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Calibration testing

I The distribution of forecast errors should match the
assumptions of the forecasting model.

I One should therefore check for mismatches.

I In this respect, density forecasts are more demanding
than point forecasts.

In particular,

I the probability integral transformations (PITs)
should be independent uniformly distributed,

I and inverse normal transformations thereof (INTs)
should be Gaussian.
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Checking normality

I Existing tests for normality focus on particular
sample moments1 such as

I mean and variance (Berkowitz 2001)
I skewness and kurtosis (Jarque/Bera 1980, Bai/Ng

2005)

I No consistency in general, unless \many" moments
considered,

I but ffl2 asymptotics.

I In the case where serial dependence is allowed for
(say h-step ahead forecasts),

I estimation of a long-run covariance matrix is required.

1Classical goodness-of-˛t tests are not a popular choice.
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Main contributions

I Existing procedures test for normality, but INTs are
standard normal.

I So relevant information could be found in the ˛rst
two moments as well!

I Moreover, uncentered sample moments are easier to
work with.

Along these lines,

I some of the involved long-run covariances are zero;

I and using standardized PITs (S-PITs) instead of
INTs are a further improvement.
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Open issues

I Understand ˛nite-sample behavior

I Power against certain nonstationarities

I E¸ect of model estimation?

Additional Monte Carlo experiments deliver some
answers.
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Size distortions

Size (5% nominal), testing yt ‰ N id (0; 1), simple
covariance matrix estimator.

T b—34 b̧int1 b̧int12 b̧int123 b̧int1234 b̧s´pit1 b̧s´pit12 b̧s´pit123 b̧s´pit1234

50 4:0 4:7 9:8 16:9 42:7 4:7 5:4 7:2 9:2
100 8:6 5:3 7:8 13:5 33:0 5:0 5:7 6:5 7:5
250 10:3 5:4 6:7 9:6 21:8 5:7 5:9 5:9 6:0
500 9:7 4:8 5:5 6:7 14:9 4:6 4:9 5:2 5:0

1000 8:6 4:3 4:7 6:0 11:0 4:6 4:8 5:1 4:7

The problem is likely the high variance of the (long-run)
covariance matrix estimator.2

2Cf. the improved behavior of b̧0
´ .
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Variance breaks

I Changes in the volatility of the series,

I not captured by the forecasting model,

I a¸ect density (if not point) forecasts.

Power (5% nominal), testing yt ‰ N id (0; 1=2:5) for
t < T=2 and yt ‰ N id (0; 4=2:5) for t – T=2.

T b—34 b̧int1 b̧int12 b̧int123 b̧int1234 b̧s´pit1 b̧s´pit12 b̧s´pit123 b̧s´pit1234

50 2:9 4:7 10:7 20:4 30:5 4:8 10:4 12:6 15:6
100 5:3 4:9 8:4 15:4 21:9 4:8 13:2 14:0 18:5
250 23:2 5:3 5:4 8:8 30:0 5:1 26:9 24:3 42:3
500 67:8 5:6 4:8 7:1 64:4 5:3 49:4 44:3 75:5

1000 97:4 5:3 5:4 6:6 95:7 5:4 83:2 77:9 97:5

Stationarity tests (Nyblom/Makelainen 1983, KPSS
1992) may give even better results.
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Using residuals

The case more relevant in practice

Size (5% nominal), testing yt = b"t=bff" with b"t OLS
residuals from zt = 1 + 0:5 zt`1 + "t , "t ‰ (0; ff2)

T b—34 b̧int1 b̧int12 b̧int123 b̧int1234 b̧s´pit1 b̧s´pit12 b̧s´pit123 b̧s´pit1234

50 3:8 0:0 0:0 3:4 32:3 0:0 0:0 0:7 1:2
100 8:4 0:0 0:0 2:3 21:0 0:0 0:0 0:8 0:9
250 10:0 0:0 0:0 1:1 11:0 0:0 0:0 0:7 1:1
500 9:9 0:0 0:0 0:8 7:0 0:0 0:0 0:4 1:0

1000 8:9 0:0 0:0 0:8 4:9 0:0 0:0 0:5 0:9

I Results robust to changes in AR coe‹cient.

I Using a long-run covariance matrix estimator does
not change the essential message.

I Use KPSS-type statistic or correct critical values.
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To sum up

I Raw moments are often more informative than just
skewness and kurtosis.

I The approach is not restricted to INTs.

I Long-run covariance matrix estimation is an issue.

I The residual e¸ect appears to be negligible,

with one important exception (can be accounted for)
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