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Engelberg, Manski and Williams (JBES 2009) first documented that point 

forecasts and means from density forecasts are sometimes systematically 

different – point forecasts seem to have systematic favorable bias. Based on this 

observation, they suggested emphasizing density forecasts more than point 

forecasts. 

Clements (EER 2010) found that point forecasts are more accurate than means 

of density forecasts in terms of MSE criterion.  Current paper is a continuation 

of that theme using a different metric.  

 

First, Clements documents that means derived from density forecasts do not 

follow simple consistency over horizons that is dictated by a simple Bayesian 

Learning Model (BLM), whereas point forecasts do much better on that account.  

As forecasts get closer to the target, more importance should be placed on new 

information compared to initial prior beliefs.  

 

Second, he examines if different ways of approximating histograms, e.g., 

Uniform, Normal, Beta, etc. make much difference in establishing the result that 

density forecasts are not well calibrated. By improving the methodology of PIT 

evaluation, he establishes that these densities are not well calibrated. Hence, the 

point he makes is that we should continue to ask for and use point forecasts.  
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His basic point is well taken. 

 

Whereas I am impressed by the second part of the paper, and find the results 

expected and believable, I will restrict my main comment to the first and major 

part of the paper: I have some concerns on the model formulation and estimation 

of the BLM. I have two major points. 
 

If the purpose is the examine if certain consistency and optimality properties are 

satisfied in a sequence of fixed target forecasts, there are simple tests that one 

can implement based on results from Lahiri and Isikler (IJF 2006), Patton and 

Timmermann (JBES 2012), Lahiri (JBES 2012), etc,. For instance, variance of 

forecast errors should fall and variance of forecasts should increase as the 

forecast horizon decreases. One can also do Nordhaus type tests horizon by 

horizon - Clements has done much early work of the latter test. These simple yet 

powerful tests can be done concurrently using both point and means of density 

forecasts. More generally, using the whole densities, one can test for significant 

information gains over successive horizons using Kulback-Leibler and other 

entropy measures.  
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The Bayesian Learning model that Clements is working with is not consistent 

with point forecasts either – see Lahiri and Sheng (2008, 2010). Then one can 

possibly show that point forecasts are more in line with BLM than the means of 

density forecasts are.  

 

Let me explain why I do not think that BLM has not been implemented 

properly.  

 

Bayesian learning model with Heterogeneous Agents: 

 

Assumption on prior beliefs: 

 

The initial prior belief of the target variable for the year t, held by the forecaster 

i, at the 24-month horizon is represented by the normal density with the mean 24itF  

and the precision (i.e. the reciprocal of the variance) 24ita  for ,,...,1 Ni   .,...,1 Tt   

 

Assumption on public information arrival: 

At horizon h months, experts receive one public signal thL , but do not interpret it 

identically. In particular, individual i's estimate ithY , conditional only on the new 

public signal, can be written as 
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iththith LY  ,  ),(~ ithithith bN  . 

 

ith - expert i’s error term 

ith - expert i’s interpretation of the public information 

ithb  - perceived quality of public information by expert i 

 

    

Bayes rule implies that under the normality assumption, agent i’s posterior 

mean is the weighted average of his prior mean and his estimate of the target 

variable conditional only on new public signal: 

))(1(1 iththithithithith LFF    ,       

 

with his posterior precision ithithith baa  1 , where )/( 11 ithithithith baa    is the weight 

attached to prior beliefs.  

 

For convenience, the following population parameters are defined across 

professional forecasters for target year t at horizon h: 

 

thithi FFE )( , 2)(var
thFithi F  : differences in their prior beliefs, 2

1thF
 ;      
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thithiE  )( , 2)(var
thithi 

  : differences in the weights attached on priors, 

thithiE  )( , 2)(var
thithi 

   :differential interpretation of public information, 2

th
 . 

 

where )/( 11 ithithithith baa    is the weight attached on prior beliefs.  

 

Clements, following Manzan (2011), uses the last known value as a proxy for 

Lth. This is typical in the Accounting literature. Given the very definition of Lth, 

the approach is doomed to fail.  

 

One can never be sure that the last announced actual value is common 

information to all, and that there was no differential information between 

forecasters. In addition, many high frequency intra-quarterly indicators are used 

for forecasting. So the parameter can not be interpreted as differential 

interpretation of common public information.  
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Differential interpretation of public information 

 – Effect of 9/11 on the disagreement in US GDP forecasts 
 

 

 

Essentially one has a dynamic panel data model with heterogeneity. Pesaran’s 

(Econometrica 2006) Common Correlated Effects Estimator was not meant for 

dynamic models. So I worry about the consistency property of the estimator 

adopted by Clements.  

 

Estimation of )1( h , the weight attached to public information: 

 

Lahiri and Sheng (JE 2008, IJF 2010) outline a different way of estimating λ.  

 

ithithithith FF   1 , where ))(1( iththithith L    . By construction, ith  and 1ithF  are independent 

for any t and h.  
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First, note that above is not estimable, since the number of parameters to be 

estimated exceeds the number of observations. We assume  

 

ihhihith v  ,         

 

where ihv  has mean zero, mutually independent of each other, and independent 

over forecast horizons. We regress the forecast revision ( ithF ) on the lagged 

forecast ( 1ithF ) to circumvent the possible problem of spurious regression.  

 

Thus, the estimable version becomes 

 

ithithhith uFF  1 ,          

 

where 1 hh   and 1 ithihithith Fvu  .  

 

Second, ithu  will be correlated across forecasters because, conditional on t and 

h, it has a nonzero mean that depends on thL . To solve this problem, we rewrite 

the equation as 
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11   ithihithhithith FvFF  .         

 

Taking expectations over i conditional on t and h, we get 

 

1)(  thhthithi FFE  .         

 

Subtracting, we obtain 

 

iththithhthith wFFFF   )( 11 ,       

  

where 1)(  ithihithiithith FvEw  . In contrast to ithu  , the error ithw  has a zero mean now.  

 

 

Finally, ithw  might be serially correlated. Let ithw  follow the AR(1) process 

ithithhith ww   1 , then it can be rewritten as 

 

iththithhhthithhthithhthith FFFFFFFF    )()()( 221111 ,   
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where 2

)(''' )( ihtiithE   , for ',',' hhttii   and 0 otherwise. Using nonlinear least squares, 

we estimate the above equation for each horizon after controlling for the 

heterogeneity in the error term.  

 

Clements has too many parameters with small number of observation for each 

forecaster. Joint GLS estimation requiring inversion of a big Ω is an over kill 

and will invite specification errors. Following Lahiri and Sheng (IJF 2010), λ 

can be estimated for each forecaster for each horizon using point and means 

from density forecasts, and can be tested for equality. This approach is simpler 

and avoids the use of proxy for common public information Lth.  
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Contribution of initial prior beliefs in explaining GDP (solid line) and inflation (dotted line) 

disagreement (Lahiri and Sheng IJF 2010).  

 

    

 

Note from above that the parameter value does not fall uniformly over horizons, 

it depends also when important information arrives.  

 

Asymmetric Loss: 

 

One major way that point forecasts may seemingly look worse that means from 

density forecasts in terms of MSE criterion if the loss functions are of 

forecasters are other than simple MSE. Papers by Granger, Diebold, Elliott, 

Komunjer and Timmermann (EKT) and others have demonstrated that optimal 

point forecasts can be different from measures of central tendencies of density 
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forecasts. Each professional forecaster may have many clients whose loss 

functions can be different. The professional forecaster generates a true forecast 

density, and then delivers optimal point forecasts depending on loss functions.  

 

First, Following Engelberg et al., a bounds analysis should be conducted.  

 

 

Point forecasts vs., the central tendency of density forecasts 

 
Real output growth (1981Q3-2010Q4) 

 4Q Ahead Forecast 3Q Ahead Forecast 2Q Ahead Forecast 1Q Ahead Forecast 

Mean 421/0.0356/0.8195/0.1449 495/0.0364/0.8364/0.1273 518/0.0405/0.8745/0.0849 570/0.0246/0.9439/0.0316 

Median 557/0.0952/0.7325/0.1724 660/0.0682/0.7788/0.1530 616/0.0860/0.8247/0.0893 646/0.0759/0.8746/0.0495 

Mode 555/0.0631/0.8468/0.0901 656/0.0442/0.8735/0.0823 614/0.0537/0.8893/0.0570 645/0.0434/0.9178/0.0388 

Inflation (1968Q4-2003Q4) 

 4Q Ahead Forecast 3Q Ahead Forecast 2Q Ahead Forecast 1Q Ahead Forecast 

Mean 930/0.2151/0.7118/0.0731 992/0.1996/0.7550/0.0454 861/0.1359/0.7677/0.0964 627/0.0973/0.8756/0.0271 

Median 1110/0.2468/0.6649/0.0883 1200/0.1958/0.7342/0.0700 1008/0.1647/0.7004/0.1349 717/0.1060/0.8257/0.0683 

Mode 1108/0.1606/0.7735/0.0659 1195/0.1339/0.8192/0.0469 1005/0.1154/0.7861/0.0985 714/0.0784/0.8838/0.0378 
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Stylized facts about loss functions 
 

 Most point forecasts fall within the bounds on the central tendency (mean, median and 

mode). But still for a significant fraction of observations, they do not. This fraction is 

usually between 5% and 25% and varies over forecast horizons and across different 

measures of the central tendency.  

 

 Forecasters who skew their point forecasts tend to present rosy scenarios. For real 

output growth, forecasters are more likely to report a point forecast that is above the 

upper bound on the central tendency; for inflation, however, forecasters are more likely 

to report a point forecast that is below the lower bound on the central tendency. 

 

 As the forecast horizon shortens, the point forecasts are more consistent with the 

central tendency of the density forecasts. This empirical regularity has not been 

addressed by Clements.  
 

 Above facts imply that for inflation, underprediction is less costly than overprediction 

while for real output growth, underprediction is more costly than overprediction. In 

addition, the longer the forecast horizon, the more asymmetric is the loss function. 
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Clements  (2011) has argued that the deviation of the point forecast from the 

central tendency of the density forecast is not due to asymmetric loss function 

because the point forecast is more accurate than the mean of the density forecast 

in terms of lower mean squared error. Note that under asymmetric loss, the 

means of the density forecasts need not necessarily to be more accurate than the 

corresponding point forecast in terms of MSE. The mean of the density forecasts 

minimizes the mean squared error with respect to the subjective density, not the 

objective density. Suppose the density forecast is f(y), the true data generating 

process is p(y), the mean of f(y) is m, the corresponding point forecast is y*, and 

the mean squared error loss function is (yh-y)2. Then m minimizes  

(yh-y)2*f(y)dy, not (yh-y)2*p(y)dy. Therefore the ex post mean squared error of 

m need not necessarily to be smaller than that of the optimal point forecast, y*. 

For example, suppose the true data generating process is N (3, 1), and the 

density forecast is N(1,1). If the loss function is asymmetric such that the cost of 

underprediction is higher than that of overprediction, the optimal point forecast 

will be larger than the mean of the density forecast, say 2. In this case the point 

forecast is closer to the mean of the true data generating process than the mean 

of the density forecast. This implies that the mean squared error of the point 
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forecast will be lower than that of the mean of density forecast although the 

point forecast is optimal based on forecaster’s loss function and density forecast. 

 

In my recent work with Fushang Liu, we are looking closely into asymmetries in 

loss functions by using both individual density forecasts and point forecasts 

without assuming rationality and time invariance as in Elliott et al. 

 

“On the estimation of Forecasters Loss Function Using Density Forecasts,” 

Proceedings of the Business and Economic Statistics Section, American 

Statistical Association Annual Meetings, 2009. 

 

I feel we can not yet rule out the role of asymmetry in generating point forecasts 

derived from underlying density forecasts. In a world with many forecasters 

each having multiple clients with diverse objective functions, this seems 

reasonable. In the psychology literature, evidence in abundant to this effect.  

 


