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“Is an 80% non-random sample ‘better’ than a 5% random sample in measurable terms? 90%? 

95%? 99%?” (Wu, 2012) 

 

Large absolute size or large relative size? 

Let us consider a case where we have an administrative record covering  percent of the popu-

lation, and a simple random sample (SRS) from the same population which only covers  per-

cent, where ≪ . How large should ⁄  be before an estimator from the administrative rec-

ord dominates the corresponding one from the SRS, say in terms of MSE? 

 

As an initial investigation, let us denote our finite population by , … , . For the administrative 

record, we let 1 whenever  is recorded and zero otherwise; and for SRS, we let 1 if  

is sampled, and zero otherwise, 1,… , . Here we assume ∑ ≫ ∑ , and 

both are considered fixed in the calculations below. Our key interest here is to compare the 

MSEs of two estimators of the finite-sample population mean , namely, 

̅
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		and		 ̅
1
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Recall for finite-population calculations, all ’s are fixed, and all the randomness comes from the 

response indicator  for ̅  and the sampling indicator  for ̅ . The administrative record has no 

probabilistic mechanism imposed by the data collector. 

 

Expressing the exact error, where ⁄ . 

̅
E
E

E
Cov ,
E ,

Data Quality

∙
Problem Difficulty

∙
1

Data Quantity

. 

Given that ̅  is unbiased, its MSE is the same as its variance. 
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The MSE of ̅  is more complicated, mostly because  depends on . 
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It is worthy to point out that the seemingly mismatched units in comparing the relative size  with 

the absolute size  reflect the different natures of non-sampling and sampling errors. The former 

can be made arbitrarily small only when the relative size  is made arbitrarily large, that is 

→ 1; just making the absolute size  large will not do the trick. For biased estimators resulting 

from a large self-selected sample, the MSE is dominated (and bounded below) by the squared 

bias term, which is controlled by the relative sample size.  



To guarantee MSE ̅ Var ̅ , we must require (ignoring the finite population correction 

1 ) 

,

1 ,
,		or equivalently		
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,
, . 

 

We must be mindful, however, that these comparisons assume the SRS and more generally the 

survey data have been collected perfectly, which will not be the case in reality because of both 

non-responses and response biases (the SRS will also have a non-zero , ). Hence in reality it 

would take a smaller  to dominate the probabilistic sample with  sampling fraction, precisely 

because the latter has been contaminated by non-probabilistic selection errors as well. Neverthe-

less, a key message here is that, as far as statistical inference goes, what makes a “Big Data” set 

big is typically not its absolute size, but its relative size to its population. Therefore, the question 

which data set one should trust more is unanswerable without knowing . But the general mes-

sage is the same: when dealing with self-reported data sets, do not be fooled by their apparent 

large sizes or by common wisdom from studying probabilistic samples. 

 

Data defect index 

The re-expression of the bias in terms of the correlation between sampling variable  and re-

sponse indicator  is a standard strategy in the survey literature. Although mathematically trivial, 

it provides a greater statistical insight, that is, the sample mean from an arbitrary sample is an 

unbiased estimator for the target population mean if and only if the sampling variable and the da-

ta collection mechanism are uncorrelated. In this sense we can view ,  as a “defect index” for 

estimation (using sample mean) due to the defect in data collection/responding. Of course all 

these calculations depend critically on knowing the value of , , which cannot be estimated from 

the biased sample itself. 

 

Imagine that we are given a SRS with 400. If 

, 0.05 and our intended population is the USA, 

then 320,000,000, and hence we will need 

50% or 160,000,000 to place more trust in 

̅  than in ̅ . If , 0.1, we will need 80% or 

256,000,000 to dominate 400. If , 0.5, 

we will need over 99% of the population to beat a 

SRS with 400. 

 

This reconfirms the power of probabilistic sampling 

and reminds us of the danger in blindly trusting that 

“Big Data” must give us better answers. Lesson 

learned: What matters most is the quality, not the 

quantity. 
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