Discussion of "Jensen's Inequality and the Success of Linear Prediction Pools"

Christian Kascha¹

¹University of Zurich

Conference on Uncertainty and Forecasting in Macroeconomics 2012

Christian Kascha Discussion / Jensen's Inequality

э

Background of the paper

- Forecast averaging for point forecasts easier to justify than density forecast averaging.
- Paper shows that we usually do not mess up too much averaging has "insurance function" for different, commonly used, score functions.
- Furthermore
 - presents MC study to analyze performance of linear pools even if one model in the set is the true model, the linear pool with EW is doing relatively well.
 - presents empirical results on US marco series linear pool with EW does very well and often beats all individual models.

Concave Score Functions

If $S(\cdot)$ is concave, we have for a fixed y and with $\sum_i \omega_i = 1, \, \omega_i \geq 0$

$$S(\sum_{i} \omega_{i} f_{i}(y)) \geq \sum_{i} \omega_{i} S(f_{i}(y)).$$

Therefore, for deterministic weights ω_i :

$$E\left[S(\sum_{i}\omega_{i}f_{i}(y))\right] \geq \sum_{i}\omega_{i}E\left[S(f_{i}(y))\right] \geq \min_{i}E\left[S(f_{i}(y))\right]$$

holds for the Log Score (LS). Quadratic Score (QS), Continuous Ranked Probability Score (CRPS) depend on more than the value f(y).

Log Pool needs "Strongly" Concave Functions

Summary of the paper Suggestions

We have for a fixed y and with $\sum_i \omega_i = 1, \, \omega_i \geq 0$

$$S\left(\frac{\prod_{i} f_{i}^{\omega_{i}}(y)}{\int \prod_{i} f_{i}^{\omega_{i}}(y) dy}\right) = S\left(\exp(\log \prod_{i} f_{i}^{\omega_{i}}(y) - \log \int \prod_{i} f_{i}^{\omega_{i}}(y) dy)\right)$$

$$\geq S\left(\exp(\sum \omega_{i} \log f_{i}(y) - \log \int \sum_{i} \omega_{i} f_{i}(y) dy)\right)$$

$$= S\left(\exp(\sum \omega_{i} \log f_{i}(y) - \log \sum_{i} \omega_{i} \cdot 1)\right)$$

$$= S\left(\exp(\sum \omega_{i} \log f_{i}(y))\right)$$

Therefore, if $S(\exp(\cdot))$ is concave, we have for fixed y:

$$S\left(\frac{\prod_i f_i^{\omega_i}(y)}{\int \prod_i f_i^{\omega_i}(y) dy}\right) \ge \sum_i \omega_i S\left(\exp(\log f_i(y))\right) = \sum_i \omega_i S\left(f_i(y)\right)$$

LS is concave enough. For QS and CRPS, similar reasoning should show that their are not concave enough. Therefore, for deterministic weights ω_i :

$$E\left[S\left(\frac{\prod_{i}f_{i}^{\omega_{i}}(y)}{\int\prod_{i}f_{i}^{\omega_{i}}(y)dy}\right)\right] \geq \sum_{i}\omega_{i}E\left[S(f_{i}(y))\right] \geq \min_{i}E\left[S(f_{i}(y))\right]$$

Some outcomes of simulations and emp. Example:

Simulation:

- EW linear pool does do relatively well
- results qualitatively similar across scoring rules
- power of GW test sometimes low sometimes high

Empirical Example

- four-dimensional post 1985 US monthly macro sample (323 obs), h=1,3,6
- models differ by system size (K=1,2) and estimation windows (short rolling, long rolling)
- Results:
 - short better than long
 - EW is good
 - EW better with LS than with QS and CRPS (LS more sensitive to outliers)

Some related Literature:

- Hendry and Clements (2004, 'Pooling of forecasts', Econometrics Journal, 7, 1-31) show that deterministic combinations provide insurance against the worst forecast. They point out the role of models being differentially misspecified.
- Kascha and Ravazzolo (2010, Combining Inflation Density Forecasts. Journal of Forecasting) show that for the LS deterministic linear and logarithmic pools provide insurance because of the concavity of the LS.
- Timmermann (2006, Forecast Combinations, Handbook of Economic Forecasting) lists reasons for the success of equal weights

Summary of the paper Suggestions

Some eventually interesting questions

- Arithmetic and geometric averaging and loss functions:
 - insurance effect vs. performance
 - loss functions and nonlinear averaging

 \Rightarrow compute results also for an equally weighted logarithmic average.

- Insurance effect of deterministic weights but what about a random model set?
 - How far should one restrict the set? Does the answer depend on the way pooling is done? Does the answer depend on the score?
- Jensen's inequality, density forecast averaging and decision making:
 - Grinblatt, Linnainmaa (2011): Jensen's Inequality, Parameter Uncertainty, and Multi-period Investment