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Summary of Paper

We extend large VAR literature to allow for time variation in
parameters (VAR coefficients and error covariance matrix)

Large TVP-VAR potentially over-parameterized, to deal with we
do:

Prior selection: degree of shrinkage selected automatically (and
in a time-varying manner)

Dynamic dimension selection (DDS): select dimension of
TVP-VAR in time-varying manner

Computational challenge over-come through use of forgetting
factor methods

Forgetting factors applied in a new way to allow for model
switching

Forecasting exercise using US data shows the approach works
well

Gary Koop, Dimitris Korobilis Large Time-Varying Parameter VARs



Large TVP-VARs

yt is vector containing observations on M time series variables
TVP-VAR is:

yt = Ztβt + εt

if zt is a vector containing an intercept and p lags of each of the M
variables, then

Zt =


z′t 0 · · · 0

0 z′t
. . .

...
...

. . .
. . . 0

0 · · · 0 z′t


Note Zt is M× k where k = M (1 + pM)
VAR coefficients evolve according to:

βt+1 = βt + ut

If M = 25, p = 4, then k = 2525
Thousands of VAR coefficients to estimate – and they are all
changing over time
εt is i.i.d. N (0,Σt) and ut is i.i.d. N (0,Qt).
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Forecasting with TVP-VARs Using Forgetting Factors

Computational problem: recursively forecasting with TVP-VARs is
hugely computationally demanding, even when VAR dimension is
small (MCMC methods required)

Forgetting factor approaches commonly used for estimating state
space models in the past, when computing power was limited

We use these (in a new context) to surmount computational
burden

Basic idea: if Σt and Qt, known then computation vastly simplified

Kalman filter and related methods for state space models can be
used (no MCMC)

Replace Σt and Qt by approximations

For Σt use Exponentially Weighted Moving Average (EWMA)
approximation (see paper for details)
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Some Technical Details on Forgetting Factor treatment
of Q

Let ys = (y1, .., ys)
′ denote observations through time s.

Kalman filter is standard tool for estimating state space models
such as TVP-VAR

Key steps in Kalman filtering involve the result:

βt−1|yt−1 ∼ N
(
βt−1|t−1,Vt−1|t−1

)
Formulae for βt−1|t−1 and Vt−1|t−1 are given in textbook sources.

Kalman filtering then proceeds using:

βt|yt−1 ∼ N
(
βt|t−1,Vt|t−1

)
where

Vt|t−1 = Vt−1|t−1 + Qt

This is only place where Qt appears.
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Replace by:

Vt|t−1 =
1
λ

Vt−1|t−1

λ is called a forgetting factor, 0 < λ ≤ 1.

Observations j periods in the past have weight λj in the
estimation of βt

λ usually set to number slightly less than one.

For quarterly macroeconomic data, λ = 0.99 implies observations
five years ago receive approximately 80% as much weight as last
period’s observation.

We also investigate estimating λ in a time varying manner.
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Model Selection Using Forgetting Factors

So far have discussed one single model

With many TVP regression models, Raftery et al (2010) develop
methods for dynamic model selection (DMS) or dynamic model
averaging (DMA)

Different model can be selected at each point in time in a
recursive forecasting exercise

Basic idea: suppose j = 1, .., J models.

DMA/DMS calculate πt|t−1,j: “probability that model j should be
used for forecasting at time t, given information through time
t− 1”

DMS: at each point in time forecast with model with highest
value for πt|t−1,j

Raftery et al (2010) develop a fast recursive algorithm, similar to
Kalman filter, using a forgetting factor for obtaining πt|t−1,j.
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Interpretation of forgetting factor α

Raftery’s approach implies:

πt|t−1,j =

t−1∏
i=1

[
pj
(
yt−i|yt−i−1)]αi

pj
(
yt|yt−1

)
is the predictive likelihood (i.e. the predictive density

for model j evaluated at yt), produced by the Kalman filter

Model j will receive more weight at time t if it has forecast well in
the recent past

Interpretation of “recent past” is controlled by the forgetting
factor, α

α = 0.99: forecast performance five years ago receives 80% as
much weight as forecast performance last period

α = 0.95: forecast performance five years ago receives only about
35% as much weight.

α = 1: can show πt|t−1,k is proportional to the marginal likelihood
using data through time t− 1 (standard BMA)
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Model Selection Among Priors

We use DMS approach of Rafery et al (2010), but in a different
way

Consider set of models defined by different priors

Use popular Minnesota prior written as depending on one
shrinkage parameter γ

Consider grid of values for γ and use DMS to select optimal value
at each point in time
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Model Selection Among TVP-VARs of Different
Dimension

Use DMS approach over three models: a small, medium and large
TVP-VAR.

Small: contains variables we want to forecast (GDP growth,
inflation and interest rates)

Medium: variables in small model plus four others suggested by
DSGE literature

Large: variables in medium model plus 18 others often used to
forecast inflation or output growth

Note: pj
(
yt−i|yt−i−1

)
, plays the key role in DMS.

We use predictive likelihood for the 3 variables in the small model
(common to all approaches)
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Empirical Results: Data and Modelling Issues

25 major quarterly US macroeconomic variables, 1959:Q1 to
2010:Q2.

Following, e.g., Stock and Watson (2008) and recommendations
in Carriero, Clark and Marcellino (2011) we transform all
variables to stationarity.

We use a lag length of 4.

Time-variation in the VAR coefficients: λ = 0.99.

Degree of model switching: α = 0.99.

EWMA discount factor, controls the volatility, κ = 0.96.
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Other Models Used for Comparison

TVP-VARs of each dimension, with no DDS being done.

Time-varying forgetting factor versions of the TVP-VARs.

VARs of each dimension

Homoskedastic versions of each VAR.

Random walk forecasts (labelled RW)

A small VAR estimated using OLS methods
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Evidence of Model Change

Next figure shows probabilities DDS produces for TVP-VARs of
different dimensions

DDS will choose model with highest probability

Lots of evidence for dimension switching

Small TVP-VAR used to forecast mostly from 1990-2007

Large TVP-VAR typically used in 1980s

Medium TVP-VAR in early 1970s

Similar evidence of model switching for shrinkage parameter (see
paper)
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Forecast Comparison

Iterated forecasts for horizons of up to two years (h = 1, ..,8)
Forecast evaluation period of 1970Q1 through 2010Q2.
Note: with iterated forecasts for h > 1 predictive simulation is
required
We do this in two ways.
1. VAR coefficients which hold at T used to forecast at T + h
(βT+h = βT)
2. βT+h ∼ RW simulates from random walk state equation to
produce draws of βT+h.
Both ways provide us with βT+h, we simulate draws of yT+h
conditional on βT+h to approximate the predictive density.
Measures of forecast performance:
Mean squared forecast errors (MSFEs) — evaluate quality of
point forecasts
Sums of log predictive likelihoods: use the joint predictive
likelihood for these three variables – evaluate quality of entire
predictive distribution
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Summary of Results for Predictive Likelihoods

MSFE results (see paper)

MSFE story: TVP-VAR-DDS is forecasting better than simple
benchmarks or VARs/TVP-VARs of fixed dimension

Table 4 presents sums of log predictive likelihoods for a specific
model minus that of TVP-VAR-DDS

Negative numbers indicate our approach is forecasting better

Almost all of these numbers are negative (reinforces story told by
MSFEs)

At h = 1, TVP-VAR-DDS forecasts best by considerable margin and
at other horizons beats other TVP-VAR approaches.
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One difference between predictive likelihood and MSFE results:

Importance of allowing for heteroskedastic errors is more evident

It is key in getting the shape of the predictive density correct

Heteroskedastic VAR exhibits best forecast performance at some
horizons for some variables.

But dimensionality of best heteroskedastic VAR differs across
horizons (sometimes small VAR best, other times large)

Message: even when researcher is using a VAR (instead of a
TVP-VAR), DDS still might be useful where there is uncertainty
over dimension of VAR.
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Table 4a: Relative Predictive Likelihoods, Total (all 3 variables)

h = 1 h = 2 h = 4 h = 8
FULL MODEL

TVP-VAR-DDS, λ = 0.99, βT+h = βT 0.84 0.91 4.03 4.11
TVP-VAR-DDS, λ = 0.99, βT+h ∼ RW 0.00 0.00 0.00 0.00

SMALL VAR
TVP-VAR, λ = 0.99, βT+h = βT -6.71 4.62 -2.72 0.68
TVP-VAR, λ = λt, βT+h = βT -7.47 2.15 -3.72 -3.63
TVP-VAR, λ = 0.99, βT+h ∼ RW -5.95 4.84 -2.56 -3.32
TVP-VAR, λ = λt, βT+h ∼ RW -4.77 3.70 -0.68 3.36
VAR, heteroskedastic -6.18 6.86 1.57 9.11
VAR, homoskedastic -47.44 -29.97 -22.87 -15.93

MEDIUM VAR
TVP-VAR, λ = 0.99, βT+h = βT -23.55 0.79 2.84 9.27
TVP-VAR, λ = λt, βT+h = βT -30.24 -6.10 0.05 10.68
TVP-VAR, λ = 0.99, βT+h ∼ RW -23.22 -0.09 -0.54 9.80
TVP-VAR, λ = λt, βT+h ∼ RW -20.69 0.68 1.62 4.87
VAR, heteroskedastic -20.89 1.08 8.39 14.52
VAR, homoskedastic -58.28 -31.86 -21.09 -10.65
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Table 4b: Relative Predictive Likelihoods, Total (all 3 variables)

h = 1 h = 2 h = 4 h = 8
LARGE VAR

TVP-VAR, λ = 0.99, βT+h = βT -18.16 -7.81 -1.32 8.33
TVP-VAR, λ = λt, βT+h = βT -21.96 -12.99 -10.61 -2.82
TVP-VAR, λ = 0.99, βT+h ∼ RW -16.14 -8.25 -2.45 2.93
TVP-VAR, λ = λt, βT+h ∼ RW -16.24 -5.20 -0.41 1.82
VAR, heteroskedastic -17.30 -1.63 8.46 13.24
VAR, homoskedastic -50.33 -37.35 -28.60 -20.50

BENCHMARK MODELS

RW - - - -
Small VAR OLS -52.94 -40.42 -52.48 -49.35
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Conclusions

We have developed method for forecasting with large TVP-VARs
using forgetting factors.

Forgetting factors useful in 3 ways

1. Computationally feasible forecasting within a single TVP-VAR
model.

2. Dynamic prior selection where degree of shrinkage estimated
in a time-varying fashion.

3. Dynamic dimension selection : TVP-VAR dimension may
change over time.

Empirical work: forecasting US inflation, GDP growth and
interest rates

Small, medium and large TVP-VARs and VARs

We find moderate improvements in forecast performance over
other VAR or TVP-VAR approaches.
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