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General assessment

» fundamental problem in statistical inference
» here: joint prediction regions (JPR)

» Simple and robust bootstrap approach based on the
maximum statistic

» Most reliable procedure so far
» What is the "best JPR" ?

Pr{id, <Yrin<d/Vh=1,...,H=1-«
» uniform (balanced) boundaries (Anaolyev/Kosenok 2011)
Pr(d; < Yrip < d;r for he {1,--- ,H}) =1-a"

for o/H < a* < aand a* = 1 — (1 — )" for uncorrelated forecasts

» Remark 3.3 argues that the JPR is balanced



Simple example

Remark 2.1 considers the following example:

o= [a] = (3] o 7)

1. Projecting Scheffe’s region

Ui+ U ~ x5
U? + U3 <5.99

= Prob(U? < 5.99 and U35 < 5.99) = 0.9715

2. Bootstrap method of Staszewska-Bystrova (2010):

» Generate paths (U, Us) ~ N(0,1)

» Delete the 5% extreme paths measured by D = U? + U?
(here: D < 5.99)

» Compute the envelope of the paths



This method is equivalent to Scheffe's projections:
The envelope of U; is obtained by:

max(U;)? < 5.99 — (U3)?

Since U; may be arbitrarily close to 0, it follows max(U;)? — 5.99.

3. Rectangular region based on the maximum
(Wolf/Wunderli 2012)

» max(U?Z, U3) < di_, with probability 1 — a implies that
{U? < dio} | J{U3 < dio} withprob. 1 -«

= 0.95-quantile computed by simulation (= 2.24)

» Quantile can be determined by noting that

P(U? < d*) = v0.95 = 0.9747 = d* =2.2368



» If the distribution of Uz, Us is skewed a symmetric interval
(based on the max-statistic is not optimal

» Separate computation of lower and upper bounds:
Pr(max(Ul, Us) < {"_a;/z) —1-a/2
Pr(min(Ul, Uo) > df’i';p) =1-—qw/2

Example of an alternative statistic:

» the mean statistic:

(U1+U2)2 < 3.84
|Up + Ua| < 277
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» smaller region if both errors are positive
> larger region if errors have different sign

> Projection on axes yield very conservative JPR



4. The approach for of Jorda/Marcellino (2008)
Original limits: (note that /5.99 = 2.45)

{df(l - a)] \/Xh1-a/H {1.73]
=P
\/ X%—I,l—a/H

di(1— q) 1.73

Refined limits

di(1—a) X3i-a 1.96
p— P pr—
d;(1— ) VX3 1—a/2 1.73
» simulation results for

o) =2 ()l

» nominal confidence level: 0.95

=
=
N—



Table: Actual coverage rates for the JM limits

p: 0.8 0.4 0 -04 -0.8

original | 0.914 0.900 0.836 0.582 0.000
refined | 0.948 0.937 0.873 0.558 0.000

= similar findings in Wolf/Wunderli (2012)

Explanation of the results:

Limits for the orthogonalized random variables:

Z c
_ p-ly — 1) - (@
Z = ply = (Z)_(

Multiplying with P yields

pi1(Z1—c) <0
po1(Z1—c)+pn(fr—c) <0
<0
<0 <



Further issues

(i) Generalization of “familywise error rate”
FWE = Pr( At least one of the y, not contained in the JPR)
is generalized as

k—FWE = Pr( At least k of the yj, not contained in the JPR)

| do not think such a generalization is very attractive in
empirical practice:
» Why should we ignore a (single) dramatic forecast failure?
» How to choose k7
» difficult to interpret



(i) Is the bias correction really necessary'?

not often used it in practice

bias is small O(T ') relative to the forecast error O,(1)
no SE and t-statistics for bias-corrected estimators
White's approximation is for AR(1)
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(iii) How to generate bootstrap samples?

» As mentioned many possible ways to bootstrap (V)AR
processes

» It would be helpful to study the relative performance of
alternative approaches

» Since the estimation error is OP(T*I/Z) and the forecast error
Op(1) is may be sufficient to simplify the bootstrap procedure
by just drawing from the forecast errors at least if T is large



Conclusion

» The paper is very well written and path breaking

» The (somewhat harsh) critique on the JM approach is sound
and justified

» the suggested approach is a benchmark difficult to improve
upon

> really great pleasure to read and comment the paper



