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Contribution of Billio et al. (2011)

The authors begin with a combination scheme for whole densities of
the form

p(yt|•) =
∑

p(w|•)p(ỹt|•) (1)

where
• p(yt|•) is the target weighted density for the variable(s) of

interest y
• p(w|•) is the density of the weights (or of any nonlinear function

of them)
• p(ỹt|•) is the density of the predictors/predictions of y

The contribution is to model weights which vary with time (w = wt).

Interestingly, however, many of the combination methods that at-
tempt to build in time-variations in the combination weights (either
in the form of discounting of past performance or time-varying pa-
rameters) have generally not proved to be successful, although there
have been exceptions. [Timmermann, 2006]



How to model time-varying weights

The authors consider issues such as “learning” and “correlated weights”.
Begin with

wi,t = g(xi,t), for predictor/prediction i = 1, ..,L (2)
xt = xt−1+ M εt (3)

where xt = (x1,t, ..., xL,t), and

• g(xi,t) =
exp(xi,t)∑

i exp(xi,t)

• xt is a latent process which we model as time-varying
• M εt = εt − εt−1, where εt is the vector of forecast errors

The specification above implies that since xi,t is a function of the fore-
cast errors (yt − ỹi,t), hence also wi,t|yt, ỹt).



Time-varying weighting schemes

Francesco has presented a state-space representation of the weights,
and a particle filter to draw wt (and any other parameters θ.

Since the authors use an Exponentially Weighted Moving Average
specification of the form

εt = λεt−1 + (1− λ)(yt − ỹt)
2 (4)

to obtain the [variance of the] forecast errors, I would also suggest fast
approximate updating schemes for the weights, some of which are
based on exponential decay.

That way, a larger set of predictors (and their weights) could be used
in combination forecasting. This would potentially balance the effect
of an increased estimation error from using approximations.



Linear Forgetting (Kulhavý & Kraus, 1996)

w(i)
t|t−1 =

µ
(

w(i)
t−1|t−1

)
+ (1− µ) p(ωi)∑L

i=1

[
µ
(

w(i)
t−1|t−1

)
+ (1− µ) p(ωi)

] (5)

w(i)
t|t ∝ w(i)

t|t−1f (εt) (6)

where µ is a decay/forgetting factor (similar to λ in the EWMA speci-
fication shown previously), and f (εt) is a measure of acuracy as func-
tion of the forecast errors. For instance, Koop and Korobilis (2012,
IER) set f (εt) = p(yt|yt−1), i.e. each predictor’s predictive likelihood.

Finally p(ωi) is a prior for each predictor’s i probability w(i)
t which

can be helpful in light of prior beliefs. −→ Uninformative prior is
p(ωi) = 1/L.



Exponential Forgetting (Kulhavý & Kraus, 1996)

Similarly, we can use exponential forgetting for the update of the weights:

w(i)
t|t−1 =

(
w(i)

t−1|t−1

)µ
+ p(ωi)

(1−µ)∑L
i=1

[(
w(i)

t−1|t−1

)µ
+ p(ωi)(1−µ)

] (7)

w(i)
t|t ∝ w(i)

t|t−1f (εt) (8)

Additionally f (εt) can be any function of forecast errors, for instance

following Kapetanios, Labhard and Price (2008, JBES) we can set

f (εt) =
exp

(
−1/2Ψ(i)

)∑L
i=1 exp

(
−1/2Ψ(i)

) (9)

where Ψ(i) = MSFE(i)
t−1 − minj MSFE(j)

t−1, where MSFE is the mean
squared forecast error.



Shrinkage

• Approximations are fast, however they do not allow enough
modelling flexibility.

• Additionally, error in the estimation of weights can be very
important→ Timmermann (2006) explains that the “equal
weights” (1/L) approach works better sometimes just because it
is error free.

• Hence it is important to incorporate shrinkage.

Shrinkage could be applied in the state-space representation for xt that
the authors use (see Frühwirth Schnatter and Wagner, 2010, JoE).

Additionally, the authors also suggest alternative Dirichlet process
and mixture/ Markov-Switching models for xt, for which shrinkage
representations do exist in the Bayesian literature; see Dunson et al.
(2008, JASA) and Tadese et al. (2005, JASA), respectively.



Shrinkage 2

Example 1: Belmonte, Koop and Korobilis (2012)

• Develop Bayesian least absolute and selection operator (LASSO)
shrinkage prior for state-space / time-varying parameters
models

• Model can be shrunk towards different directions, for instance:
1) constant parameters, 2) time-varying parameters, 3) slowly
moving parameters, and 4) parameters shrunk to zero.

Example 2: Covariance selection models (Smith and Kohn, 2002, JASA)
→ Shrink covariance matrix of weights to zero (applies to stochas-
tic covariance matrix as well)
Example 3: Shrinkage for factor models (Korobilis, 2012, OBES)

• Assume factor stochastic volatility structure on the weights
(more parsimonious), and apply shrinkage

• Can also be used when nonlinearities (e.g. structural breaks) are
present in the loadings, or other coefficients (see also Korobilis,
2012, JAE)



Some other thoughts for the future

• The time-varying setting is ideal for dealing with “missing”
predictors (for instance, combination of nowcasts, or
non-model-based forecasts which might be missing randomly)

• The time-varying setting is also ideal for dealing with predictors
measured at different frequencies

• Both of these could be summarized in an exercise which would
involve real-time data, or nowcasting

• Other important questions to be asked: Some predictors may
improve the mean/median combined forecast, however other
predictors might improve the uncertainty (variance) of the
combined forecast

• Develop a decomposition of the MSE of the combined density
that could provide this information (think of the Brier score for
probabilistic forecasts, which is a decomposition of the MSE into
calibration-refinement, or uncertainty-reliability-resolution)


