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Abstract
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date for slowing population adjustments because it is difficult to move, costly to build
quickly, and a large durable stock makes a city attractive to potential migrants. We
quantify the influence of migration and housing on urban population dynamics using a
dynamic general equilibrium model of cities which incorporates a new theory of gross
migration motivated by patterns we uncover in a panel of US cities. After assigning
values to the model’s parameters with an exactly identified procedure, we demonstrate
that its implied dynamic responses to productivity shocks of population, gross migra-
tion, employment, wages, home construction and house prices strongly resemble those
we estimate with our panel data. The empirically validated model implies that costs
of attracting workers to cities drive slow population adjustments. Housing plays a very
limited role.
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1 Introduction

As we document in this paper, cities experience significant, random-walk-like productivity

shocks, yet population is slow to adjust. In the light of Blanchard and Katz (1992)’s em-

pirical evidence that internal migration is integral to equilibrating the US labor market,

explaining population’s slow adjustment should inform our understanding of macroeconomic

labor reallocation. Ultimately migration to and from cities is the main driver of a city’s

population adjustments. Migration frictions associated with leaving and attracting workers

to a city naturally impede population adjustments. Housing is another natural candidate

because it is difficult to move, requires time to build, and a large durable housing stock

makes a city attractive to potential migrants.

To understand the quantitative importance of migration and housing in urban popula-

tion dynamics we develop a dynamic general equilibrium model of cities with endogenous

migration and local housing and compare it to panel data on 365 US cities over the period

1985-2009. Our model is a version of the Lucas and Prescott (1974) islands economy in which

islands are interpreted as cities. We propose a new theory of migration between cities inter-

preted as population movements between the islands. Population adjustments involve net

migration, but we argue that it is essential to model the underlying gross flows. Our argu-

ment builds on new evidence from our panel data. We find that gross in- and out-migration

are strikingly linear in net migration, evidence that both the decisions to leave and move to

a city drive changes in net migration, and that migration clearly involves directed search.

In the model workers face idiosyncratic shocks to their taste for where they currently

live and this influences the decision to leave a city. After this decision has been made a

worker chooses between directed and undirected search for a new city. Workers understand

the distribution of city characteristics, but must use costly directed search to find a city with

specific labor and housing markets. Undirected search leaves a worker randomly assigned

to a city. Including both directed and undirected migration coincides with evidence that

moves involve decisions about where to work and enjoy amenities like housing but also

intangible factors such as to be near family members. Increases in employment of the existing

population are a obvious alternative to net migration for accommodating local fluctuations

in labor demand and so labor supply is endogenous in our model as well.

We introduce this theory of migration and labor supply into an otherwise familiar gener-

alization of the neoclassical growth model. The employed population in each city produces

intermediate goods that are imperfectly substitutable in the production of the tradeable fi-
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nal goods equipment and consumption. Local production combines employment with freely

mobile, durable capital, augmentable by equipment investment, and subject to local total

factor productivity (TFP) shocks. Individuals have preferences for consumption and hous-

ing services, but only enjoy housing in the same city they work or rest. Housing services

are derived from locally produced, immobile and durable residential structures and local

residential land.

The model is calibrated to aggregate statistics familiar from other studies that work

with the neoclassical growth model and features of the data that are specific to our model’s

environment. For the latter, we use our new evidence on the relationship between gross and

net migration and microeconomic estimates of migration costs to obtain the key migration

parameters. In addition, we estimate the idiosyncratic TFP process using our panel data

thereby pinning down the model’s exogenous source of persistence and variability. Our

estimation of the TFP process facilitates estimation of the dynamic responses of key variables

to TFP shocks. We use the estimated elasticity of the employment to population ratio with

respect to wages from the impact period of a TFP shock to identify the model’s labor supply

elasticity. Finally, we calibrate the substitutability of city-specific intermediate goods so that

our model matches the empirical cross-section distribution of population. In so doing we

confirm that our model is consistent with Zipf’s law, that in its upper tail city population is

distributed exponentially with an exponent close to unity. In turn the idiosyncratic process

that we estimate and introduce into the model is able to generate a similar law for TFP that

we uncover also in our panel data.

We validate the model by studying several of its over-identifying restrictions, observa-

tions not used to calibrate its parameters. Specifically, we compare the model’s dynamic

responses to TFP shocks of population, gross in- and out-migration, employment, wages,

home construction and house prices to those we estimate from our panel data. The model

does surprisingly well along this dimension and importantly it is consistent with the slow

response of population to TFP shocks that motivates this study even though this evidence

is not directly targeted in our calibration. With only TFP shocks driving within-city dy-

namics we also find that the model is broadly consistent with the unconditional volatility,

persistence, and contemporaneous co-movement of the key variables, although there are some

interesting shortcomings.

Having established the empirical relevance of our model, we use it to examine how migra-

tion and housing influence population adjustments. We find that the process of attracting

workers to cities through costly directed search is sufficient to explain slow population adjust-
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ments to TFP shocks. Housing plays a surprisingly limited role. In the absence of migration

frictions introducing immobile housing does lower the amplitude of population’s response to

a TFP shock but has very little influence over its persistence. However, if migration frictions

are already present making housing immobile does little to influence population dynamics.

We also investigate our model’s implications for the persistence of urban decline. Glaeser

and Gyourko (2005) explore this phenomenon emphasizing housing’s immobility and slow

depreciation and argue that these features are a significant source of persistent urban decline.

There are many cities in our data with declining populations throughout the sample period,

evidence of persistent urban decline. These cities also typically experience declining TFP

suggesting that our model might account for the persistence of urban decline in addition to

short run population dynamics. We find that the combination of previous declines in TFP

and the slow response of population to them can explain persistent urban decline. Apart

from indicating an important role for TFP in urban decline this finding strongly suggests

that costly migration is a major factor determining persistent urban decline. Glaeser and

Gyourko (2005) do not consider a role for costly migration.

Our model builds on an extensive empirical and theoretical microeconomic literature on

migration, surveyed by Greenwood (1997) and Lucas (1997). Kennan and Walker (2011)

(hereafter, KW) is an important recent contribution to this literature. They analyze indi-

vidual migration decisions in the face of wage shocks and moving costs with directed search,

but without explicit housing or equilibrium interactions. They use their estimated model to

calculate the speed of adjustment of state’s population to permanent wage changes. Despite

using very different different methodologies we find similarly slow population adjustments.

One of our contributions is to show how their microeconomic estimates of moving costs based

on inter-state migration can be used to calibrate a general equilibrium model of inter-city

migration.

The classic references for systems-of-cities models like ours are Roback (1982) and Rosen

(1979). These authors consider static environments in which individuals allocate themselves

across cities so that they are indifferent to where they live. Recent contributions using this

approach include Albouy (2009) and Diamond (2012). Because it is static, the Roback-Rosen

model does not inform our understanding of migration and local population adjustments.

Van Nieuwerburgh and Weil (2010) introduce dynamics to this framework and therefore

their model speaks to migration. It has implications for net population flows, but not for

gross flows. Coen-Pirani (2010) also constructs a dynamic Roback-Rosen model. He studies

gross population flows among US states in an environment similar to that used by Davis,
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Faberman, and Haltiwanger (2011) and others to model gross worker flows among firms.

Our empirical work demonstrates that gross population flows in a city are very different

from gross worker flows in a firm so we introduce a new theory.

Our model also contributes to the literature by introducing a city’s dynamic response to

an identified TFP shock as a model validation tool and by estimating the underlying stochas-

tic process for TFP.1 Model validation in the existing literature emphasizes unconditional

cross-sectional and time-series patterns. Even so, the papers that focus on cities abstract

from Zipf’s law, perhaps the most notable feature of the cross-section of cities.2 While the

literature relies on idiosyncratic TFP shocks to drive variation, it does not provide evidence

on the nature of these shocks as we do.3

The recent housing boom and bust has prompted a growing literature that seeks to

quantify how frictions in housing may impede migration and labor reallocation and possibly

give rise to persistent high unemployment. Karahan and Rhee (2012), Lloyd-Ellis and Head

(2012) and Nenov (2012) study how the recent collapse in house prices may have limited

labor reallocation through disincentives to migrate arising from home ownership and within-

location search frictions in housing and labor markets. We abstract from these within-

location labor and housing market frictions and instead study between-location migration

frictions and focus on housing’s basic technological characteristics.4 However our finding

that migration frictions alone can account for slow population adjustments and that also

including the basic technological characteristics of housing does not slow down population

adjustments very much suggests it is unlikely that once the costs of migration are taken into

account that adding more frictions in the housing market will have much of an impact on

labor reallocation.

The rest of the paper is organized as follows. Section 2 describes new empirical evidence

on migration and population’s response to TFP shocks based on our panel of cities. After

this we use two stripped down versions of our quantitative model to describe our approach to

modeling migration and the possible role for housing in slowing population adjustments. Sec-

1Lloyd-Ellis, Head, and Sun (2014) study the within-city responses of population, residential construction
and house prices to personal income shocks identified using a panel VAR and a Choleski decomposition of the
variance-covariance matrix of the residuals. These authors abstract from migration decisions and equilibrium
interactions among cities.

2See for example Gabaix (1999) and Eeckhout (2004).
3Karahan and Rhee (2012) estimate an auto-regressive process in the level of GDP per worker using a

short panel of cities.
4There is also an empirical literature that investigates the effects of housing related financial frictions

on mobility. See for example Ferreira, Gyourko, and Tracy (2011), Modestino and Dennett (2012) and
Schulhofer-Wohl (2012). We abstract from financial friction in this paper.
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tion 5 introduces the complete dynamic quantitative model economy and Section 6 describes

how we calibrate its parameters. Section 7 validates the quantitative model by comparing

its predictions for within city dynamics we estimate from our panel and quantifies the roles

of housing and migration in labor reallocation. The last section concludes.

2 Empirical Evidence

In this section we introduce the empirical evidence that motivates our analysis and guides our

modeling of migration. We work with an annual panel data set covering 1985 to 2009 that

includes population, net and gross migration, employment, wages, residential construction,

and house prices for 365 Metropolitan Statistical Areas (MSAs) comprising 83% of the

aggregate population.5 An MSA is a geographical region with a relatively high population

density at its core and close economic ties throughout the area measured by commuting

patterns. Such regions are not legally incorporated as a city or town would be, nor are

they legal administrative divisions like counties or sovereign entities like states. A typical

MSA is centered around a single large city that wields substantial influence over the region,

e.g. Chicago. However, some metropolitan areas contain more than one large city with no

single municipality holding a substantially dominant position, e.g. the Dallas–Fort Worth

metroplex or Minneapolis–Saint Paul. With these caveats, for convenience we refer to our

MSAs as cities. The section begins with our evidence on gross and net migration and then

we describe the dynamic response of TFP, population and gross migration to a shock to a

city’s TFP.

2.1 Gross Versus Net Migration

We use IRS data to calculate city-level net and gross migration rates. These data have wide

coverage of US cities which are the natural unit of analysis for studying migration between

geographically distinct labor markets. Due to limited sample sizes gross migration rates can

only be calculated for a small number of cities using the other main data sources, the Current

Population Survey and the American Community Survey. State-level migration rates can be

calculated using these surveys. In our context, these data yield very similar results to those

5See Davis, Fisher, and Veracierto (2011) for a detailed description of these data.

5



we obtain with city-level and state-level migration rates calculated using the IRS data.6

Let ait and lit denote the number of people flowing into and out of city i in year t and

pit the population of that city at the end of the same year. For an individual city the

arrival (in-migration) rate is ait/p̃it and the leaving (out-migration) rate is lit/p̃it, where

p̃it = (pit−1 + pit)/2. These measures of gross migration mirror the measures of gross job

flows defined in Davis, Haltiwanger, and Schuh (1998).7 The difference between the arrival

and leaving rates is the net migration rate. Gross migration rates fluctuate over the business

cycle and have been falling over our sample period.8 To abstract from these dynamics we

subtract from each city’s gross rate in a year the corresponding cross section average in that

year. The net migration rate calculated from the difference between these gross rates is

equivalent to subtracting from each city’s raw net migration rate the corresponding cross-

section average net migration rate in each year.

Figure 1 contains plots of gross and net migration rates by population decile with only

time effects removed. Net migration is essentially unrelated to city size. This finding reflects

Gibrat’s law for cities, that population growth is independent of city size. However, the

arrival and leaving rates are clearly diminishing in city size. While we think this is an

interesting finding worthy of further study, its presence confounds across-city variation with

the within-city dynamics we are interested in. Therefore, after removing time fixed effects,

for every city we subtract from each year’s arrival and leaving rate the time series average

of the sum of the arrival and leaving rates for that city. This removes city fixed effects in

gross migration without affecting net migration rates.

Figure 2 displays mean arrival and leaving rates against mean net migration for each net

migration decile, after removing both time and city fixed effects and adding back the corre-

sponding unconditional mean to the gross migration rates. Notice first that gross migration

is far in excess of the amount necessary to account for net migration. For example, when

net migration is zero an average of 11% of the population either moves in or out of a city in

any given year.

Second, the arrival rate is monotonically increasing (and the leaving rate is monotonically

6As emphasized by Kaplan and Schulfofer-Wohl (2012) there are three drawbacks to using the IRS data:
tax filings under-represent the poor and elderly; addresses on tax forms are not necessarily home addresses;
and tax returns may be filed late. The ultimate affects of these features on measurement is unclear.

7In practice we approximate p̃it as the average of the beginning of year t and end of year t IRS-based
population. For additional details see the appendix.

8See Molloy, Smith, and Wozniak (2011) and Kaplan and Schulfofer-Wohl (2012) for studies of the trend
in gross migration rates.
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Figure 1: Gross and Net Migration Rates by Population Decile
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decreasing) in net migration. The rising arrival rate suggests that migration involves directed

search. Otherwise gross arrivals would be independent of net migration. The fact that the

arrival rate rises and the departure rate falls with increases in net migration suggests both

margins are important when a city’s population adjusts to shocks.

Third, and most striking, the gross migration rates all fall almost exactly on the corre-

sponding regression lines.9 This evidence sharply contrasts with the non-linear relationships

for worker flows at firms described by Davis, Faberman, and Haltiwanger (2006). They find a

kink at zero for hires and separations as functions of net worker flows. For negative net flows

hires are flat and close to zero while for positive net flows they are linearly increasing; sepa-

rations as a function of net flows are essentially the mirror image. The linear relationships

between gross and net migration displayed in Figure 2 motivate how we specify migration

decisions in our model.

The clear negative relationship between the arrival and leaving rates evident in Figure 2

may be surprising given Coen-Pirani (2010)’s focus on a positive correlation between the two

gross migration rates at the state level. This difference does not arise because we consider

cities rather than the states considered by Coen-Pirani (2010). It arises from our removal of

city-specific fixed effects from the gross migration rates. As suggested by Figure 1, when we

do not remove these effects the gross migration rates are strongly positively correlated.10

2.2 Responses of Population and Gross Migration to TFP Shocks

We now describe how we estimate dynamic responses of city-level variables to local TFP

shocks and report estimates for population and the gross migration rates. To proceed we

exploit the first order conditions of final good producers and intermediate good in the quan-

titative model described in Section 5. These conditions can be used to derive an equation

involving TFP, employment and wages. Using this equation and data on employment and

wages we obtain a measure of TFP from which we estimate a stochastic process for its

growth. We estimate the dynamic response of a variable to TFP shocks by regressing it on

current and lagged values of the TFP innovations derived from the estimated TFP growth

process. Later we compare these estimated responses to ones calculated using the same

9We obtain virtually identical regression lines when we use all the data rather than first taking averages
of deciles and when we estimate using data from the first 5 years of the sample and the last five years of the
sample. We also find qualitatively similar results when we regress gross on net migration separately for each
city in our sample.

10Coen-Pirani (2010) removes cross-sectional variation in the occupational characteristics of states prior
to his analysis, but not state fixed effects.
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procedure from data simulated from our model.

There are N cities that each produce a distinct intermediate good used as an input into

the production of final goods. The production function for a representative firm producing

intermediate goods in city i at date t is

yit = sitn
θ
y,itk

γ
y,it, (1)

where sit is exogenous TFP for the city, ny,it is employment, ky,it is capital, hereafter referred

to as equipment, θ > 0, γ > 0, and θ + γ ≤ 1.11 The output of the final good at date t, Yt

is produced using inputs of city-specific intermediate goods according to

Yt =

[
N∑
i=1

yχit

] 1
χ

, (2)

where χ ≤ 1.

Our measurement of city-specific TFP relies on the following definition. For any variable

xit:

x̂it ≡ lnxit −
1

N

N∑
j=1

lnxjt. (3)

Subtracting the mean value of lnxjt in each period eliminates variation due to aggregate

shocks, allowing us to focus on within-city dynamics. Under the assumption of perfectly

mobile equipment the rental rate of equipment is common to all cities. It then follows

from the first order conditions of competitively behaving final good and intermediate good

producers that

∆ŝit =
1− γχ
χ

∆ŵit +
1− θχ− γχ

χ
∆n̂it, (4)

where ∆ is the first difference operator and wi denotes the wage in city i.12 Applying the

first difference operator eliminates permanent differences in TFP among the cities. Assuming

values for χ, θ and γ, and substituting data on wages and employment for ∆ŵit and ∆n̂it,

we use this equation to measure ∆ŝit, the growth rate of city-specific TFP.

Below we calibrate θ and γ using traditional methods and find a value for χ to match

the model to Zipf’s law. With calibrated values χ = 0.9, θ = 0.66 and γ = .235 we estimate

11The additional subscripts on employment and equipment are used later to distinguish between employ-
ment and equipment used in the production of intermediate goods and residential construction.

12See the technical appendix downloadable at http:
xxx for more details.
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a first order auto-regression in ∆ŝit with an auto-correlation coefficient equal to 0.24 and

the standard deviation of the error term equal to 0.015. Wooldridge (2002)’s test of the

null of no first order serial correlation in the residuals is not rejected, suggesting that this

specification is a good fit for the data.

Figure 3: Responses of TFP and Population
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A natural concern about measuring TFP with (4) is that it ignores agglomeration. Davis,

Fisher, and Whited (2013) find statistically significant agglomeration effects in model where

agglomeration affects TFP endogenously through an externality in output per acre of land

following Ciccone and Hall (1996). It is straightforward to modify equation (4) to include

agglomeration modeled in this way and it leads to the same measurement equation for the

exogenous component of TFP except that the coefficients on wage and output growth include

the parameter governing the magnitude of the externality. When we re-estimate the TFP

process using the estimate of the externality parameter in Davis et al. (2013) we find the serial

correlation coefficient and the innovation standard deviation are a little different, falling to

0.20 and 0.013. While we do not include agglomeration in our model, we expect that doing

so would reconcile the two sets of estimates but have little impact on our other results.13

13Verifying this conjecture is beyond the scope of this paper. However, in the model considered by Davis
et al. (2013) the externality amplifies the response of TFP to an exogenous TFP shock and makes it more
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Figure 4: Responses of Arrival and Leaving Rates
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We now show how to use the estimated TFP process (without agglomeration) to identify

the dynamic responses of variables to exogenous local TFP shocks. Let eit denote the residual

from the estimated TFP growth auto-regression. Then, we estimate the dynamic response

to a TFP shock of variable ∆x̂it as the coefficients b0, b1, . . ., b4 from the following panel

regression:

∆x̂it =
4∑
l=0

bleit−l + uit (5)

where uit is an error term which is orthogonal to the other right-hand-side variables under the

maintained hypothesis that the process for TFP growth is correctly specified. The dynamic

response of x̂it is obtained by summing the estimated coefficients appropriately. For the

gross migration rates we replace ∆x̂it with the rates themselves (transformed as described

above) in (5) and identify the dynamic responses with the estimated coefficients directly.

Figure 3 displays the percentage point deviation responses of TFP and population to a

1 standard deviation impulse to measured TFP. This plot establishes the claim made in the

introduction that productivity, that is TFP, responds much like a random walk, rising quickly

to its new long run level, and that population responds far more slowly. Figure 4 shows that

persistent.
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the adjustment of population occurs along both the arrival and leaving margins, as suggested

by our earlier discussion of Figure 2. On impact the arrival rate jumps up and the leaving rate

jumps down and then both slowly returns to their long run levels. The indicated sampling

uncertainty suggests that the arrival and leaving margins are about equally important in

the adjustment of population to a TFP shock. In particular it is the improvement in local

prospects encouraging workers not to move as much as the affect those prospects have on

attracting workers to the city through which population adjusts to persistent improvements

in local TFP.

3 Modeling Migration

The previous section documents evidence confirming a role for both gross migration margins

in population adjustments. We now introduce our theory of migration that is motivated by

this evidence. To do so so we employ a simple, static model which abstracts from housing,

equipment, and labor supply. We use this simplified approach to develop intuition about

migration choices, to describe how and why we can reproduce the relationships depicted in

Figure 2, and to establish that modeling gross migration is essential for understanding popu-

lation adjustments. All of the results in this section extend to our more general quantitative

model.

3.1 A Static Model of Migration

The economy consists of a large number of geographically distinct cities with initial popu-

lation x. In each city there are firms which produce identical, freely tradeable consumption

goods with the technology snθ, where s is a city-wide TFP shock, n is labor and 0 < θ < 1.

There is a representative household with a unit continuum of members that are distributed

across city types z = (s, x) according to the measure µ. Each household member enjoys

consumption, C, and supplies a unit of labor inelastically. After the TFP shocks have been

realized, but before production takes place, the household decides how many of its mem-

bers leave each city and how many of those chosen to leave move to each city. Once these

migration decisions have been made, production and consumption take place.

The leaving decision is based on each household member receiving a location-taste shock

ψ, with measure µl, that subtracts from their utility of staying in the city in which they

are initially located. This kind of shock is used by KW in their measurement of migration
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costs. To help us match the empirical evidence on the relationship between gross and net

migration we make a parametric assumption for the distribution of individual location-taste

shocks in a city of type z:

∫ ψ̄(l(z)/x)

−∞
ψdµl = −ψ1

l(z)

x
+
ψ2

2

(
l(z)

x

)2

where the parameters ψ1 and ψ2 are both non-negative and ψ̄ (l(z)/x) is defined by

l(z)

x
=

∫ ψ̄(l(z)/x)

−∞
dµl.

This parameterization is U-shaped starting at the origin. Initially benefits accrue to

increasing the number of leavers from a city, and eventually individuals find it very costly to

leave. These features are consistent with evidence in KW that individuals who move receive

substantial non-pecuniary benefits and that non-movers would find it extremely costly if

they were forced to move. For example, many individuals move to be near family members

or find it very costly to move because they are already near family members. As more people

leave a city the remaining inhabitants are those who have a strong preference for living in

that city. Subject to these shocks, the household determines how many of its members from

each city must find new cities in which to work. Household members chosen to find new

cities are called leavers.

When deciding where to send its leavers the household understands the distribution of

city types µ but does not know the location of any specific type z. However, it can find a

particular type of city by obtaining a guided trip, a form of directed search. To match the

evidence on gross and net migration, we adopt a particular functional form for producing

guided trips as well. Specifically, by giving up u units of utility each individual household

member can produce
√

2A−1/2u1/2 guided trips to the city in which they are initially located,

where the parameter A is non-negative. Therefore, to attract a(z) workers to a city of the

indicated type the household must incur a total utility cost of (A/2) (a(z)/x)2 x.

The production of guided trips encompasses the many ways in which workers are attracted

to specific cities, including via informal contacts between friends and family, professional

networks, specialized firms like head-hunters, advertising that promotes cities as desirable

places to live and work, firms’ human resource departments, and via recruiting by workers
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whose primary responsibility is some other productive activity.14 Clearly some of these

activities are part of recruiting workers within a local labor market and as such would be

included in any measurement of the vacancy costs typically assumed in models of labor

market search and matching. Our approach can be thought of as capturing the portion of

these activities devoted to attracting workers to a local labor market from other locations.

If a household member does not obtain a guided trip it can migrate to another city using

undirected search. Specifically, by incurring a utility cost τ a leaver is randomly allocated to

another city in proportion to its initial population. Including undirected search captures the

idea that choosing to move to a particular city is often the outcome of idiosyncratic factors

other than wages or housing costs that are difficult to model explicitly, such as attractiveness

of amenities and proximity to family members.15 Furthermore, it is natural to let people

move to a location without forcing them to find someone to guide them.

We characterize allocations in this economy by solving the following planning problem:

max
{C,Λ,a(z),
l(z),p(z)}

{
lnC −

∫ [
A

2

(
a (z)

x

)2

x+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}
(6)

subject to

p (z) ≤ x+ a (z) + Λx− l (z) ,∀ z (7)∫
[a (z) + Λx] dµ ≤

∫
l (z) dµ (8)

C ≤
∫
sp (z)θ dµ (9)

and non-negativity constraints on the choice variables. The variable Λ is the fraction of

the household that engages in undirected search. Since these workers are allocated to cities

in proportion to their initial populations, Λ also corresponds to the share of a city’s initial

population that migrates to that city within the period. Constraint (7) states that population

in a city is no greater than the initial population plus arrivals through guided trips and

undirected search minus the number of workers who migrate out of the city. Constraint (8)

says that total arrivals can be no greater than the total number of workers who migrate out

14For convenience we have modeled the cost of attracting workers to a city as a direct loss of utility. Our
results do not rest on this assumption.

15In KW migration is a combination of undirected and directed search. It is undirected because to learn
a location’s permanent component of wages workers have to migrate there. It is directed because workers
retain information about locations to which they have previously migrated and include this information in
their current migration decision along with expectations about locations they have not visited already.
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of cities and (9) restricts consumption to be no greater than total production, taking into

account that each individual supplies a unit of labor inelastically, n(z) = p(z), ∀z.

3.2 Why Both Gross Migration Frictions are Necessary

We now explain why it is necessary to include frictions on both gross migration margins in

order to match the evidence depicted in Figure 2. Suppose A = 0 so that guided trips can be

produced at no cost, but that household members continue to be subject to location-taste

shocks, ψ1 > 0 and ψ2 > 0. Then it is straightforward to show

a (z)

x
= max

{
p (z)− x

x
+
ψ1

ψ2

, 0

}
;

l (z)

x
= max

{
ψ1

ψ2

,−
(
p (z)− x

x

)}
.

Observe that as long as the net population growth rate, (p(z) − x)/x, is not too negative,

the planner sets the leaving rate, l(z)/x at the point of maximum benefits, ψ1/ψ2, and

adjusts population using the arrival rate, a(z)/x, only. In this situation the leaving rate is

independent of net population adjustments, contradicting the evidence presented in Figure

2.

Now suppose that there are no location-taste shocks, ψ1 = ψ2 = 0, but it is costly to

create guided trips, A > 0. In this case we find

l (z)

x
= max

{
−
(
p (z)− x

x
− Λ

)
, 0

}
;

a (z)

x
= max

{
p (z)− x

x
− Λ, 0

}
.

Without taste shocks the planner always goes to a corner: when net population growth is

positive the leaving rate is set to zero, and when net population growth is negative the arrival

rate is set to zero. Clearly the relationship between gross and net migration in this situation

also contradicts the evidence depicted in Figure 2. We conclude that to be consistent with

the relationship between gross and net migration, it is necessary to include frictions on both

gross migration margins.
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3.3 Migration Trade-offs

For the model to be consistent with the gross flows data as depicted in Figure 2, it also

must be true (almost everywhere) that the number of workers leaving a city and the number

arriving to the same city using guided trips are both strictly positive, l(z) > 0 and a (z) > 0.

The reason we require l(z) > 0 is that gross out-migration is always positive in Figure 2.

The reason we require a(z) > 0 is that otherwise there would be intervals of net migration

in which arrival rates are constant, equal to Λ, which is also inconsistent with Figure 2.

Therefore, unless otherwise noted, from now on we assume that a(z) > 0 and l(z) > 0.

The planner’s first order conditions for Λ, a (z) , l (z) and p (z) are

τ =

∫
λξ (z)xdµ− λη (10)

λξ (z)− Aa (z)

x
= λη (11)

λξ (z) = ψ1 − ψ2
l (z)

x
+ λη (12)

ξ (z) = sθp (z)θ−1 (13)

where λ is the marginal utility of consumption and λξ (z) and λη are the Lagrange multipliers

corresponding to (7) and (8). The multipliers measure the value of an additional worker in

a particular city and the cost of pulling an additional worker from the pool of available

migrants. We use (10)–(13) to illustrate the trade-offs involved in allocating workers across

cities.

Combining (10) with (11) we find

τ =

∫
Aa (z) dµ.

This equation describes the trade-off between using guided trips and undirected search. The

marginal cost of raising the fraction of household members engaged in undirected search is

equated to the average marginal cost of allocating those household members using guided

trips. The averaging reflects the fact that undirected search allocates workers in proportion

to each city’s initial population.

Equations (11) and (12) imply that

A
a (z)

x
= ψ1 − ψ2

l (z)

x
.
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Intuitively, migration out of a city increases to the point where the marginal benefits of doing

so (recall that the location-taste shocks initially imply benefits to leaving a city) are equated

with the marginal cost of attracting workers into the city.

Finally, notice from (13) that the shadow value of bringing an extra worker to a city

equals the marginal product of labor in that city. It follows from (11) and (12) that absent

migration frictions, A = ψ1 = ψ2 = 0, the efficient allocation of workers across cities involves

equating cities’ marginal products of labor. This contrasts with the classic Roback (1982)

and Rosen (1979) static model of a system of cities with free mobility in which equilibrium

allocations are obtained by equating the level of utility across workers in different cities.

This difference arises from the fact that we have assumed perfect consumption insurance.

Still, our model shares the property of the classic model that individuals are indifferent to

the city they choose to locate (the quantitative model developed below has this property as

well.) Equations (11)–(13) indicate that migration frictions drive a wedge between marginal

products of labor because heterogeneous initial populations imply differential costs of moving

workers around. In this case workers remain indifferent to the city they choose to locate in.

3.4 Connecting Figure 2 to Population Adjustments

The planner’s first order conditions reveal how gross migration relates to net migration. From

the first order conditions for a(z) and l(z), (11) and (12), and the population constraint, (7),

it is straightforward to show that

a (z)

x
+ Λ =

ψ1

A+ ψ2

+
A

A+ ψ2

Λ +
ψ2

A+ ψ2

(
p (z)− x

x

)
. (14)

The arrival rate is a linear function of the net migration rate (p(z)− x) /x with the linear

coefficient satisfying 0 < ψ2/(ψ2 + A) < 1. Similarly the leaving rate is given by:

l (z)

x
=

ψ1

A+ ψ2

+
A

A+ ψ2

Λ− A

A+ ψ2

(
p (z)− x

x

)
. (15)

The leaving rate is also is a linear function of the net migration rate with the linear coefficient

satisfying −1 < −A/(ψ2 + A) < 0. Equations (14) and (15) establish that gross migration

in the model can be made consistent with the linear relationships depicted in Figure 2.

This result is the underlying reason for our specifications of the location-taste shocks and

the production of guided trips. Clearly, the relationship between gross and net migration
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depicted in Figure 2 places strong restrictions on the nature of migration frictions. Moreover,

since the coefficients on net migration in (14) and (15) depend on the migration parameters

A and ψ2 Figure 2 is valuable for quantifying those frictions.

Modeling both gross migration margins is important for replicating Figure 2, but it also

plays a crucial role in determining the speed of population adjustments. This can be seen by

substituting for a (z) and l (z) in the original planning problem using (14) and (15), which

simplifies it to

max
{p(z),Λ}

{
ln

∫
sp (z)θ dµ−

∫ [
Φ(Λ) +

1

2

Aψ2

A+ ψ2

(
p (z)− x

x

)2

x

]
dµ− τΛ

}

subject to: ∫
p (z) dµ =

∫
xdµ (16)

with non-negativity constraints on the choice variables and where Φ (Λ) is a quadratic func-

tion in Λ involving the underlying structural parameters ψ1, ψ2 and A. In deriving this

simplified planning problem we have used the fact that (7) and (8) reduce to (16) and that

this constraint holds with equality at the optimum. Similarly we have used (9) to substitute

for consumption in the planner’s objective function.

When the planning problem is written in this way we see that population adjustments

do not involve the gross migration decisions a (z) and l (z). Nevertheless modeling these

decisions matters for understanding population adjustments because the coefficient that de-

termines the speed of adjustment of population, Aψ2/(A+ψ2), involves parameters governing

the arrival and departure decisions. The arrival decision matters through the parameter A

and departure decision matters through ψ2. Also notice that the reduced form costs of ad-

justing population are quadratic. This is a direct consequence of specifying the location-taste

shocks and guided trip production function to reproduce Figure 2. That is, the relationship

between gross and net migration displayed in Figure 2 implies quadratic adjustment costs

in net population adjustments.

Finally, notice that as long as a (z) > 0 and l (z) > 0, assumed in the statement of

the simplified planning problem, population adjustments are independent of the undirected

search decision. Undirected search is determined by the solution to

τ = Φ′(Λ).
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An implication of this property is that as long as arrivals are always positive undirected

search plays no role in net population adjustments. In the more general quantitative model

arrivals will be set to zero in especially undesirable cities. Still, for most cases arrivals are

strictly positive so that the amount of equilibrium undirected search is essentially irrelevant

for our results. This is a useful property given that there is little evidence on the share of

in-migration that is a result of undirected versus directed search. Nevertheless we include

undirected search in the model because, as emphasized above, otherwise workers would have

no way to move other than to obtain a guided trip and we think this is implausible.

3.5 One Possible Decentralization

The challenge for decentralizing the planning problem is how to treat guided trips. One valid

approach is to have guided trips allocated entirely within the household through home pro-

duction without any market interactions. We view guided trips in the model as an amalgam

of both market and non-market activities and so we think a more natural decentralization

is one that involves both market transactions and home production. We now consider such

a decentralization.

Markets are competitive. Firms in a city of type z hire labor at wage w(z) and produce

consumption goods to maximize profits. Household members initially located in a type-z

city produce am(z) guided trips to that city which they sell to prospective migrants at price

q(z). The household also home produces guided trips for use by its own members and we

denote these by ah(z). Let m(z) denote the total number of guided trips to z-type cities

purchased by household members in the market.

The representative household solves the following optimization problem

max
{C,Λ,m(z),
am(z),ah(z),
l(z),p(z)}

{
lnC −

∫ [
A

2

(
am (z) + ah(z)

x

)2

x+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}

(17)

subject to:

C +

∫
q (z)m(z)dµ =

∫
q (z) am(z)dµ+

∫
w (z) p(z)dµ+

∫
Π(z)dµ (18)

p (z) = x+m (z) + ah(z) + Λx− l (z) , ∀z (19)∫
[m (z) + ah(z) + Λx] dµ =

∫
l (z) dµ (20)
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along with non-negativity constraints on the choice variables. Equation (18) is the house-

hold’s budget constraint where Π denotes profits from owning the firms. Equation (19) states

that the population of a city after migration equals the initial population plus migrants from

guided trips and undirected search less the initial population that migrates out of the city.

Finally, equation (20) states that the household members that migrate to cities must equal

the number of household members that migrate out of cities.

The unique competitive equilibrium is defined in the usual way with the market clearing

conditions for guided trips, labor and consumption given by

m(z) = am (z) , ∀ z;

n (z) = p (z) , ∀ z;

C =

∫
sn (z)θ dµ.

Using m(z) = am(z) and the first order conditions of the household’s problem we verify

that a competitive equilibrium only determines the total number of guided trips into a

city am(z) + ah(z); the composition of these guided trips between market and non-market

activities is left undetermined.16

This particular decentralization makes it possible to calculate the total value of guided

trips. In particular, as long as there are some guided trips purchased in the open market

the total value of these trips is q(z)a(z), with a(z) = am(z) + ah(z) and q(z) = CAa(z)/x.

We use the total value of guided trips to help calibrate our model to the estimate of av-

erage moving costs in KW. Since the split of guided trips between market and non-market

activities is unknowable it is ambiguous how to include them when measuring employment,

wages and aggregate output in the quantitative model. Therefore another advantage of this

decentralization is that we can use it to bound the impact of guided trips on our calibration.

4 Urban Population Dynamics with Housing

We expect housing to influence urban population dynamics for the reasons discussed in

the introduction: it is costly to build quickly, durable and immobile. This section studies

a simple model to explain why these factors may be important. The model borrows the

geography and production structure from the previous section. There are three differences

16For details see the technical appendix.
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with that model: individuals have a preference for housing services; to emphasize the role

of housing, the model excludes migration frictions; to study dynamics the model introduces

infinitely lived households.

To analyze this simple model it is convenient to exploit the fact, discussed further below

in the context of the quantitative model, that the unique stationary competitive equilibrium

can be obtained as the solution to a representative city planner’s problem that maximizes

local net surplus taking economy-wide variables as given, where the economy-wide variables

are constrained to satisfy particular side conditions. Since here we are only interested in

the qualitative implications of housing for urban population dynamics, we ignore the side

conditions and study the city planner’s problem assuming the economy-wide variables are

exogenous. When we analyze our quantitative model below we take into account the relevant

side conditions so that the economy-wide variables are determined endogenously.

Gross surplus in the representative city is given by

E0

∞∑
t=0

βt
{
stp

θ
t +H ln(

ht
pt

)pt

}

where E0 denotes the date t = 0 conditional expectations operator and 0 < β < 1 is

the household’s time discount factor. Housing services are perfectly divisible so that each

individual in the city enjoys ht/pt units of housing services where ht denotes the local housing

stock. The total utility individuals in the city derive from housing is given by H ln(ht/pt)pt,

where H > 0 determines the relative weight of housing in preferences. We assume logarithmic

preferences for housing here and below in the model we use for our quantitative analysis

because they imply a constant share of housing in household expenditures. A constant

housing expenditure share is consistent with evidence reported by Davis and Ortalo-Magné

(2011). The planner must give up η > 0 units of surplus for each individual it chooses to

bring to the city and employ in the production of consumption goods.

Within this framework we consider the speed of adjustment of population to a one time

permanent change to TFP. To be concrete, suppose the city is in a steady state at t = 0

with s = s0 and then at date t = 1 it faces a one-time unanticipated permanent change in

TFP to s = s∗. We consider the adjustment of population to this unanticipated change in

TFP under three scenarios for housing.

In the first scenario the planner can rent housing services from other cities at the exoge-

nous price rh. This assumption is equivalent to assuming that housing is perfectly mobile
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across cities. Equilibrium in this scenario is characterized by the first order conditions for

population and housing:

H ln(
ht
pt

)−H + stθp
θ−1
t = η; (21)

H
pt
ht

= rh. (22)

Condition (21) states that population is chosen to equate the marginal benefit of an addi-

tional individual working in the city to the cost of bringing that individual to the city, where

the former is the sum of the marginal product of the individual plus the housing services

she enjoys. The second condition equates the marginal utility of an extra unit of housing

services with its cost. Replacing housing per individual in (21) using (22) yields

H ln(
H

rh
)−H + stθp

θ−1
t = η. (23)

The key feature of (23) is that it does not include housing services, ht. This means that after

the unanticipated change in TFP population jumps immediately to its new permanent level

p = p∗ that equals the solution to (23) with st = s∗. So, when housing is perfectly mobile it

is irrelevant for population dynamics.

Now assume the city is endowed with h0 units of housing at t = 0 and that housing is

immobile, meaning that it cannot be rented from or to any other city. In addition, suppose

the change in TFP at t = 1 coincides with the onset of a potentially different exogenous

path of the local housing stock satisfying

lnht − lnh∗ = ρt−1
h (lnh0 − lnh∗) (24)

for t ≥ 1 and 0 ≤ ρh < 1. Equilibrium housing is determined by (21) conditional on (24).

We consider two cases for this scenerio.

First suppose that the local, immobile housing stock does not change with TFP, that is

h∗ = h0. From (21) after the change in TFP p jumps immediately to its new level given

by the value p∗ that solves this equation. The new long run level of population depends on

h0 but the speed of adjustment to p∗ is the same as when housing is perfectly mobile. In

other words the presence of local, immobile housing is not sufficient for housing to affect

population dynamics.

The second case is the new long run level of housing changes with TFP, h∗ 6= h0. We
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approximate the transition of population to its new steady state in this case by log linearizing

(21) around ln p∗ and lnh∗. This yields

ln pt − ln p∗ =
H

H + s∗θ (1− θ) p∗θ−1
ρt−1
h (lnh0 − lnh∗) .

In this case the speed of convergence of population to its new steady state p∗ is directly

related to the speed of convergence of housing to its new steady state through ρh. If the

adjustment of housing is immediate, ρh = 0, then population’s adjustment is instantaneous

as in the case when h∗ = h0. If 0 < ρh < 1 then population adjusts in proportion to the

adjustment of housing.

We conclude that housing must be immobile and adjust slowly to changes in local produc-

tivity for it to affect population dynamics. It follows that a plausible quantitative analysis

of urban population dynamics in response to TFP shocks must include endogenous housing

and include the possibility of its slow adjustment. Natural candidates for influencing the

speed of adjustment of housing to TFP shocks are construction depending on local resources

and durability.

5 The Quantitative Model

Building on the foregoing analysis this section describes the model we use to quantify gross

migration and housing’s influence on urban population dynamics. The quantitative model

introduces dynamics to the gross migration decision and endogenous housing. It also includes

a labor supply decision. Changes in individual labor supply are a natural alternative to

migration as a way for a city to adjust to labor demand shocks. The section begins with a

description of the model environment and then characterizes the model’s unique stationary

competitive equilibrium as the solution to a representative city planning problem with side

conditions.

5.1 The Environment

As before the economy consists of a continuum of geographically distinct locations called

cities that are subject to idiosyncratic TFP shocks. Cities are distinguished by their stock of

housing, h, initial population, x, and the current and lagged TFP, s and s−1. The measure
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over these state variables is given by µ.17

Within cities there are three production sectors corresponding to intermediate goods,

housing services and construction. The representative firm of each sector maximizes profits

taking prices as given. Intermediate goods are distinct to a city and imperfectly substitutable

in the production of the freely tradeable final goods non-durable consumption and durable

equipment. The technologies for producing intermediate and final goods are identical to those

underlying our estimates of TFP, described in equations (1) and (2).18 Housing services are

produced by combining residential structures with land, br, according to h1−ζbζr, 0 < ζ < 1.

Following the convention that the prime symbol denotes next period’s value of a variable,

residential structures evolve as

h′ = (1− δh)h+ nαhk
ϑ
hb

1−α−ϑ
h , (25)

where the factor shares are restricted to α > 0, ϑ > 0 and α + ϑ < 1, and 0 < δh < 1

denotes housing’s depreciation rate. The last term in (25) represents housing construction.

Local TFP s does not impact residential construction, reflecting our view that residential

construction productivity is not a major source of cross-city variation in TFP. Equation (25)

embodies our assumptions that residential structures are immobile, durable and costly to

build quickly. The latter follows because residential construction requires local labor and

land which have alternative uses in intermediate goods production and housing services. We

assume that equipment used in production and construction is homogenous.

There is an infinitely lived representative household that allocates its unit continuum

of members across the cities. The household faces the same migration choices described in

Section 3, but being infinitely lived it takes into account the affects of current migration

decisions on its members’ allocation across cities in future periods. In particular, it is now

bound by the constraint

x′ = p (26)

in each city where p continues to denote the post-migration population of a city. The

household’s members have logarithmic preferences for consumption and housing services in

the city in which they are located. They also face a non-trivial labor supply decision. We

assume that each period, after the migration decisions have been made, but before production

17Current and lagged TFP both appear in this list to accommodate the estimated TFP process described
in Section 2.2. This is discussed further below.

18Equations (1) and (2) are written in terms of the location of a city, indexed by i, but here it is convenient
to index them by the type of the city as represented by its state vector (h, x, s, s−1).
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and construction take place, individual household members receive a labor disutility shock

ϕ with measure µn. Similar to our treatment of migration costs we make a parametric

assumption for the average disutility of working. Specifically, if the household decides n of

its members in a city will work for a year these costs are specified as∫ ϕ̄(n/p)

−∞
ϕdµn = φ

(
n

p

)π
,

where φ > 0, π ≥ 1 and ϕ̄ (n/p) satisfies

n

p
=

∫ ϕ̄(n/p)

0

dµn.

The parameter π governs the elasticity of a city’s labor supply with respect to the local wage.

5.2 Stationary Competitive Equilibrium

We consider the unique stationary competitive equilibrium. Since the model is a convex

economy with no distortions, the welfare theorems apply. As a consequence the equilibrium

allocation can be obtained by solving the problem of a social planner that maximizes the

expected utility of the representative household subject to resource feasibility constraints.

However, it is more useful to characterize the equilibrium allocation as the solution to a

representative city social planner’s problem with side conditions. This approach to studying

the equilibrium allocation follows Alvarez and Shimer (2011) and Alvarez and Veracierto

(2012).

The city planner enters a period with the state vector z = (h, x, s, s−1). Taking as given

aggregate output of final goods, Y , the marginal utility of consumption, λ, the shadow value

of adding one individual to the city’s population exclusive of the arrival and leaving costs,

λη, the shadow value of equipment, λrk, the arrival rate of workers through undirected search

Λ, and the transition function for TFP, Q (s′; s, s−1), the representative city planner solves

V (z) = max
{ny ,nh,ky ,kh,
h′,br,bh,p,a,l}

{
λ

1

χ
Y 1−χ [snθykγy ]χ +H ln

(
h1−ζbζr
p

)
p− φ (ny + nh)

π p1−π

−λrk (ky + kh)− λη (a+ Λx− l)
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−A
2

(a
x

)2

x−

[
−ψ1

l

x
+
ψ2

2

(
l

x

)2
]
x+ β

∫
s′
V (z′) dQ (s′; s, s−1)

}
subject to

p = x+ a+ Λx− l (27)

ny + nh ≤ p

br + bh = 1

plus (25), (26), and non-negativity constraints on the choice variables.

The objective of the optimization problem is to maximize the expected present discounted

value of net local surplus. To see this note that the first two terms are the value of interme-

diate good production and the housing services consumed in the city. The next five terms

comprise the contemporaneous costs to the planner of obtaining this surplus: the disutility

of sending the indicated number of people to work, the shadow cost of equipment used in

the city, and the disutility of net migration inclusive of guided trip production and taste-

for-location shocks. The last term is the discounted continuation value given the updated

state vector. Constraining the achievement of the city planner’s objective are the local re-

source constraints, the housing and population transition equations and the non-negativity

constraints on the choice variables. Note that in the statement of the land constraint we

have normalized the local endowment of residential land to unity and used the fact that land

used for current housing services cannot be built on in the same period.19

Let λξ(z) denote the Lagrange multiplier corresponding to constraint (27) in the city

planner’s problem. This function represents the shadow value of bringing an additional

individual to a type-z city. From the first order conditions of the city planner’s problem it

is easy to show that

λξ (z) =

 A
[
a(z)
x

]
+ λη, if a (z) > 0,[

ψ1 − ψ2

(
l(z)
x

)]
+ λη, if l (z) > 0.

(28)

which takes into account the fact that a(z) = l(z) = 0 will never occur in equilibrium.

Comparing equation (28) to equations (11) and (12) we see that if gross migration rates are

19In our calibration 0 < θ + γ < 1 which implies the presence of a fixed factor in the production of the
city’s intermediate good. As written the production function assumes that the supply of this fixed factor is
constant (equal to one) across cities. One interpretation of this fixed factor is that it represents commercial
land. Under this interpretation commercial land cannot be converted into residential land and vice versa.
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positive then the shadow value of a migrant is related to migration costs in the same way as

in the simple migration model of Section 3.

The unique stationary allocation is the solution to the city planner’s problem that satis-

fies particular side conditions we now describe. To begin, let {ny, nh, ky, kh, h′, br, bh, p, a, l}
denote the optimal decision rules (which are functions of the state z) for the city planner’s

problem that takes {Y, λ, η, rk,Λ} as given and µ be the invariant distribution generated

by the optimal decision rules {h′, p} and the transition function Q. In addition define that

aggregate stock of equipment and per capita consumption:

K =

∫
(ky + kh) dµ;

C = Y − δkK,

where 0 < δk < 1 denotes equipment’s depreciation rate. Now suppose the following equa-

tions are satisfied

Y =

{∫ [
sny (z)θ ky (z)γ

]χ
dµ

} 1
χ

(29)

λ =
1

C
(30)∫

a (z) dµ+ Λ =

∫
l (z) dµ (31)

rk =
1

β
− 1 + δk (32)

λ

∫
[ξ (z)− η]xdµ− τ ≤ 0, (= 0 if Λ > 0) (33)

Then {C,K, ny, nh, ky, kh, h′, br, bh, p,Λ, a, l} is a steady state allocation.20

In the steady state the variables taken as given in the city planner’s problem solve the

side conditions given by (29)–(33). Equation (29) expresses aggregate output in terms of

intermediate good production in each city. This equation is the theoretical counterpart to

equation (2) used to estimate city-specific TFP. The marginal utility of consumption is given

by equation (30). Equation (31) states that total in-migration equals total out-migration.

20We prove this result in the technical appendix. We take a traditional dynamic programming approach
to solving the city planner’s problem. This is complicated substantially by the fact that there are four state
variables in the city planner’s problem, two of them endogenous. Furthermore the TFP process has a large
domain. We overcome the computational challenges of a large dimensional and high variance state space in
two main ways. First we exploit a parsimonious spline method to approximate the planner’s value function
and one-period return function. Second we take advantage of the large number of processors contained in
graphics cards. For details see the appendix below.
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Equation (32) defines the rental rate for equipment. The last side condition (33) is equivalent

to (10) in the static model and similarly determines steady state undirected search.

The function ξ (z) in (33) is central to the determination of migration in the model. It

can be shown to satisfy

ξ(z) = Cφ [ny (z) + nh (z)]π (π − 1) p (z)−π + CH ln

(
h (z)ς br (z)1−ς

p (z)

)
− CH

+β

∫ (
CA

[
a (z′)

p (z)

]2

+ Cψ2

[
l (z′)

p (z)

]2

+ Λ [ξ(z′)− η]

)
dQ(s′; s, s−1) (34)

+β

∫
ξ(z′)dQ(s′; s, s−1).

The value of bringing an additional individual to a city is the expected discounted value

of four terms: the benefits of obtaining a better selection of worker disutilities given the

same amount of total employment ny + nh; the benefits of the local housing services that

the additional person will enjoy; the costs of reducing the amount of housing services that

everybody else in the city will enjoy when an additional person is brought in; and the

expected discounted value of starting the following period with an additional person. This

last term includes the benefits of having an additional person producing guided trips to the

city, the benefits of obtaining a better selection of location-taste shocks (given the same

number of individuals leaving the city), and the benefits of attracting additional people to

the city through the undirected search technology.

When there are no migration frictions, A = ψ1 = ψ2 = 0, equation (28) implies that the

marginal value of bringing an additional individual to a city is equated across cities as in

the static case, ξ(z) = η, ∀z. However, unlike the static case this does not imply that wages

are equated across cities. Instead, equation (34) says that the marginal savings in worker

disutility plus the marginal impact on the utility of housing services is equated. When in

addition to A = ψ1 = ψ2 = 0 housing structures are made perfectly mobile across cities,

the same condition is obtained because land remains immobile. However, when land is also

made mobile, then the marginal savings in work disutility and the marginal utility of housing

services are each equated across cities.
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6 Calibration

We now calibrate the steady state competitive equilibrium to U.S. data.21 Our calibration

has two important characteristics. First, the city-specific TFP process is chosen to match

our estimates presented in Section 2.2 thereby pinning down the model’s exogenous source

of persistence and volatility. Second, the calibration targets for the remaining parameters

involve features of the data that are not primary to our study. So, for instance, we do not

choose parameters to fit our estimated response of population to a TFP shock. The model’s

response of population to a TFP shock is the consequence of the estimated TFP process and

the remaining parameters that are chosen to fit other features of the data.

In addition to specifying the stochastic process for TFP we need to find values for 16

parameters:

θ, γ, α, ϑ, δk, δh, β,H, ζ, π, φ, ψ1, ψ2, A, τ, χ.

These include the factor shares in production and construction, depreciation rates for equip-

ment and structures, the discount factor, the housing coefficient in preferences, land’s share

in housing services, and the parameters governing labor supply, migration, and intermediate

goods’ substitutability in final goods production.

We calibrate these parameters conditional on a given quantity of undirected search Λ

determined by τ . For larger values of τ undirected search is relatively small so that a(z) >

0, ∀ z. In these cases the behavior of the model is invariant to the specific value of τ . For

smaller values of τ undirected search is large and a(z) = 0 for some z. In these cases the

behavior of the model is affected. It turns out that even for seemingly large steady state Λ

corner solutions for a(z) are either non-existent or extremely rare. We set our baseline so

that undirected arrival rate is 3.8%, roughly 70% of all moves.22

The baseline calibration for the assumed value of τ is summarized in Table 1. There we

indicate for each parameter the proximate calibration target, the actual value for the target

we obtain in the baseline calibration, and the resulting parameter value. In the remainder

of this section we discuss the calculations underlying Table 1. We begin with the novel

aspects of our calibration which involve the parameters governing migration, the city-level

TFP process, the elasticity of substitution of city-specific intermediate goods in final good

production, and labor supply.

21Except where noted the aggregate data used to calibrate our model is obtained from Haver Analytics.
22The specific value is τ = 1. For this value the baseline calibration has 0.3% of city-year observations

involving zero arrivals.
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6.1 Migration Parameters

Section 3.4 establishes that the migration parameters A, ψ1 and ψ2 are central to determining

the model’s implications for the speed of population adjustment to TFP shocks. Fortunately

there is evidence at hand that makes assigning values to these parameters straightforward.

First, conditional on a value for A reproducing reproducing Figure 2 pins down ψ1 and ψ2.

To reproduce Figure 2 we set the constant and slope coefficients in equation (14) to their

empirical counterparts displayed in Figure 2.23 In particular

ψ1

A+ ψ2

+
A

A+ ψ2

Λ = 5.5;

ψ2

A+ ψ2

= 0.55.

To identify A we take advantage of KW’s estimate of the average net cost of migration

for those who move. Specifically, we match the statistic defined as the average net cost of

migration of those who move divided by average wages where we take the latter from KW as

well.24 It is straightforward to replicate their concept of moving costs in our model. In KW,

net moving costs sum two components of the utility flow of an individual in the period of a

move. One component called “deterministic moving costs” is a function of the distance of

the move, whether the move is to a location previously visited or not, the age of the mover,

and the size of the destination location. The second component is the difference between

idiosyncratic benefits in the current and destination location. We interpret guided trips in

our model as representing the first component and the location-taste-shocks the second one.

Consequently we measure average moving costs of individuals who move as

∫
q(z)a(z) dµ+ CτΛ∫

a(z) dµ+ Λ
+

C
∫ (
−ψ1

l(z)
x

+ ψ2

(
l(z)
x

)2
)
xdµ∫

l(z)dµ
.

23The constant term for arrivals in Figure 2 is the sample average gross migration rate, but gross migration
is declining over our sample. Our measure of migration costs depends on this choice and so in principle our
findings do as well. We examined the implications of calibrating to the average gross migration rate at the
start and end of our sample and found that our results are substantially the same.

24Using KW’s estimates, average net moving costs of those who move divided by average wages equal -1.9.
This value equals the ratio -$80,768/$42,850. The numerator is the entry in the row and columns titled
‘Total’ in Table V and the denominator is the wage income of the median AFQT scorer aged 30 in 1989
reported in Table III. The negative value of the estimate indicates that individuals receive benefits to induce
them to move.
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Average wages are simply ∫
w(z) [ny(z) + nh(z)] dµ∫

[ny(z) + nh(z)] dµ
,

where wages in a type-z city, w(z), equal the marginal product of labor.

There are two potential drawbacks to using KW’s estimate of moving costs. Firstly,

KW identify moving costs using individual-level data. Individual behavior is not observable

in our model so we cannot replicate their estimation strategy. Still, our model implies a

value for the moving cost statistic so it is natural to take advantage of available estimates.

More concerning is the fact that KW’s estimate moving costs using data on frequency of

inter-state moves, while our quantitative model describes inter-city moves. Inter-city moves

are more frequent than moves between states. Consequently it is possible that KW would

have estimated a different value for moving costs had they had data on all inter-city moves,

in which case we would be calibrating our model to the wrong value. This suggests it is

important to quantify any bias in KW’s estimate arising from their focus on inter-state

moves only.

We do this using a calibrated variant of their model which suggests any bias is likely to

be small. Details of how we arrive at this conclusion are in the appendix; here we summarize

our argument.25 The model includes essentially the same individual discrete choice problem

in KW inserted within an equilibrium setting. We posit 365 cities allocated across 50 states

as in our data. There are a continuum of infinitely lived risk neutral individuals who begin

each period identical except for the city they currently reside in and a random vector of

city-specific location-taste shocks distributed as in KW. Living in a city for a period entitles

an individual to the exogenous city-specific, and non-storable endowment called the wage,

and individuals know the wage in every city.26 An individual’s only choice is to decide which

city to live in the following period. They choose the city with the highest expected benefits,

where the benefits of a given city equal the difference between the individual’s location-taste

shock for that city and the one for their current city, moving costs if applicable, and the

discounted continuation value of living in the city next period. Costs of moving between

cities may differ according to whether the move is within a state or across state lines. We

study the unique stationary equilibrium in which individual choices are consistent with a

25The appendix is not ready yet.
26The wage distribution is calibrated to its 1990 empirical counterpart. For simplicity we abstract from

idiosyncratic wage shocks included by KW. KW assume that individuals are finitely lived and only know
the wages of their current city and any city they have lived in previously. In an infinite horizon context
individuals eventually live in every city and therefore have knowledge of the complete wage distribution.
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time invariant population distribution.

The model has three key parameters: the two moving costs and a scale factor for the

location-taste shocks. We calibrate the moving costs to reproduce moving rates for all city-

to-city moves and for state-to-state moves only in 1990. The scale factor is identified by

forcing the model’s net moving costs relative to average wages for all inter-city moves to

match KW’s -1.9 estimate. The model is able to match the calibration targets and we find

the gross cost of moving across state lines is larger than moving within a state, consistent

with KW’s finding of deterministic moving costs being increasing in the distance of a move.

Since all moves are observable in this model we can also calculate the moving cost statistic

using data on just inter-state moves. We find that the net costs of moving across state lines

are 4% lower than when they are calculated using all moves. In other words within this

simplified version of the KW framework the net costs of a move are approximately the same

whether the move is across state lines or not. That the net cost of moving across state lines is

lower than a move within a state reflects that the higher gross moving cost required to induce

fewer inter-state moves is more than offset by larger differences in location preferences. We

conclude that using KW’s estimate is valid in our context.

6.2 TFP and Substitutability of City-specific Goods

The calibration of the substitution parameter χ and the stochastic process for TFP are in-

terconnected because χ is used to measure TFP. When we measure TFP using the procedure

described in Section 2.2 its growth rate is well-represented as a stationary AR(1) process

which is non-stationary in levels and therefore inconsistent with a steady state. To overcome

this we assume a reflecting barrier process for TFP:

ln st+1 = max {g + (1 + ρ) ln st − ρ ln st−1 + εt+1, ln smin} . (35)

where εt+1 ∼ N(0, σ2), g < 0 and ρ > 0. With this process TFP growth is approximately

AR(1), while its level is stationary due to having a negative drift and being reflected at the

barrier ln smin (which we normalize to zero).27

The case ρ = 0 was used by Gabaix (1999) to explain the cross section distribution of

cities by population. In this case the invariant distribution has an exponential upper tail

27Coen-Pirani (2010) considers a stationary AR(2) process for the level of TFP, calibrating it to match
serial correlation in net state-to-state worker flows.
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given by

Pr [st > b] =
d

bω

for scalars d and b. A striking characteristic of cities is that when s measures a city’s

population one typically finds that ω ' 1. Equivalently a regression of log rank on log level

of city populations yields a coefficient close to -1. This property is called Zipf’s law and so we

refer to ω as the Zipf coefficient. The case ρ > 0, which applies when TFP growth is serially

correlated, has not been studied before. Simulations suggest this case behaves similarly to

the ρ = 0 case in that it has an invariant distribution with an exponential-like upper tail.

We verify below that a version of Zipf’s law holds for TFP and so using the reflecting barrier

process with ρ > 0 seems justified.

Our calibration of χ and (35) proceeds as follows. For a given χ (and θ and γ which

are calibrated independently as discussed below) we measure TFP in the data following the

procedure in Section 2.2, obtain its Zipf coefficient, and estimate an AR(1) in its growth

rate. We then find the g, ρ and σ to match the Zipf coefficient and the serial correlation and

innovation variance of the estimated AR(1) using data simulated from our model and based

on these parameters calculate the model’s population Zipf coefficient. The calibrated value

of χ is the one that generates a population Zipf coefficient that is as close as possible to the

one we find in the data, 1.0. The best fit is at χ = 0.9 with a population Zipf coefficient

equal to 1.3. The corresponding values of g, ρ and σ are in Table 1.

To demonstrate how well our model replicates the Zipf’s laws for population and TFP,

Figure 5 displays plots of log rank versus log level for population and TFP from the data and

our calibrated model.28 Notice how in the data the Zipf coefficient is larger for TFP than

population. This arises naturally in the model because population tends to be allocated away

from lower toward higher TFP cities. Luttmer (2007) finds a similar relationship between

employment and TFP in an equilibrium model of firm size.

28The scales for the data and model differ because we use the cumulative distribution functions to measure
rank in the model and TFP’s domain is narrower in the model because of the extreme cost of matching the
data. The narrower domain does not matter for our quantitative analysis. For example, the migration
parameters are based on Figure 2 and migration costs. The former does not depend on the level of TFP and
the latter depends on the distribution of TFP growth which is essentially independent of the domain. Our
quantitative analysis relies on growth rates and is similarly independent of the underlying domain.
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Figure 5: Zipf’s Laws for Population and TFP
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6.3 Labor Supply

The labor disutility parameters are calibrated to match statistics involving employment to

population ratios. The multiplicative parameter φ is chosen to match the ratio of aggregate

civilian employment to population obtained from Census Bureau data. The curvature pa-

rameter π is chosen using the first order condition for labor supply in a city. In the model’s

decentralization the representative household chooses labor supply to equate the disutility

of putting an additional household member to work in a city with that city’s wage. This

implies:

(1− π) (∆n̂it −∆p̂it) + ∆ŵit = 0,

where n is the sum ny and nh and the “delta” and “hat” notation is from Section 2.2. Using

the methods described in Section 2.2, we estimate the dynamic responses of ∆n̂it, ∆p̂it

and ∆ŵit to a local TFP shock and calibrate π so that this equation holds in the period of

shock. Note that this procedure does not force the model to match these variables’ individual

impulse responses even in the period of a shock. We use these responses later to validate

the model.
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6.4 Remaining Parameters

Our strategy for calibrating the remaining parameters borrows from studies based on the

neo-classical growth model. Several calibration targets involve GDP and we measure this in

the model as

GDP = Y + I, (36)

where Y is output of non-construction final goods and I is residential investment. Residential

investment is measured as the value in contemporaneous consumption units of the total

additions to local housing in a year. Specifically,

I =

∫ [
β

∫
qh(z′)dQ(s′; s, s−1)

]
nh(z)αkh(z)ϑbh(z)1−α−ϑdµ

where qh denotes the price of residential structures. This price is obtained as the solution to

the following no arbitrage condition

qh (z) = rh (z) + (1− δh) β
∫
qh (z′) dQ(s′; s, s−1)

where the rental price of residential structures, rh, equals the marginal product of structures

in the provision of housing services. The National Income and Product Accounts (NIPA)

measure of private residential investment is the empirical counterpart to I. Our empiri-

cal measure of Y is the sum of personal consumption expenditures less housing services,

non-residential fixed investment and private business inventory investment. Because our

model does not include government expenditures and net exports we exclude these from our

empirical concept of GDP.

Our measurement of model GDP and wages excludes the value of guided trip services,

which might be problematic. For example, workers produce guided trips and in principle

they should be compensated for this. Using the decentralization discussed in Section 3.5,

we calculate the total value of guided trips in our baseline calibration to be 1.8% of model

GDP. Recall that we interpret guided trips as encompassing many market and non-market

activities. Some of these activities appear in the national accounts as business services

and therefore count as intermediate inputs that do not end up directly in measured GDP.

Others do not appear anywhere in the national accounts because they are essentially home

production or are impossible to measure. Fortunately, given its small size including the total

value of guided trips in our model-based measures of GDP and wages does not change our
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baseline calibration.

Measuring employment also is complicated by the fact that all household members par-

ticipate in generating guided trips. We count those agents engaged in intermediate good

production, ny, and residential construction, nh, as employed and measure their wages by

their marginal products excluding the value of guided trips. The non-employed who also

produce guided trips are assumed to be engaged in home production and so are not included

in our accounting of employment. In Table 1 the labor share parameters are chosen to match

total labor compensation as a share of GDP (the target is borrowed from traditional real

business cycle studies) and our estimate of the share of construction employment in total

private non farm employment.

We fix the discount rate so the model’s real interest rate is 4%. Combined with this target

the equipment-output ratio in the non-construction sector, Ky/Y , identifies equipments’s

share in that sector’s production. Our empirical measure of equipment for this calculation

is the Bureau of Economic Analysis’ (BEA) measure of the stock of non-residential fixed

capital. Equipment’s depreciation rate is identified using the investment to GDP ratio,

where we measure investment using the NIPA estimate of non-residential fixed investment.

Equipment’s share in residential construction is identified by the ratio of capital employed in

the residential construction sector, Kh, to GDP where the empirical counterpart to capital

in this ratio is the BEA measure of non-residential fixed capital employed in residential

construction. The depreciation rate of residential structures is identified using the residential

investment to GDP ratio.29

We identify the housing service parameters as follows. First the housing coefficient H is

chosen to match the residential capital to GDP ratio, where the measurement of residential

capital is consistent with our measure of residential investment described above. Land’s

share in housing services, ζ, is chosen to match the estimate of land’s share of the total value

of housing in Davis and Heathcote (2007). To measure this object in the model we need the

price of land, qb. We obtain this variable as the solution to the arbitrage condition

qb (z) = rb (z) + β

∫
qb (z′) dQ(s′; s, s−1),

where rb denotes the rental price of land which equals the marginal product of land in the

29The depreciation rate for residential structures obtained this way is close to the mean value of the (current
cost) depreciation-stock ratio for residential structures obtained from the BEA publication “Fixed Assets
and Consumer Durable Goods,” once output and population growth are taken into account. Calibrating to
this alternative depreciation rate has virtually no impact on our quantitative findings.
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provision of housing services. Land’s share of the economy-wide value of housing is then

given by
∫
qbbrdµ/

[∫
qhhdµ+

∫
qbbrdµ

]
.

7 Quantitative Analysis

We now consider the model’s empirical predictions. First we examine how well the model

is able to reproduce our finding that a city populations are slow to adjust to TFP shocks.

We confirm that the model is able to account for population’s slow adjustment and that this

success comes with generally accurate predictions for gross migration and the behavior of

local labor and housing markets. We also study the model’s predictions for unconditional

dynamics and find the model is similarly successful at accounting for the data even though

TFP shocks are the only source of city level fluctuations in the model. So, despite choosing

parameters to match evidence not directly related to the dynamics of interest our model

nonetheless excels in replicating them.

After establishing the empirical credibility of our framework, we investigate how migra-

tion and housing influence slow population adjustments. We find that costly directed search

through the model’s guided trip technology is the principle source of slow population ad-

justments. We interpret this finding as demonstrating that the myriad ways individuals get

informed about desirable locations to live and work represent significant barriers to rapid

population and worker reallocation. The fact that we identify the model’s migration parame-

ters without consideration of within-city dynamic responses to TFP shocks lends substantial

credibility to this interpretation. Interestingly, we find that housing plays only a small role

slowing population adjustments.

Finally, we investigate the implications of our model’s successful accounting of slow short

run population adjustments for persistent urban decline. There are many cities in our data

that experience declining population throughout the sample period. These cities also typi-

cally experience declining TFP as well suggesting our model might account for the persistence

of urban decline. We study the average experience of the 15 cities with the largest popula-

tion declines. Simulating our model using the empirical path of TFP for these cities shows

that our model accounts for essentially all of the average population decline. Apart from

indicating an important role for TFP in urban decline this finding strongly suggests that

costly migration, in particular the costs of finding desirable alternative locations to live and

work, is a major factor determining the persistence of urban decline.
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7.1 Model Validation with Conditional Correlations

We begin by comparing the model’s dynamic responses to TFP shocks of population, gross

migration, employment, wages, home construction and house prices to those we estimate

from our panel data. We estimate the responses for both the model and the data using the

identical procedure described in Section 2.2, basing our model responses on the simulation of

a large panel of cities over a long time period. Comparisons of model and empirical impulse

response functions is a model validation tool common in macroeconomics, see for example

Christiano, Eichenbaum, and Evans (2005). Its key advantage over studying unconditional

statistics, is that it is in principle robust to the presence of other shocks.

Figure 6: Responses of Population
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Figure 6 displays model and estimated responses of population to a one standard devi-

ation positive innovation to TFP. Here and for similar figures below the vertical lines with

hash marks indicate plus and minus 2 standard error bands for the estimates.30 Figure 6

demonstrates that the model’s population response is statistically and economically close to

the one for the data; our model accounts for the slow response of city populations to local

TFP shocks. It may appear that the model’s slow population response is inconsistent with

30These standard errors do not take into account the sampling uncertainty in our estimates of the under-
lying TFP process.
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Figure 7: Responses of Arrival and Leaving Rates
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population’s variance exceeding that for TFP as indicated by Figure 5. The model is able

to account for the unconditional population distribution with a slow conditional response of

population to a TFP shock because ultimately the long run response of population exceeds

that for TFP.

Figure 7 shows this accounting for slow population adjustments involves replicating quite

closely the dynamic responses of the arrival and leaving rates.31 Crucially the model is

consistent with the negative conditional correlation between the gross migration rates. The

intuition for this finding is simple. Having multiple margins to respond to the increase in

productivity, the city planner takes advantage of all of them. It can raise employment per

person and bring more workers to the city. For the latter it can cut back on the fraction of

the initial population that leaves for other cities, that is reduce the leaving rate, and attract

more workers to the city taking advantage of more guided trips. The goodness-of-fit is weaker

for gross migration than it is for population, for example both responses are more persistent

than in the data and the arrival rate’s initial response is a little too strong. Nevertheless

given its simplicity the model does surprisingly well.

31The difference between the model’s migration rates in the the first period do not correspond exactly to
the response of population which in principle it should according to equation (27). The discrepancy is due
to using logarithmic first differences to approximate the net rate of population growth.
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Figure 8: Responses of Labor and Housing Markets
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Figure 8 shows the dynamic responses of employment, wages, residential investment and

house prices. We define house prices, qsf , as the total value of structures and land used to

produce housing services per unit of housing services provided:

qsf (z) =
qh (z)h (z) + qb (z)

h(z)1−ςbr(z)ς
.

The price qsf corresponds to the price of housing per square foot under the assumption that

every square foot of built housing yields the same quantity of housing services.

The labor market responses are a very good fit. Observe that the employment response in

the model, as in the data, is stronger than the population response. That is, the employment

to population ratio rises after a positive TFP shock indicating that the labor supply margin

is indeed exploited in both the data and the model. The qualitative responses of construction

and housing also are consistent with the data. These findings derive from a higher population

desiring additional housing and that local factor inputs with alternative uses are used in

construction thereby creating an imperfectly elastic supply of new housing. The model is

less successful accounting for the quantitative responses of housing. Residential investment

misses the hump shape in the data and the house price response is too fast. However in
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both cases the order of magnitude of the responses are about right. One explanation for

housing’s discrepancy with the data is that our model does not include search frictions in

the local housing market. Lloyd-Ellis et al. (2014) demonstrate that search frictions show

promise in generating serially correlated responses of construction and house price growth

to productivity shocks.

7.2 Model Validation with Unconditional Statistics

The response of a city to TFP shocks is in principle robust to the presence of other shocks

and is therefore informative about the validity of the model even if there are other shocks.

However it is likely that there are other shocks to cities, for example to local taxes, ameni-

ties and demand for the locally produced intermediate good, and so it is worth knowing the

extent to which TFP shocks alone account for the totality of variation, that is unconditional

moments of the data. Tables 2 and 3 display unconditional standard deviations, contem-

poraneous correlations, and serial correlations of the same variables discussed above in the

model and in our data for this purpose. Except for population, the standard deviations are

expressed relative to the standard deviation of population and the contemporaneous corre-

lations are all with population. The statistics are based on the levels of the gross migration

rates and on the growth rates of the other variables. The variables have been transformed

as described in Section 2 prior to the analysis.

The first thing to notice from Table 2 is that TFP shocks generate about two thirds of the

overall variation in population – they are a quantitatively important source of local variation.

The model is striking successful replicating the qualitative pattern of relative volatilities and

only somewhat less successful quantitatively. Gross migration is less volatile than population

and the labor and housing market variables are all more volatile than population, just as

in the data. The relative volatility among the variables other than population also mostly

match the data. Only the labor market variables miss, with wages a little too volatile

compared to employment. The model is consistent with residential construction being the

most volatile variable, but it fluctuates much less in the model than in the data. House

prices in the model are more than twice as volatile as population, but not quite as volatile

as in the data. The high volatility of house prices is a direct consequence of local land and

labor that have alternative uses being factor inputs in construction.

The model is qualitatively consistent with all the correlations with population growth.

The largest discrepancies with the data involve the arrival and leaving rates being perfectly
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Table 2: Volatility and Co-movement Within Cities

Standard
Deviation Correlations

Variable Data Model Data Model
Population 1.33 0.87 – –
Arrival Rate 0.65 0.53 0.59 1.00
Leaving Rate 0.58 0.48 -0.42 -1.00
Employment 1.58 1.23 0.56 0.93
Wages 1.23 1.81 0.16 0.32
Construction 19.7 4.27 0.14 0.40
House Prices 3.76 2.32 0.29 0.47

Note: The statistics are based levels of the gross mi-
gration rates and on the growth rates of the other
variables. The latter variables have been transformed
as described in Section 2.2 prior to calculating growth
rates. Standard deviations of all variables except pop-
ulation are expressed relative to the standard devia-
tion for population. Correlations are with population.

positively and negatively correlated with population growth. Perhaps the mechanism induc-

ing a positive correlation between the gross migration rates described in Coen-Pirani (2010),

absent from our model, could overcome this deficiency.

From Table 3 we see that population, gross migration, employment and wages all display

similar persistence to that in the data, although the model’s variables are more persistent.

Construction in the model and data are similarly random-walk like, although this feature

of the unconditional moments clearly is due to the affects of other shocks given the serially

correlated growth rate of construction in response to TFP shocks we find in the data. House

prices display the greatest differences with house price growth displaying substantial serial

correlation in the data while in the model house prices are more like a random-walk.

7.3 The Source of Slow Population Adjustments

We now address the sources of slow population adjustments in our model. Figure 9 displays

impulse responses to TFP shocks implied by several different versions of the model for this

purpose. The different versions consist of perturbations relative to the baseline, calibrated

version of the model, holding parameters not involved in the perturbation fixed at their

baseline values. These perturbations are as follows:
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Table 3: Serial Correlation Within Cities

Lag

Variable 1 2 3 4
Population

Data 0.81 0.74 0.67 0.63
Model 0.93 0.87 0.81 0.75

Arrival Rate
Data 0.82 0.70 0.58 0.47
Model 0.93 0.87 0.81 0.75

Leaving Rate
Data 0.77 0.74 0.67 0.60
Model 0.93 0.87 0.81 0.75

Employment
Data 0.52 0.29 0.21 0.15
Model 0.73 0.63 0.58 0.54

Wages
Data 0.15 0.04 0.05 0.07
Model 0.20 0.02 -0.02 -0.02

Construction
Data 0.12 0.10 -0.02 -0.11
Model -0.09 0.02 0.04 0.04

House Prices
Data 0.73 0.31 -0.06 -0.25
Model 0.07 0.06 0.05 0.05

Note: The variables are have been transformed
as described in Section 2.2 prior to calculating
the statistics. The gross migration rates are lev-
els and all other variables are growth rates.

• The “Free Guided Trips” case sets A = 0. This case has the same implications as

assuming all the migration parameters are set to zero, because when guided trips

are free the city-planner sets the leaving rate in each city to the constant value that

minimizes leaving costs and adjusts population by changing the arrival rate at zero

cost.

• “No Location-Taste Shocks” is the case where ψ1 = ψ2 = 0 so that costly guided trips

are the only migration friction.

• “Mobile Housing” corresponds to the case discussed in Section 4 in which housing can

be rented at a fixed price from any city; housing is perfectly mobile. In this case a

city’s dynamics are not influenced by the durability or the size of the local housing
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stock nor the city’s ability to produce houses to accommodate new workers.

• “Full Flexibility” combines all the perturbations so there are no mobility costs and

housing is perfectly mobile.

The left plot in Figure 9 displays the levels of the responses and the right one shows

the responses after first dividing them by the value attained in the last (fifth) period of the

response to more clearly show the speed of adjustment. Figure 9 shows that in the Full

Flexibility case the population dynamics essentially follow the path of TFP with roughly

90% of the long run (five year) adjustment occurring after 2 years compared to 85% for TFP

(see Figure 3) – absent migration and housing frictions the model has essentially no internal

mechanism to propagate TFP shocks.

The No Location-Taste Shocks and Mobile Housing cases are very close to the baseline.

In other words removing from the model costly out-migration or immobile housing, leaving

costly guided trips as the only model friction, leaves the population response essentially as

slow as it is in the baseline economy. In the Free Guided Trip case the population response is

closer to the full-flexibility case, but does not take the model all the way there. Recall that

making guided trips free leads to the same model responses as when migration is completely

costless. Therefore in the Free Guided Trip case the only friction is that housing is immobile,

suggesting some role for housing in slowing population adjustments.

Despite this last result, we still conclude that costly guided trips are the main source

of slow population adjustments. The discrepancy with Full Flexibility arises from a prop-

erty of adjustment costs highlighted by Abel and Eberly (1994). The first adjustment cost

introduced to an otherwise frictionless model always has a relatively large impact on dynam-

ics. So, introducing immobile housing into an otherwise frictionless model has large effects.

However immobile housing on its own is not sufficient to deliver the amplitude and persis-

tence of the population response in the data. Yet, the population dynamics with migration

costs and mobile housing, the Mobile Housing case, are essentially the same as the baseline.

This suggests that the prime driver of slow population adjustment in the model is the costly

guided trip technology.

The finding of slow population adjustment driven mostly by costly migration confirms

and reinforces results in KW. Using the parameters of a migration choice problem estimated

with data on the frequency of inter-state moves taken from the National Longitudinal Survey

of Youth, KW calculate optimizing responses of individuals in all states to a one-time per-

manent change in wages of one particular state (they consider changes in California, Illinois
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Figure 9: Impact of Model Features on Population Adjustment
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and New York). From these choices they obtain a matrix of transition probabilities which

they simulate to trace out the response of population in the state with the permanent change

in wages. Strikingly we find roughly the same five year elasticity of population with respect

to the wage, about .5.32 KW find that about 30% of the five period response occurs in the

first period (see their Figure 1), whereas we find a response closer to 20%.

These similarities are quite striking given the very different methodologies used to gen-

erate the responses. The slower initial response we obtain is consistent with the fact that

in our analysis wages take a few periods to reach their long run level due to the nature of

the TFP process we estimate and our identification takes into account feedback from lower

wages induced by greater net in-migration to future migration. The fact that our model

includes housing does not appear to be an important source of the difference. Overall our

results establish that Kennan and Walker (2011)’s findings are robust to the presence of

housing and equilibrium interactions.

32KW consider a 10% increase in wages and find that population is 5% higher after five years. We find a
1.1% response of population to a 2% (roughly) permanent increase in the wage.
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7.4 Migration and Urban Decline

There are many cities which experience declining populations (relative to the aggregate)

over the sample period 1985-2009. This is evidence of the persistent urban decline studied

by Glaeser and Gyourko (2005). Interestingly, the cities with declining populations also

have TFP declining for most of the sample. Our model’s ability to reproduce the short

run response of population to TFP shocks then suggests it might account for population

dynamics over the long run and in particular persistent urban decline. The success of the

model accounting for the short run responses and Zipf’s law suggests that it does. We now

describe the outcome of a simple experiment that verifies this conjecture.

Figure 10: Persistent Urban Decline
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We focus on the 15 cities of the 365 total that experience the greatest population declines

in our sample. The corresponding TFP paths are fed into the model from the common initial

condition that takes the mid-point of our TFP grid and assumes TFP stays at that level for

a long time. We use the first 12 years of our sample, 1985 to 1997, to simulate unique initial

conditions for each city based on each city’s empirical TFP path. This procedure builds in

the possibility that past declines in TFP show through into future population declines. For

each city we calculate the predicted path for log population starting in 1998, average over

these paths and compare the result to the same object constructed using the data.
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Figure 10 shows the average log paths for TFP and population for the data and the

model. TFP falls by 5 log points from 1998-2009 and population falls by three times as

much.33 Strikingly, the model’s predicted path for population lies very close to its empirical

counterpart. Obviously the fit is not as perfect for the individual cities, but the general

impression is similar. There are two key factors driving the model’s success: persistent

declines in TFP taken from the data and the slow response of population to past declines

in TFP predicted by the model. The impact of past TFP declines on current population

growth is demonstrated clearly in the figure by the gradual slowdown in TFP’s rate of decline

alongside the almost constant decline of population.

Since the dominant source of slow population adjustment in the model is the cost of

attracting workers to a city, we conclude from this experiment that these costs are integral

to our model’s explanation of persistent urban decline. Housing is not very important at

all in our model in the sense that migration frictions alone account for slow population

adjustments. This contrasts with Glaeser and Gyourko (2005) who argue that durable and

immobile housing underly persistent urban decline.34 These authors do not consider the costs

of attracting workers to a city in their analysis. We consider both housing and migration,

but housing turns out to be relatively unimportant.

8 Conclusion

This paper documents that population adjusts slowly to near random-walk TFP shocks

and proposes an explanation for why. The explanation is that the incentive to reallocate

population after a TFP shock is limited by the costs of attracting workers to desirable cities,

that is adjustment costs to increasing population through in-migration are the dominant

source of slow population adjustments. Our model of migration that delivers this result

is not arbitrary, but is dictated by the nature of the relationship between gross and net

population flows in cities that we uncover in our panel of 365 cities from 1985 to 2007.

Our model has left out other interesting model features that are undoubtedly important

33The much larger drop in population is a reflection of the forces driving our model’s reproduction of Zipf’s
law discussed above.

34They show that irreversible housing in cities with declining populations has several empirical predictions
which they verify in the data. Our model does not share these predictions since the irreversibility constraint
is never binding. It is never binding because of the relatively small variance of TFP innovations compared
to the depreciation rate for housing. Incidently, this constraint appears not to bind in the data as well as
new building permits are always strictly positive in our panel of cities. The constraint presumably binds for
neighborhoods within a city and this may have a role in explaining Glaeser and Gyourko (2005)’s findings.
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for understanding the full range of adjustments to shocks within cities. Chief among these

omissions are search frictions in local labor and housing markets. We think it would be

interesting to add these features to our framework. Doing so would help disentangle the

contributions to labor reallocation of traditional search frictions from the migration frictions

we have introduced in this paper.

Taken together our findings point to a heretofore ignored mechanism in the determination

of macroeconomic adjustment. While we have not done this experiment, our results strongly

suggest that a mis-allocated housing stock due to overbuilding in the recent housing boom

would have little impact on macroeconomic labor adjustment and the sluggish economy since

the housing bust is unlikely to have been driven by such a mis-allocation. This conclusion

of course derives from a model without any frictions in the financing of housing. If housing

is to be important for macroeconomic labor adjustment it must be through these or other

frictions.
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Appendix: Computations

While representing the solution of the economy-wide social planner as the solution to
a city planner problem plus side conditions was a huge simplification, computing the city
planner problem remains a nontrivial task.

The first difficulty is that the value function of the city planner’s problem has two en-
dogenous variables and two exogenous state variables. Each exogenous state variable takes
values in a finite grid but this grid cannot be too coarse if the resulting discrete process is
to represent the original AR(2) in a satisfactory way. To make the task of computing the
value function manageable we resorted to spline approximations.

Cubic spline interpolation is usually used in these cases. A difficulty with those method
is that it does not necessarily preserve the shape of the original function, or if it is does (as
with Schumacher shape-preserving interpolation) it is somewhat difficult to compute. For
these reasons, we use a local method that does not interpolate the original function but that
approximates it while preserving shape (monotonicity and concavity). An additional benefit
is that it is extremely simple to compute (there is no need to solve a system of equations).
The method is known as the Shoenberg’s variation diminishing spline approximation. It was
first introduced by Shoenberg (1967) and is described in a variety of sources (e.g. Lyche and
Morken (2011)). In what follows we provide its definition.

For a given continuous function f on an interval [a, b], let p be a given positive integer,
and let τ = (τ1, ..., τn+p+1) be a knot vector with n ≥ p+1, a ≤ τi ≤ b, τi ≤ τi+1, τp+1 = a and
τn+1 = b. The variation diminishing spline approximation of degree p to f is then defined as

Sp (x) =
n∑
j=1

f
(
τ ∗j
)
Bjp (x)

where τ ∗j = (τj+1 + ...+ τj+p) /p and Bjp (x) is the jth B-spline of degree p evaluated at x.
The B-splines are defined recursively as follows

Bjp (x) =
x− τj
τj+p − τj

Bj,p−1 (x) +
τj+1+p − x
τj+1+p − τj+1

Bj+1,p−1 (x)

with

Bj0 (x) =

{
1, if τj ≤ x < τj+1

0, otherwise

As already mentioned, this spline approximation preserves monotonicity and concavity
of the original function f (e.g. Lyche and Morken (2011), Section 5.2). The definition of
variation diminishing splines is easily generalized to functions of more than one variable
using tensor products (e.g. Lyche and Morken (2011), Section 7.2.1). These properties
greatly simplify the value function iterations of the city planner problem and they should
prove useful in a variety of other settings. In actual computations we decided to work with
an approximation of degree p = 3.

An additional complication involves the return function of the city planner’s problem.
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Conditional on the current states (h, x, s, s−1) and future states (h′, x′), evaluating the one
period return function of the city planner requires solving a nonlinear system of equations
in (ny, nh, ky, kh, br, bh) allowing for the possibility that the constraint ny + nh ≤ x′ may
bind. This is not a hard task. However, doing this for every combination of (h, x, s, s−1)
and (h′, x′) considered in solving the maximization problem at each value function iteration
would slow down computations quite considerably. For this reason, we chose to construct a
cubic variation-diminishing spline approximation to the return function R (h, x, s, , s−1, h

′, x′)
once, before starting the value function iterations, and use this approximation instead. In
practice, for each value of (h, x, s, s−1) we used a different knot vector for h′ and x′ to gain
accuracy of the return function over the relevant range.

Performing the maximization over (h′, x′) for each value of (h, x, s, s−1) at each value
function iteration is a well behaved problem given the concavity of the spline approxima-
tions to the return function and the next period value function. There are different ways
of climbing such a nice hill in an efficient way. In our case, given that we could offload
computations into two Tesla C2075 graphic cards (with a total of 896 cores), we used the
massively parallel capabilities of the system to implement a very simple generalized bisec-
tion method. Essentially for each value of (h, x, s, s−1) we used a block of 16× 16 threads to
simultaneously evaluate 16 × 16 combinations of (h′, x′) over a predefined square. We then
zoom to the smallest square area surrounding the highest value and repeat. In practice, a
maximum would be found after only three or four passes.

Statistics under the invariant distribution were computed using Monte Carlo simulations.
This part of the computations was also offloaded to the graphic cards to exploit their mas-
sively parallel capabilities. To avoid costly computations similar to those encountered in
the evaluation of the return function, cubic spline approximations were used for all decision
rules.

Speeding up the solution to the city planner’s problem and Monte Carlo simulations
was crucial since finding solutions (Y,C,Λ, η) to the side conditions requires solving the city
planner’s problem and simulating its solution several times.

The source code, which is written in CUDA Fortran, is available upon request. Compiling
it requires the PGI Fortran compiler. Running it requires at least one NVIDIA graphic card
with compute capability higher than 2.0.
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