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Calibration testing

» The distribution of forecast errors should match the
assumptions of the forecasting model.

» One should therefore check for mismatches.

» In this respect, density forecasts are more demanding
than point forecasts.

In particular,

» the probability integral transformations (PITSs)
should be independent uniformly distributed,

» and inverse normal transformations thereof (INTSs)
should be Gaussian.
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Checking normality

» EXxisting tests for normality focus on particular
sample moments! such as

» mean and variance (Berkowitz 2001)
» skewness and kurtosis (Jarque/Bera 1980, Bai/Ng
2005)

» NoO consistency in general, unless “many” moments
considered,

» but x2 asymptotics.

» In the case where serial dependence is allowed for
(say h-step ahead forecasts),

» estimation of a long-run covariance matrix is required.

1Classical goodness-of-fit tests are not a popular choice.
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Main contributions

> Existing procedures test for normality, but INTs are
standard normal.

» So relevant information could be found in the first
two moments as well!

» Moreover, uncentered sample moments are easier to
work with.

Along these Llines,
» some of the involved Long-run covariances are zero;

» and using standardized PITs (S-PITs) instead of
INTs are a further improvement.
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Open issues

» Understand finite-sample behavior
» Power against certain nonstationarities

» Effect of model estimation?

Additional Monte Carlo experiments deliver some
answers.
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Size distortions

Size (5% nominal), testing y+ ~ Nid (0, 1), simple
covariance matrix estimator.

= —int  =int  =int —int —S-pIit =S Pit  —==5-pit =5 Ppit
T H3a oy Ay Xyo3 AXiozq O S20 Xio3 X034

50 40 47 98 169 427 4.7 5.4 7.2 9.2
100 86 53 7.8 135 33.0 5.0 5.7 6.5 7.5
250 10.3 54 6.7 9.6 21.8 5.7 5.9 5.9 6.0
500 9.7 48 55 6.7 14.9 4.6 4.9 5.2 5.0
1000 86 43 4.7 6.0 11.0 4.6 4.8 5.1 4.7

The problem is Likely the high variance of the (Long-run)
covariance matrix estimator.2

2Cf. the improved behavior of &°.
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Variance breaks

» Changes in the volatility of the series,
» not captured by the forecasting model,
» affect density (if not point) forecasts.

Power (5% nominal), testing y: ~ Nid (0, 1/2.5) for
t < T/2 and y+ ~ Nid (0, 4/25) for t > T/2.

— =int =int —=int =int =S-pit —=S-pit —S-pit —s-pit
T H3a oy & X103 Xiozg Ay &) 123 1234

50 29 4.7 10.7v 204 305 4.8 104 126 15.6
100 53 4.9 84 154 21.9 4.8 13.2 14.0 185
250 23.2 5.3 5.4 8.8 30.0 5.1 26.9 243 423
500 67.8 5.6 4.8 7.1 64.4 5.3 49.4 443 75.5
1000 97.4 5.3 5.4 6.6 95.7 5.4 83.2 779 97.5

Stationarity tests (Nyblom/Makelainen 1983, KPSS
1992) may give even better results.
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Using residuals

The case more relevant in practice

Size (5% nominal), testing y: = €/3. with € OLS
residuals from zz = 1 + 0.5 z;—1 + €¢, €+ ~ (0, 0?)

T Bse @ &y Gy G &0 870 G G
50 38 00 00 34 323 00 00 07 12
100 84 00 00 23 21.0 00 00 08 09
250 100 00 00 1.1 110 00 00 07 1.1
500 9.9 00 00 08 70 00 00 04 10
1000 89 00 00 08 49 00 00 05 09

» Results robust to changes in AR coefficient.
» Using a long-run covariance matrix estimator does

not change the essential message.

» Use KPSS-type statistic or correct critical values.
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To sum up

» Raw moments are often more informative than just
skewness and kurtosis.

» The approach is not restricted to INTs.
> Long-run covariance matrix estimation is an issue.

» The residual effect appears to be negligible,
with one important exception (can be accounted for)
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