.9697 0.9887 0.9974
ρK AR(1) investment shock beta, 0.5, 0.2 0.8171 0.7442 0.7955 0.8533
ρZ AR(1) intertemporal shock beta, 0.5, 0.2 0.854 0.7235 0.816 0.8907
σj std. housing demand shock invgamma, 0.01, 1 0.0407 0.0294 0.0612 0.1377
σK std. investment shock invgamma, 0.01, 1 0.0448 0.0292 0.0444 0.0653
σP std. price markup shock invgamma, 0.01, 1 0.0029 0.0027 0.0031 0.0036
σR std. interest rate shock invgamma, 0.01, 1 0.0018 0.0015 0.0018 0.0021
σW std. wage markup shock invgamma, 0.01, 1 0.0098 0.0087 0.01 0.0115
σZ std. intertemporal shock invgamma, 0.01, 1 0.0137 0.0112 0.0142 0.0186

Note: Calibrated and Estimated Parameters for the Full Model.
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Table 2: State-Level Regressions: Employment in Services and House Prices

% Change in Employment (∆empt)
∆hpt−1 0.14***

(0.01)
∆hp hight−1 0.07*** 0.08*** 0.03* 0.02

(0.01) (0.01) (0.02) (0.01)
∆hp lowt−1 0.24*** 0.12*** 0.08*** 0.07***

(0.02) (0.02) (0.02) (0.02)
∆empt−1 0.26*** 0.23***

(0.08) (0.09)
∆incomet−1 0.07**

(0.03)

pval difference 0.000 0.100 0.013 0.017

Time effects no no yes yes yes
Observations 1071 1071 1071 1020 1020

States 51 51 51 51 51
R-squared 0.12 0.16 0.66 0.72 0.73

Note: Regressions using annual observations from 1991 to 2011 on 50 States and the District

of Columbia. Robust standard errors in parenthesis. ***,**,*: Coefficients statistically different

from zero at 1, 5 and 10% confidence level, respectively. pval is the p-value of the test for

difference between low-house price and high-house prices coefficient.

Data Sources and Definitions: ∆hp is the inflation–adjusted (using the GDP deflator) per-

cent change in the FHFA House Price Index. ∆emp is the percent change in employment in the

Non-Tradable Service Sector which includes: Retail Trade, Transportation and Utilities, In-

formation, Financial Activities, Professional and Business Services, Education and Health Ser-

vices, Leisure and Hospitality, and Other Services (source: BLS Current Employment Statistics:

Employment, Hours, and Earnings - State and Metro Area). ∆income is the percent change

in the inflation–adjusted state-level disposable personal income (source: Bureau of Economic

Analysis).
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Table 3: State-Level Regressions: Auto Sales and House Prices

% Change in Auto Sales (∆autot)
∆hpt−1 0.24***

(0.03)
∆hp hight−1 -0.05 0.16*** 0.11*** 0.07**

(0.04) (0.04) (0.03) (0.03)
∆hp lowt−1 0.62*** 0.33*** 0.27** 0.20**

(0.05) (0.06) (0.11) (0.09)
∆autot−1 0.23 0.21

(0.17) (0.17)
∆incomet−1 0.34***

(0.11)

pval difference 0.000 0.040 0.137 0.155

Time effects no no yes yes yes
Observations 969 969 969 918 918

States 51 51 51 51 51
R-squared 0.02 0.06 0.86 0.87 0.88

Note: State–level Regressions using annual observations from 1992 to 2011 on 50 States

and the District of Columbia. Robust standard errors in parenthesis. ***,**,*: Coefficients

statistically different from zero at 1, 5 and 10% confidence level, respectively. pval is the

p-value of the test for difference in the coefficients for low-house prices and high-house prices.

Data Sources and Definitions: ∆auto is the percent change in inflation–adjusted auto sales,

”Retail Sales: Motor vehicle and parts dealers” from Moody’s Analytics Database. Auto sales

data are constructed with underlying data from the US Census Bureau and employment statis-

tics from the BLS. The two Census Bureau surveys are the quinquennial Census of Retail Trade,

a subset of the Economic Census, and the monthly Advance Retail Trade and Food Services

Survey. See Table 2 for other variable definitions.
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Table 4: State-Level Regressions: Electricity Consumption and House Prices

% Change in Electricity Consumption (∆elect)
∆hpt−1 0.11***

(0.02)
∆hp hight−1 0.03 0.09*** 0.14*** 0.12***

(0.02) (0.02) (0.03) (0.03)
∆hp lowt−1 0.24*** 0.16*** 0.22*** 0.19***

(0.03) (0.03) (0.04) (0.04)
∆elect−1 -0.41*** -0.41***

(0.02) (0.02)
∆incomet−1 0.15***

(0.05)

pval difference 0.000 0.105 0.058 0.090

Time effects no no yes yes yes
Weather Controls* yes yes yes yes yes

Observations 1071 1071 1071 1020 1020
States 51 51 51 51 51

R-squared 0.04 0.04 0.08 0.12 0.12

Note: State–level Regressions using annual observations from 1990 to 2011 on 50 States

and the District of Columbia. Robust standard errors in parenthesis. ***,**,*: Coefficients

statistically different from zero at 1, 5 and 10% confidence level, respectively. pval is the

p-value of the test for difference in the coefficients for low-house prices and high-house prices.

Data Sources and Definitions: ∆elec is the percent change in Residential Electricity Con-

sumption (source: the U.S. Energy Information Administration’s Electric Power Monthly pub-

lication. Electricity Power Annual: Retail Sales - Total Electric Industry - Residential Sales,

NSA, Megawatt-hours). See Table 2 for other variable definitions. All regressions in the Ta-

ble control separately for number of heating degree days and number of cooling degree days in

each state (source: U.S. National Oceanic and Atmospheric Administration’s National Climatic

Data Center).
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Table 5: MSA Level: Employment in Services and House Prices

% Change in Employment (∆empt)
∆hpt−1 0.134***

(0.006)
∆hp hight−1 0.104*** 0.058*** 0.049*** 0.048***

(0.008) (0.007) (0.008) (0.008)
∆hp lowt−1 0.183*** 0.099*** 0.095*** 0.094***

(0.009) (0.008) (0.010) (0.010)
∆empt−1 0.033 0.031

(0.041) (0.041)
∆incomet−1 0.021*

(0.011)

pval difference 0.0000 0.0003 0.0001 0.0000

Time effects no no yes yes yes
Observations 5390 5390 5390 5147 5147

MSA 262 262 262 262 262
R-squared 0.09 0.10 0.37 0.39 0.39

Note: MSA–level Regressions using annual observations from 1992 to 2011 on 262 MSAs

(102 MSAs were dropped since they had incomplete or missing data on employment by sector).

Robust standard errors in parenthesis. ***,**,*: Coefficients statistically different from zero at

1, 5 and 10% confidence level, respectively. pval is the p-value of the test for difference in the

coefficients for low-house prices and high-house prices.

Data Sources and Definitions: ∆income is the percent change in MSA-level inflation-adjusted

personal income (source: BEA, Local and Metro Area Personal Income Release). For employ-

ment (∆emp) and house prices (∆hp), see Table 2.
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Table 6: MSA Level: Auto Registrations and House Prices

Cross-sectional Regressions
Sample Sample

2002-2006 (Housing Boom) 2006-2010 (Housing Bust)
∆hp ∆car ∆hp ∆car

Elasticity -7.26*** 4.69***
(0.87) (0.57)

∆hp 0.24*** 0.49***
(0.06) (0.08)

Method OLS IV OLS IV

Observations 254 254 254 254
R-squared 0.22 0.35 0.21 0.48

Note: Regressions using Housing supply Elasticity at the MSA level as an instrument for

house prices in a regression of MSA car registrations on MSA house prices. ***,**,*: Coef-

ficients statistically different from zero at 1, 5 and 10% confidence level, respectively. The

housing supply elasticity is taken from Saiz (2010) and measures limits on real-estate develop-

ment due to geographic factors that affect the amount of developable land, as well as factors

like zoning restrictions. The elasticity data are available for 269 cities: we dropped 15 areas

because they were covering primary metropolitan statistical areas (PMSA), which are portions

of metropolitan areas, rather than complete MSAs.

Data Sources: Car Registrations are retail (total less rental, commercial and government)

auto registrations from Polk Automotive Data. ∆car is the percent change in car registrations.

See Table 2 for other data sources.

37



References

Abdallah, C. S. and W. D. Lastrapes (2012). Home equity lending and retail spending:

Evidence from a natural experiment in texas. American Economic Journal: Macroeco-

nomics 4 (4), 94–125. [4]

Adelino, M., A. Schoar, and F. Severino (2013). House prices, collateral and self-employment.

Technical report, National Bureau of Economic Research. [24]

Barboza, D. (2011, October 20). China to allow some local governments to issue bonds. The

New York Times . [24]

Campbell, J. and J. Cocco (2007). How do house prices affect consumption? evidence from

micro data. Journal of Monetary Economics 54, 591–621. [4]

Case, K., J. Quigley, and R. Shiller (2005). Comparing wealth effects: The stock market

versus the housing market. Advances in Macroeconomics 5 (1), 1235–1235. [4]

Chaney, T., D. Sraer, and D. Thesmar (2012). The collateral channel: How real estate shocks

affect corporate investment. The American Economic Review 102 (6), 2381–2409. [24]

Christiano, L., R. Motto, and M. Rostagno (2013, January). Risk Shocks. NBER Working

Papers 18682, National Bureau of Economic Research, Inc. [4]

Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005). Nominal rigidities and the dynamic

effects of a shock to monetary policy. Journal of Political Economy 113 (1), 1–45. [2, 6, 7]

Da, Z. and H. Yun (2010). Electricity consumption and asset prices. Available at SSRN

1608382 . [20]

DeJong, D. w. C. (2007). Structural Macroeconometrics. Princeton: Princeton University

Press. [46]

Del Negro, M., G. Eggertsson, A. Ferrero, and N. Kiyotaki (2011). The great escape? A

quantitative evaluation of the Fed?s liquidity facilities. Technical report. [4]

Del Negro, M. and C. Otrok (2007). 99 luftballons: Monetary policy and the house price

boom across us states. Journal of Monetary Economics 54 (7), 1962–1985. [18]

Fair, R. C. and J. B. Taylor (1983, July). Solution and Maximum Likelihood Estimation

of Dynamic Nonlinear Rational Expectations Models. Econometrica 51 (4), 1169–85. [13,

14]

Fernald, J. (2012). A quarterly, utilization-adjusted series on total factor productivity.

Manuscript, Federal Reserve Bank of San Francisco. [47]

38



Guerrieri, L. and M. Iacoviello (2013). Occbin: A toolkit for solving dynamic models with

occasionally binding constraints. Manuscript, Federal Reserve Board. [12, 40, 42, 43]

Iacoviello, M. and S. Neri (2010). Housing market spillovers: Evidence from an estimated

dsge model. American Economic Journal: Macroeconomics 2 (2), 125–64. [7]

Jermann, U. and V. Quadrini (2012). Macroeconomic effects of financial shocks. American

Economic Review 102 (1), 238–71. [4]

Justiniano, A., G. E. Primiceri, and A. Tambalotti (2013, April). Household leveraging and

deleveraging. NBER Working Papers 18941, National Bureau of Economic Research, Inc.

[9]

Klapper, L., L. Laeven, and R. Rajan (2012). Trade credit contracts. Review of Financial

Studies 25 (3), 838–867. [24]

Liu, Z., P. Wang, and T. Zha (2013). Land-price dynamics and macroeconomic fluctuations.

Econometrica 81 (3), 1147–1184. [3, 7]

Lustig, H. and S. van Nieuwerburgh (2010). How much does household collateral constrain

regional risk sharing? Review of Economic Dynamics 13 (2), 265 – 294. [4]

Mendoza, E. G. (2010). Sudden Stops, Financial Crises, and Leverage. American Economic

Review 100 (5), 1941–66. [4]

Mian, A. and A. Sufi (2011). House prices, home equity-based borrowing, and the us house-

hold leverage crisis. American Economic Review 101 (5), 2132–56. [3, 4, 21]

Mian, A. R., K. Rao, and A. Sufi (2012). Household balance sheets, consumption, and the

economic slump. Mimeo, Princeton University. [4, 22]

Saiz, A. (2010). The geographic determinants of housing supply. The Quarterly Journal of

Economics 125 (3), 1253–1296. [21, 37]

Smets, F. and R. Wouters (2007). Shocks and frictions in us business cycles: A bayesian dsge

approach. American Economic Review 97 (3), 586–606. [2, 6, 10, 11]

Stock, J. H. and M. W. Watson (1999). Forecasting inflation. Journal of Monetary Eco-

nomics 44 (2), 293–335. [12]

Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector au-

toregressions. Economics Letters 20 (2), 177–181. [44]

Uhlig, H. (1995). A toolkit for analyzing nonlinear dynamic stochastic models easily. Tech-

nical report, Tilburg University, Center for Economic Research. [43]

39



Appendix

Appendix A Equilibrium Conditions of the Full Model

We summarize here the equations describing the equilibrium of the full model. We use the

methods described in Appendix B and more fully developed in Guerrieri and Iacoviello (2013)

to solve the model subject to the two occasionally binding constraints.

Let uc,t and uc′,t and uh,t and uh′,t and un,t and un′,t denote respectively the time-t marginal

utility of consumption, marginal utility of housing and marginal disutility of labor (inclusive

of the shock terms: that is, ut = zt
(
Γ log (ct − εct−1) + jt log ht − τ

1+η
n1+η
t

)
, and uc,t is the

derivative of ut with respect to ct). Let ∆ be the first difference operator. The complete system

of equations is given by:

• Budget constraint for the patient:

ct + qt∆ht + ikt − bt =
wtnt

Xw,t

− Rt−1bt−1

πt

+Rk,tkt−1 +Divt. (A.1)

• Capital Accumulation equations for the patient:

uc,tqk,t (1− ϕ∆ikt) = uct − βuc,t+1qk,t+1ϕ∆ikt+1 (A.2)

uc,tqk,t = βuc,t+1 (rkt+1 + qk,t+1 (1− δk)) (A.3)

kt = ikt + (1− δk) kt−1 − ϕk (kt − kt−1)
2 (A.4)

• Other optimality conditions for the patient:

uc,t = βuc,t+1 (Rt/πt+1) (A.5)
wt

Xw,t

uct = unt (A.6)

qtuc,t = uh,t + βEtqt+1uc,t+1 (A.7)

• Budget and Borrowing Constraint and optimization conditions for the impatient:

c′t + qt∆h′
t +

Rt−1

πt

bt−1 =
w′

t

X ′
w,t

n′
t + bt +Div′t (A.8)
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(1− λt)uc,t = β′Et

(
Rt − ϕλt+1

πt+1

uc,t+1

)
(A.9)

w′
t

X ′
w,t

uc,′t = un′,t (A.10)

b′t ≤ γ
b
′
t−1

πt

+ (1− γ)mqth
′
t (A.11)

qtuc′,t = uh′,t + β′qt+1uc′,t+1 + uc,′tλt (1− ϕ)mqt (A.12)

• Firm Problem and Aggregate production and Phillips curves:

Yt = n
(1−σ)(1−α)
t n

′σ(1−α)
t Kα

t−1 (A.13)

(1− α) (1− σ)Yt = Xp,twtnt (A.14)

(1− α)σYt = Xp,tw
′
tn

′
t (A.15)

αYt = Xp,tRk,tKt−1 (A.16)

log
(πt

π

)
= βEt log

(πt+1

π

)
− επ log

(
Xp,t

Xp

)
(A.17)

log
(ωt

π

)
= βEt log

(ωt+1

π

)
− εw log

(
Xw,t

Xw

)
(A.18)

log

(
ω′
t

π

)
= β′Et log

(
ω′
t+1

π

)
− ε′w log

(
X ′

w,t

X
′
w

)
(A.19)

ωt = wtπt

wt−1
and ω′

t =
w′

tπt

wt−1
is wage inflation for each household type, and where εw =

(1− θw) (1− βθw) /θw, ε
′
w = (1− θw) (1− β′θw) /θw, and

εp = (1− θπ) (1− βθπ) /θπ.

• Monetary policy:

Rt = max

(
1, RrR

t−1

(
πA
t

πA

)(1−rR)rπ (Yt−1

Y

)(1−rR)rY

R
1−rR

ur,t

)
(A.20)

• Definitions/Market clearing:

Yt = ct + c′t + kt − (1− δ) kt−1

H = 1 = ht + h′
t (A.21)
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Equations A.1 to A.21, with the definitions for Divt and Div′t below and the functional

forms and the laws of motion for the exogenous shocks, define a system of 21 equations in the

following variables: c, c′, h, h′, ik, k, Y, b, n, n′, w, w′, π, q, R, λ, Xp, Xw, X
′
w, Rk, qk.

We use the methods described in Appendix B and more fully developed in Guerrieri and

Iacoviello (2013) to solve the model subject to the two occasionally binding constraints given

by equations A.11 and A.20.

Appendix B Solution Method for the Full Model

We use a piecewise linear solution approach to find the equilibrium allocations for a given

sequence of unforeseen shocks. This method resolves the problem of computing decision rules

that approximate the equilibrium well both when the borrowing constraint binds and when

it does not (similar reasoning applies to the nonnegativity constraint on the interest rate, as

described at the end of this Section).

The economy features two regimes: a regime when collateral constraints bind; and a regime

in which they do not, but are expected to bind in the future.21 With binding collateral con-

straints, the linearized system of necessary conditions for an equilibrium can be expressed as

A1EtXt+1 +A0Xt +A−1Xt−1 + But = 0, (B.1)

where A1, A0, and A−1 are matrices of coefficients conformable with the vector X collecting the

model variables in deviation from the steady state for the regime with binding constraints; and

where u is the vector collecting all shock innovations (and B is the corresponding conformable

matrix). Similarly, when the constraint is not binding, the linearized system can be expressed

as

A∗
1EtXt+1 +A∗

0Xt +A∗
−1Xt−1 + B∗ut + C∗ = 0, (B.2)

where C∗ is a vector of constants. When the constraint binds, we use standard linear solution

methods to express the decision rule for the model as

Xt = PXt−1 +Qut. (B.3)

When the collateral constraints do not bind, we use a guess-and-verify approach. We shoot

back towards the initial conditions, from the first period when the constraints are guessed to

21 If one assumes that the constraints are not expected to bind in the future, the regime with slack borrowing
constraints becomes unstable, since borrowers’ consumption falls over time and their debt rises over time until
it reaches the debt limit, which contradicts the initial assumption.

42



bind again. For example, if the constraints do not bind in t but are expected to bind the next

period, the decision rule for period t can be expressed, starting from B.2 and using the result

that EtXt+1 = PXt , as:

Xt = − (A∗
1P +A∗

0)
−1 (A∗

−1Xt−1 + B∗ut + C∗) . (B.4)

We proceed in a similar fashion to compute the allocations for the case when collateral con-

straints are guessed not to bind for multiple periods or when they are foreseen to be slack

starting in periods beyond t. As shown by equation B.4, the model dynamics when constraints

are not binding depend both on the current regime (through the matrices A∗
1,A∗

0 and A∗
−1) and

on the expectations of future regimes when constraints will bind again (through the matrix P ,

which is a nonlinear function of the matrices A1, A0 and A−1).
22

It is straightforward to generalize the solution method described above for multiple occa-

sionally binding constraints.23 The extension is needed to account for the zero lower bound

(ZLB) on policy interest rates as well as the possibility of slack collateral constraints. In that

case, there are four possible regimes: 1) collateral constraints bind and policy interest rates

are above zero, 2) collateral constraints bind and policy interest rates are at zero, 3) collateral

constraints do no bind and policy interest rates are above zero, 4) collateral constraints do not

bind and policy interest rates are at zero. Apart from the proliferation of cases, the main ideas

outlined above still apply.

Appendix C Accuracy of Solution Method for the Full Model, tested

using the Basic Model

In the absence of an analytical solution for the models considered in this paper, we assess the

solution algorithm used to solve the full general equilibrium model by comparing its performance

against standard solution methods. As is well understood, standard global methods are subject

to the curse of dimensionality, which renders such methods inoperable for our application.

However, the partial equilibrium model of Section 2 of the paper can be solved with both

our piecewise-linear algorithm, described in Appendix B, and with standard global solution

methods. We use this smaller model to showcase the performance of our solution algorithm.

22 See for instance Uhlig (1995).
23 For an array of models, Guerrieri and Iacoviello (2013) compare the performance of the piecewise perturba-

tion solution described above against a dynamic programming solution obtained by discretizing the state space
over a fine grid. Their results show that this solution method efficiently and quickly computes a solution that
closely mimics the (perfect-foresight) nonlinear solution.
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Among standard global methods, we focus on value function iteration since it is reliable,

accurate, and well understood.24 Overall, we find that key aspects of the global solution ob-

tained through value function iteration are matched by the solution from the piecewise-linear

algorithm. A key advantage of our algorithm is that it can handle the solution of a model, such

as the one described in Section 3 of the paper, for which the curse of dimensionality renders

standard global solution methods infeasible.

In Figures A.1 and A.2 we compare the simulated paths for house prices, consumption,

leverage and debt using alternative solution methods. In Figure A.1, we consider impulse

responses to negative and positive house price shocks. In Figure A.2, we generate a realization

of house prices drawing shock innovations for 50 periods from the stochastic AR(1) process

described in the text.

The “piecewise-linear” lines are computed using our method. The “nonlinear stochastic”

lines refer to the nonlinear model solution obtained using global methods (value function iter-

ation) under the assumption that the agents know and act upon the future distribution of the

random shocks. The “nonlinear deterministic” lines refer to the perfect foresight case, solved

using global methods under the assumption that agents ignore the future variance of shocks

(that is, each period they expect that future shock innovations will equal zero with probability

one). Finally, the “linear” lines refer to the model solved used brute force linearization under

the – counterfactual – assumption that the borrowing constraint is always binding.

As can be seen from the figures, the nonlinear methods (value function iteration) and the

piecewise linear method deliver very similar dynamics for the variables of interest. The similarity

of the simulation paths causes the business cycle statistics (reported in Table A.1) to be in broad

agreement for those two methods. As expected, leverage and debt are on average lowest in the

full stochastic case, since buffer stock motives – ignored by construction or by design in the

other cases – cause agents to save more and reduce indebtedness. However, our method – which

combines first-order perturbation solutions under two different regimes – comes remarkably

close to matching the dynamics of the full nonlinear method under perfect foresight. As first-

order perturbation solutions ignore the possibility of future shocks, it is not surprising that

our piecewise-linear method would not be able to capture precautionary motives present in the

full stochastic non-linear solution. Accordingly, we consider the comparison with a perfect-

foresight non-linear solution as more apt. By contrast, the linearized solution that assumes

that the constraint is always binding cannot capture the asymmetry of consumption and grossly

overestimates its volatility.

24 Our state variables are the level of debt, the housing stock and the house price process. We discretize the
AR(1) house price process with using Tauchen’s method (Tauchen (1986)) with 101 grid points. We pick a
solution range for housing and debt between −60 and +60 percent of their steady state values, discretized over
100 points for debt and 110 points for housing. In between iterations, we use Howard’s improvement step. We
verified that increasing the number of grid points did not materially change any of the results.
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As a further metric to judge to accuracy of our solution method, the last column of Table

A.1 reports the welfare cost for a household of using the approximated policy functions instead

of the nearly-exact one (which we take to be the solution obtained via value function iteration)

in order to solve the problem. The welfare cost of using the piecewise linear policy function is

small (about 0.02% of lifetime consumption), and is one order of magnitude smaller than the

cost of using the linearized policy function.

Appendix D Additional Details on Estimation

Local linearity of the Policy Functions. The solution of the model can be described by

a policy function of the form:

Xt = P(Xt−1, ϵt)Xt−1 +D(Xt−1, ϵt) +Q(Xt−1, ϵt)ϵt. (28)

The vector Xt collects all the variables in the model, except the innovations to the shock

processes, which are gathered in the vector ϵt. The matrix of reduced-form coefficients P is

state-dependent, as are the vectorD and the matrixQ. These matrices and vector are functions

of the lagged state vector and of the current innovations. However, while the the current

innovations can trigger a change in the reduced-form coefficients, Xt is still locally linear in ϵt.

To illustrate this point, Figure A.3 shows how the policy function for borrowers’ consumption

c′t – one of the elements of Xt – depends on the realization of the housing preference shock

uj,t – one of the elements of ϵt – when all the other elements of Xt−1 are held at their steady–

state value. The top panel shows the consumption function for the impatient (in deviation

from the nonstochastic steady state): this function is piecewise linear, with each of the rays

corresponding to a given number of periods in which the borrowing constraint is expected to

be slack. The bottom panel shows the derivative of the consumption function with respect to

to uj,t. As the consumption function is piecewise linear, the derivative is not defined at the

threshold values of the shock uj,t that change the expected duration of the regime. However,

each of these threshold points for different shocks is a set of measure zero.25

Realizations of the shock uj,t above a threshold will imply that the borrowing constraints is

temporarily slack. When the constraint is slack, the constraint will be expected to be slack for

a number of periods which increases with the size of the shock. Accordingly, consumption will

respond proportionally less, and the the Qc′,uj
element of the matrix Q that defines the impact

25 It is straightforward to prove that the points in which the derivative of the decision rule is not defined is of
measure zero given a choice of process for the stochastic innovations. By construction there are only countably
many of these points. If there were uncountably many, a shock could lead to a permanent switch in regimes,
which is ruled out by the solution method.
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sensitivity of c′ to uj will be smaller.

Robustness to Initial Conditions. We assume that all variables are known and equal to

their nonstochastic steady state in the first period, and use the first 20 observations as a training

sample for our filtering procedure. By treating the initial distribution of X0 as known (and

equal to its steady–state value), we can eliminate the conditionality of the likelihood function

for the observed data Y T on both X0 and Y0. Without this assumption, one needs to integrate

the likelihood for Y T over the distribution for X0 implied by the specification of the model

and the observed data, as discussed for instance by DeJong (2007), and methods such as the

particle filter become necessary.

As a robustness exercise, we have estimated our model under different assumptions about

the values of the initial state vector X0. Given a training sample of 20 periods, the initial

conditions were essentially irrelevant by period 20, and our estimated parameters were little

affected by the value of the initial condition.

Retrieving the Shocks. Our algorithm relies on using a nonlinear equation solver in order

to filter in each period t, given Xt−1, the sequence of shocks ϵt that reproduces the observed

behavior of the observables in the vector Yt. It is possible that small numerical errors in retriev-

ing ϵt at each point in time may propagate over time and lead to inaccuracies in computing the

filtered shocks. To explore the practical relevance of this possibility, we generate an artificially

long sample of observables from our model. At the estimated mode, the borrowing constraint

is slack about 30 percent of the time and the ZLB binds about 1 percent of the time. In order

to emphasize the asymmetries, we hold all the parameters at their estimated mode, but set

the estimated discount factor of impatient agents at 0.9925 (a value slightly higher than its

estimated value): with this parameter choice, the borrowing constraint is slack 40% of the time.

Drawing from the posterior mode of the shocks, we generate a time series of artificial observ-

ables of length T = 500. We then use our procedure to filter these shocks back and compare

the filtered shocks to the “true” ones used to generate our artificial data set. The correlation

between the “true” shocks and the filtered ones is, for all shocks, extremely high, ranging from

0.9996 for the monetary shock to 0.99999998 for the inflation shock.

Detrending Method. We use a one-sided HP filter to detrend the data prior to estimation.

As an alternative, we have incorporated deterministic trend growth in the model and estimated

the parameters governing the trend jointly with the other model parameters. The results were

little affected by this alternative assumption. The model with deterministic trends implies

slightly more persistent and more volatile shocks, presumably in order to account for the larger

and more persistent deviations of the observables around their constant trends.
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Allowing for TFP Shocks. In our baseline specification we include for six observables (in-

flation, wages, house prices, consumption, investment and the interest rate) and six shocks

(investment-specific shocks, wage markup, price markup, monetary policy, intertemporal pref-

erences, and preferences for housing). As a robustness exercise, we have included utilization-

adjusted TFP (constructed by Fernald (2012)) in the list of observables and allowed for a

seventh, TFP shock, in a model with variable capacity utilization. The estimated model with

TFP shocks prefers a slightly lower degree of price rigidity than our benchmark (the Calvo

parameters for prices is 0.89 instead of 0.92, and the Calvo parameter for wages is 0.9 instead

of 0.92), and prefers a higher fraction of impatient households (0.63 instead of 0.43). These

estimates have two effects on the role of the housing collapse in the Great Recession. The first

is that smaller nominal rigidities dampen the effect of housing demand shocks. The second is

that a higher wage share of impatient households enhances them. All told, the second effect

dominates, and the role of the housing collapse in explaining the decline in consumption during

the Great Recession is slightly larger than in our benchmark. Most of the other results in the

main text are unaffected.

Appendix E State-Level Evidence on House Prices and Mortgage

Originations

Because the effects of low and high house prices on consumption work in our model through

tightening or relaxing borrowing constraints, it is important to check whether measures of lever-

age also depend asymmetrically on house prices. Table A.2 shows how mortgage originations

at the state level respond to changes in house prices. We choose mortgage originations because

they are available for a long time period, and because they are a better measure of the flow of

new credit to households than the stock of existing debt. In all of the specifications in Table

A.2, mortgage originations depend asymmetrically on house prices, too.
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Figure A.1: Accuracy of Solution Method: Impulse Responses
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Note: Impulse Responses of the basic model to a negative house price shock in period 10

and a positive house price shock in period 50.
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Figure A.2: Accuracy of Solution Method: Simulated Time Series for the Basic Model
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Note: Simulation of the basic model for 50 periods using identical realizations for the

exogenous random shock to house prices.
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Figure A.3: Local Linearity of the Policy Functions
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Note: The top panel plots consumption of the impatient agent (in deviation from the steady

state) as a function of various realizations of the housing preference shock. The bottom panel

plots the slope of the consumption function. The consumption function has a kink when the

borrowing constraint becomes binding, and becomes flatter the larger the realization of the

housing preference shock.
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Table A.1: Accuracy of the Solution Method

Solution Method Log Consumption Correlations b
qh

∆ Welfare

st.dev skewness log q, log c log q, b
qh

mean

Linear 6.31% -0.03 0.40 0.00 0.925 0.199%
Piecewise Linear 4.55% -1.27 0.55 -0.61 0.908 0.022%

Nonlinear Perfect Foresight 4.54% -1.18 0.52 -0.64 0.909 0.021%
Nonlinear Stochastic 3.60% -1.36 0.66 -0.75 0.890 —

Note: Selected properties of the basic model using different solution algorithms. These

properties are based on the outcomes of a simulation of 5,000 observations using identical

realizations for the exogenous random shocks.

The column labeled “∆ Welfare” indicates the annuity value of the transfer τ (as a percent

of current consumption) that would make an agent using the solution method in the first

column indifferent between using that method and using the Nonlinear Stochastic solution.

Letting (c∗t , h
∗
t ) denote the consumption and housing policy in the nonlinear stochastic case,

and
(
c̃t, h̃t

)
the consumption policy in the linear case, the two associated value functions are

respectively

W ∗
t = u (c∗t , h

∗
t ) + βEtW

∗
t+1

W̃t = u
(
c̃t, h̃t

)
+ βEtW̃t+1.

The transfer τ is the solution to the following equation:

u
(
c̃t (1 + τ) , h̃

)
+ βEt

(
W̃t+1

)
value of using suboptimal policy, after transfer

= W ∗
t

value of using optimal policy

By design, the nonlinear stochastic solution attains the highest level of welfare. Note that the

linear and piecewise linear solution method could lead to spurious welfare reversals since they

linearize the constraints of the original nonlinear problem thus transforming the original prob-

lem. To avoid this problem, we use these methods only to compute the borrowing and housing

policy, and then obtain the consumption policy c nonlinearly from the budget constraint.
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Table A.2: State-Level Regressions: Mortgage Originations and House Prices

% Change in Mortgage Originations (∆morit)
∆hpt−1 1.10***

(0.18)
∆hp hight−1 -0.41* 1.08*** 1.46*** 1.54***

(0.24) (0.16) (0.21) (0.33)
∆hp lowt−1 3.13*** 1.85*** 2.53*** 2.67**

(0.59) (0.68) (0.90) (1.11)
∆morit−1 -0.20*** -0.20***

(0.02) (0.02)
∆incomet−1 -0.63

(1.04)

pval difference 0.000 0.211 0.160 0.181

Time effects no no yes yes yes
Observations 1020 1020 1020 969 969

States 51 51 51 51 51
R-squared 0.01 0.03 0.58 0.53 0.53

Note: State–level Regressions using annual observations from 1992 to 2011 on 50 States

and the District of Columbia. Robust standard errors in parenthesis. ***,**,*: Coefficients

statistically different from zero at 1, 5 and 10% confidence level, respectively. pval is the

p-value of the test for difference in the coefficients for low-house prices and high-house prices.

Data Sources and Definitions: ∆mori is the percent change in “Mortgage originations and

purchases: Value” from the U.S. Federal Financial Institutions Examination Council: Home

Mortgage Disclosure Act. See Table 2 for other variable definitions.
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