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General assessment

I fundamental problem in statistical inference

I here: joint prediction regions (JPR)

I Simple and robust bootstrap approach based on the
maximum statistic

I Most reliable procedure so far

I What is the “best JPR” ?

Pr{d−
h ≤ YT+h ≤ d+

h ∀ h = 1, . . . ,H} = 1− α

I uniform (balanced) boundaries (Anaolyev/Kosenok 2011)

Pr
(
d−
h ≤ YT+h ≤ d+

h for h ∈ {1, · · · ,H}
)

= 1− α∗

for α/H ≤ α∗ ≤ α and α∗ = 1− (1−α)H for uncorrelated forecasts

I Remark 3.3 argues that the JPR is balanced



Simple example

Remark 2.1 considers the following example:

U =

[
U1

U2

]
= N

([
0
0

]
,

[
1 0
0 1

])

1. Projecting Scheffe’s region

U2
1 + U2

2 ∼ χ2
2

U2
1 + U2

2 ≤ 5.99

⇒ Prob(U2
1 ≤ 5.99 and U2

2 ≤ 5.99) = 0.9715

2. Bootstrap method of Staszewska-Bystrova (2010):

I Generate paths (U∗1 ,U
∗
2 )′ ∼ N (0, I )

I Delete the 5% extreme paths measured by D = U2
1 + U2

2

(here: D ≤ 5.99)
I Compute the envelope of the paths



This method is equivalent to Scheffe’s projections:
The envelope of U1 is obtained by:

max(U∗
1 )2 ≤ 5.99− (U∗

2 )2

Since U∗2 may be arbitrarily close to 0, it follows max(U∗1 )2 → 5.99.

3. Rectangular region based on the maximum
(Wolf/Wunderli 2012)

I max(U2
1 ,U

2
2 ) < d1−α with probability 1− α implies that

{U2
1 < d1−α}

⋃
{U2

2 < d1−α} with prob. 1− α

⇒ 0.95-quantile computed by simulation (= 2.24)

I Quantile can be determined by noting that

P(U2
1 < d∗) =

√
0.95 = 0.9747 ⇒ d∗ = 2.2368



I If the distribution of U1,U2 is skewed a symmetric interval
(based on the max-statistic is not optimal

I Separate computation of lower and upper bounds:

Pr
(

max(U1,U2) < dmax
1−α/2

)
= 1− α/2

Pr
(

min(U1,U2) > dmin
1−α/2

)
= 1− α/2

Example of an alternative statistic:

I the mean statistic:

1

2
(U1 + U2)2 ≤ 3.84

|U1 + U2| ≤ 2.77

I smaller region if both errors are positive

I larger region if errors have different sign

I Projection on axes yield very conservative JPR



4. The approach for of Jorda/Marcellino (2008)

Original limits: (note that
√

5.99 = 2.45)d∗
1 (1− α)

d∗
2 (1− α)

 = P


√
χ2
H,1−α/H√
χ2
H,1−α/H

 =

1.73

1.73


Refined limitsd̃∗

1 (1− α)

d̃∗
2 (1− α)

 = P


√
χ2
1,1−α√

χ2
2,1−α/2

 =

1.96

1.73


I simulation results for[

U1

U2

]
= N

([
0
0

]
,

[
1 ρ
ρ 1

])
I nominal confidence level: 0.95



Table: Actual coverage rates for the JM limits

ρ : 0.8 0.4 0 –0.4 –0.8

original 0.914 0.900 0.836 0.582 0.000
refined 0.948 0.937 0.873 0.558 0.000

⇒ similar findings in Wolf/Wunderli (2012)

Explanation of the results:

Limits for the orthogonalized random variables:

Z = P−1U ≡
(
Z1

Z2

)
≤
(
c1
c2

)
Multiplying with P yields

p11(Z1 − c1) ≤ 0

p21 (Z1 − c1)︸ ︷︷ ︸
≤0

+p22 (Z2 − c2)︸ ︷︷ ︸
≤0

≤ 0



Further issues

(i) Generalization of “familywise error rate”

FWE = Pr( At least one of the yh not contained in the JPR)

is generalized as

k−FWE = Pr( At least k of the yh not contained in the JPR)

I do not think such a generalization is very attractive in
empirical practice:

I Why should we ignore a (single) dramatic forecast failure?
I How to choose k?
I difficult to interpret



(ii) Is the bias correction really necessary‘?

I not often used it in practice
I bias is small O(T−1) relative to the forecast error Op(1)
I no SE and t-statistics for bias-corrected estimators
I White’s approximation is for AR(1)

(iii) How to generate bootstrap samples?

I As mentioned many possible ways to bootstrap (V)AR
processes

I It would be helpful to study the relative performance of
alternative approaches

I Since the estimation error is Op(T−1/2) and the forecast error
Op(1) is may be sufficient to simplify the bootstrap procedure
by just drawing from the forecast errors at least if T is large



Conclusion

I The paper is very well written and path breaking

I The (somewhat harsh) critique on the JM approach is sound
and justified

I the suggested approach is a benchmark difficult to improve
upon

I really great pleasure to read and comment the paper


