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Contribution of Billio et al. (2011)

The authors begin with a combination scheme for whole densities of

the form
p(yile) = > p(wle)p(iile) (1)
where

* p(y:|e) is the target weighted density for the variable(s) of
interest y

e p(w|e) is the density of the weights (or of any nonlinear function
of them)
e p(i;|e) is the density of the predictors/predictions of y
The contribution is to model weights which vary with time (w = wy).
Interestingly, however, many of the combination methods that at-
tempt to build in time-variations in the combination weights (either
in the form of discounting of past performance or time-varying pa-

rameters) have generally not proved to be successful, although there
have been exceptions. [Timmermann, 2006]



How to model time-varying weights

The authors consider issues such as “learning” and “correlated weights”.
Begin with

wiy = g(xiy), for predictor/predictioni=1,..,L ()

)

Xy = X1+ A& (3)

where x; = (x14, ..., x1¢), and

+ ) = s

e x; is a latent process which we model as time-varying

e A& =g — &1, where ¢, is the vector of forecast errors

The specification above implies that since x;; is a function of the fore-
cast errors (y; — i +), hence also w; ¢[y;, ).



Time-varying weighting schemes

Francesco has presented a state-space representation of the weights,
and a particle filter to draw w; (and any other parameters 6.

Since the authors use an Exponentially Weighted Moving Average
specification of the form

er=Xer1 + (1= M)y — )? (4)

to obtain the [variance of the] forecast errors, I would also suggest fast
approximate updating schemes for the weights, some of which are
based on exponential decay.

That way, a larger set of predictors (and their weights) could be used
in combination forecasting. This would potentially balance the effect
of an increased estimation error from using approximations.



Linear Forgetting (Kulhavy & Kraus, 1996)

(i) M (wt(?l\t—l) + (1 —p) p(wi)
wt‘t—l = L (i) (5)
>oic [/‘ (wt71|t71) +(1— N)P(Wi)}
w] o wy) of (=) (6)

where y is a decay/forgetting factor (similar to A in the EWMA speci-
fication shown previously), and f (¢;) is a measure of acuracy as func-
tion of the forecast errors. For instance, Koop and Korobilis (2012,
IER) set f (e;) = p(y:|y' 1), i.e. each predictor’s predictive likelihood.

Finally p(w;) is a prior for each predictor’s i probability wt(i) which
can be helpful in light of prior beliefs. — Uninformative prior is
p(wi) = 1/L.



Exponential Forgetting (Kulhavy & Kraus, 1996)

Similarly, we can use exponential forgetting for the update of the weights:

M\ -
0 _ (wtillt—l) +pwn) .
W1 = 0 It ) @)
2ic1 [(%—1\:—1) + plwi)

wt|t X wt\t f (&) 8)

Additionally f (&;) can be any function of forecast errors, for instance
following Kapetanios, Labhard and Price (2008, JBES) we can set

exp (—1/200)
Sy exp (~1/200))

where U0 = MSI—“EQ1 — mianSPEt(le, where MSFE is the mean
squared forecast error.

fler) = ©)



Shrinkage

e Approximations are fast, however they do not allow enough
modelling flexibility.

¢ Additionally, error in the estimation of weights can be very
important — Timmermann (2006) explains that the “equal
weights” (1/L) approach works better sometimes just because it
is error free.

e Hence it is important to incorporate shrinkage.

Shrinkage could be applied in the state-space representation for x; that
the authors use (see Frithwirth Schnatter and Wagner, 2010, JoE).

Additionally, the authors also suggest alternative Dirichlet process
and mixture/ Markov-Switching models for x;, for which shrinkage
representations do exist in the Bayesian literature; see Dunson et al.
(2008, JASA) and Tadese et al. (2005, JASA), respectively.



Shrinkage 2

Example 1: Belmonte, Koop and Korobilis (2012)

e Develop Bayesian least absolute and selection operator (LASSO)
shrinkage prior for state-space / time-varying parameters
models

e Model can be shrunk towards different directions, for instance:
1) constant parameters, 2) time-varying parameters, 3) slowly
moving parameters, and 4) parameters shrunk to zero.

Example 2: Covariance selection models (Smith and Kohn, 2002, JASA)
— Shrink covariance matrix of weights to zero (applies to stochas-

tic covariance matrix as well)
Example 3: Shrinkage for factor models (Korobilis, 2012, OBES)

e Assume factor stochastic volatility structure on the weights
(more parsimonious), and apply shrinkage

e Can also be used when nonlinearities (e.g. structural breaks) are
present in the loadings, or other coefficients (see also Korobilis,
2012, JAE)



Some other thoughts for the future

The time-varying setting is ideal for dealing with “missing”
predictors (for instance, combination of nowcasts, or
non-model-based forecasts which might be missing randomly)

The time-varying setting is also ideal for dealing with predictors
measured at different frequencies

Both of these could be summarized in an exercise which would
involve real-time data, or nowcasting

Other important questions to be asked: Some predictors may
improve the mean/median combined forecast, however other
predictors might improve the uncertainty (variance) of the
combined forecast

Develop a decomposition of the MSE of the combined density
that could provide this information (think of the Brier score for
probabilistic forecasts, which is a decomposition of the MSE into
calibration-refinement, or uncertainty-reliability-resolution)



