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Summary of Paper

@ We extend large VAR literature to allow for time variation in
parameters (VAR coefficients and error covariance matrix)

@ Large TVP-VAR potentially over-parameterized, to deal with we
do:

@ Prior selection: degree of shrinkage selected automatically (and
in a time-varying manner)

@ Dynamic dimension selection (DDS): select dimension of
TVP-VAR in time-varying manner

@ Computational challenge over-come through use of forgetting
factor methods

@ Forgetting factors applied in a new way to allow for model
switching

@ Forecasting exercise using US data shows the approach works
well
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Large TVP-VARs

@ y, is vector containing observations on M time series variables

TVP-VAR is:

Ye=ZfB + &
if z, is a vector containing an intercept and p lags of each of the M
variables, then

z 0 0

/

Z, — 0 =
: . 0

Note Z; is M x k where k = M (1 + pM)
VAR coefficients evolve according to:

Beyr = Be + U

If M = 25, p = 4, then k = 2525

Thousands of VAR coefficients to estimate — and they are all
changing over time

g isiid. N(0,3;) and u, is i.i.d. N (0, Q).
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Forecasting with TVP-VARs Using Forgetting Factors

@ Computational problem: recursively forecasting with TVP-VARs is
hugely computationally demanding, even when VAR dimension is
small (MCMC methods required)

o Forgetting factor approaches commonly used for estimating state
space models in the past, when computing power was limited

@ We use these (in a new context) to surmount computational
burden

@ Basicidea: if ¥; and Q;, known then computation vastly simplified

@ Kalman filter and related methods for state space models can be
used (no MCMC)

@ Replace X; and Q; by approximations

@ For >, use Exponentially Weighted Moving Average (EWMA)
approximation (see paper for details)
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Some Technical Details on Forgetting Factor treatment

of Q

@ Lety’ = (y1,..,ys)’ denote observations through time s.

@ Kalman filter is standard tool for estimating state space models
such as TVP-VAR

@ Key steps in Kalman filtering involve the result:

Be-1 b’Fl ~N (Bt—l\t—la Vt—1|t—1)

@ Formulae for Be-1j¢—1 and V,_q.; are given in textbook sources.
@ Kalman filtering then proceeds using:

5tb’t_1 ~N (ﬁt\t—lv Vt|t—1>

@ where
Vije—1 = Vieqpe—1 + Qe

@ This is only place where Q; appears.
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@ Replace by:

1
A
@ ) is called a forgetting factor, 0 < A < 1.

Vt|t—1 = Vt—l\t—l

@ Observations j periods in the past have weight X in the
estimation of 3,

@ ) usually set to number slightly less than one.

@ For quarterly macroeconomic data, A = 0.99 implies observations
five years ago receive approximately 80% as much weight as last
period’s observation.

@ We also investigate estimating A in a time varying manner.
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Model Selection Using Forgetting Factors

@ So far have discussed one single model

@ With many TVP regression models, Raftery et al (2010) develop
methods for dynamic model selection (DMS) or dynamic model
averaging (DMA)

@ Different model can be selected at each point in time in a
recursive forecasting exercise

@ Basic idea: suppose j = 1, ..,J models.

@ DMA/DMS calculate 7,1 j: “probability that model j should be
used for forecasting at time t, given information through time
t _ 177

@ DMS: at each point in time forecast with model with highest
value for my,_1

@ Raftery et al (2010) develop a fast recursive algorithm, similar to
Kalman filter, using a forgetting factor for obtaining 7,1 ;.
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@ Interpretation of forgetting factor «
@ Raftery’s approach implies:

t—1

roe s = [ 1oy O]

i=1
® pj (vely'™!) is the predictive likelihood (i.e. the predictive density
for model j evaluated at y,), produced by the Kalman filter

@ Model j will receive more weight at time t if it has forecast well in
the recent past

o Interpretation of “recent past” is controlled by the forgetting
factor, «

@ a = 0.99: forecast performance five years ago receives 80% as
much weight as forecast performance last period

@ «a = 0.95: forecast performance five years ago receives only about
35% as much weight.

@ o = 1: can show my,_  is proportional to the marginal likelihood
using data through time t — 1 (standard BMA)
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Model Selection Among Priors

@ We use DMS approach of Rafery et al (2010), but in a different
way

@ Consider set of models defined by different priors

@ Use popular Minnesota prior written as depending on one
shrinkage parameter -y

o Consider grid of values for v and use DMS to select optimal value
at each point in time
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Model Selection Among TVP-VARs of Different

Dimension

@ Use DMS approach over three models: a small, medium and large
TVP-VAR.

@ Small: contains variables we want to forecast (GDP growth,
inflation and interest rates)

@ Medium: variables in small model plus four others suggested by
DSGE literature

@ Large: variables in medium model plus 18 others often used to
forecast inflation or output growth

@ Note: pj (ye—ily" =), plays the key role in DMS.

@ We use predictive likelihood for the 3 variables in the small model
(common to all approaches)
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Empirical Results: Data and Modelling Issues

@ 25 major quarterly US macroeconomic variables, 1959:Q1 to
2010:Q2.

@ Following, e.g., Stock and Watson (2008) and recommendations
in Carriero, Clark and Marcellino (2011) we transform all
variables to stationarity.

We use a lag length of 4.

Time-variation in the VAR coefficients: A = 0.99.
Degree of model switching: o = 0.99.

EWMA discount factor, controls the volatility, x = 0.96.
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Other Models Used for Comparison

TVP-VARs of each dimension, with no DDS being done.
Time-varying forgetting factor versions of the TVP-VARs.

Homoskedastic versions of each VAR.
Random walk forecasts (labelled RW)

°
°

@ VARs of each dimension

(]

°

@ A small VAR estimated using OLS methods
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Evidence of Model Change

@ Next figure shows probabilities DDS produces for TVP-VARs of
different dimensions

DDS will choose model with highest probability

Lots of evidence for dimension switching

Small TVP-VAR used to forecast mostly from 1990-2007
Large TVP-VAR typically used in 1980s

Medium TVP-VAR in early 1970s

Similar evidence of model switching for shrinkage parameter (see
paper)
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Time-v ary ing probabilities of small/medium/large TVP-VARs
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Forecast Comparison

o Iterated forecasts for horizons of up to two years (h = 1, ..,8)
@ Forecast evaluation period of 1970Q1 through 2010Q2.
@ Note: with iterated forecasts for h > 1 predictive simulation is

required
We do this in two ways.

@ 1. VAR coefficients which hold at T used to forecast at T + h

(Bryn = Br)

2. Bryp ~ RW simulates from random walk state equation to
produce draws of 3r, .

Both ways provide us with 3, ,, we simulate draws of y7,
conditional on 31, to approximate the predictive density.

@ Measures of forecast performance:
@ Mean squared forecast errors (MSFEs) — evaluate quality of

point forecasts

Sums of log predictive likelihoods: use the joint predictive
likelihood for these three variables — evaluate quality of entire
predictive distribution
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Summary of Results for Predictive Likelihoods

@ MSEFE results (see paper)

@ MSFE story: TVP-VAR-DDS is forecasting better than simple
benchmarks or VARs/TVP-VARs of fixed dimension

@ Table 4 presents sums of log predictive likelihoods for a specific
model minus that of TVP-VAR-DDS

@ Negative numbers indicate our approach is forecasting better

@ Almost all of these numbers are negative (reinforces story told by
MSFEs)

@ At h =1, TVP-VAR-DDS forecasts best by considerable margin and
at other horizons beats other TVP-VAR approaches.
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@ One difference between predictive likelihood and MSFE results:
@ Importance of allowing for heteroskedastic errors is more evident
@ It is key in getting the shape of the predictive density correct

@ Heteroskedastic VAR exhibits best forecast performance at some
horizons for some variables.

@ But dimensionality of best heteroskedastic VAR differs across
horizons (sometimes small VAR best, other times large)

@ Message: even when researcher is using a VAR (instead of a
TVP-VAR), DDS still might be useful where there is uncertainty
over dimension of VAR.
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Table 4a: Relative Predictive Likelihoods, Total (all 3 variables)

h=1

FuLL MODEL
TVPVAR-DDS, A = 0.99, ;. = B,  0.84
TVP-VAR-DDS, A = 0.99, ;.4 ~RW  0.00

SMALL VAR
TVP-VAR, A = 0.99, B, = ¢ -6.71
TVPVAR, A = X, Bryp, = Br -7.47
TVPVAR, A = 0.99, By, ~ RW -5.95
TVPVAR, A = X, By,4 ~ RW -4.77
VAR, heteroskedastic -6.18
VAR, homoskedastic -47.44

MEDIUM VAR
TVPVAR, A = 0.99, B, = fr -23.55
TVPVAR, A = A, B, = By -30.24
TVPVAR, A = 0.99, 31, ~RW -23.22
TVPVAR, A = A, B, ~ RW -20.69
VAR, heteroskedastic -20.89
VAR, homoskedastic -58.28

h=2

0.91
0.00

4.62
2.15
4.84
3.70
6.86
-29.97

0.79
-6.10
-0.09
0.68
1.08
-31.86

h=4

4.03
0.00

-2.72
-3.72
-2.56
-0.68
1.57
-22.87

2.84
0.05
-0.54
1.62
8.39
-21.09

4.11
0.00

0.68
-3.63
-3.32
3.36
9.11
-15.93

9.27
10.68
9.80
4.87
14.52
-10.65
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Table 4b: Relative Predictive Likelihoods, Total (all 3 variables)
h=1 h=2 h=4 h=8

LARGE VAR
TVPVAR, A = 0.99, 8, = By -18.16  -7.81 -1.32 8.33
TVPVAR, A = N, By = By -21.96 -12.99 -10.61 -2.82

TVPVAR, A = 0.99,3;,, ~RW -16.14 -8.25 -2.45 2.93
TVPVAR, A\ = A, B4y ~ RW -16.24  -5.20 -0.41 1.82

VAR, heteroskedastic -17.30  -1.63 8.46 13.24
VAR, homoskedastic -50.33 -37.35 -28.60 -20.50
BENCHMARK MODELS

RW - - - -
Small VAR OLS -52.94 -40.42 -52.48 -49.35
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Conclusions

@ We have developed method for forecasting with large TVP-VARs
using forgetting factors.

@ Forgetting factors useful in 3 ways

o 1. Computationally feasible forecasting within a single TVP-VAR
model.

@ 2. Dynamic prior selection where degree of shrinkage estimated
in a time-varying fashion.

@ 3. Dynamic dimension selection : TVP-VAR dimension may
change over time.

@ Empirical work: forecasting US inflation, GDP growth and
interest rates
@ Small, medium and large TVP-VARs and VARs

@ We find moderate improvements in forecast performance over
other VAR or TVP-VAR approaches.
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