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Probabilistic forecasts versus point forecasts

there is a growing, trans-disciplinary concensus that

forecasts ought to be probabilistic in nature, taking the form of

probability distributions over future quantities and events

however, many applications require a point forecast, x, for a

future quantity with realizing value, y

in a nutshell, I contend that in making and evaluating point

forecasts, it is critical that the point forecasts

• derive from probabilistic forecasts, and

• are evaluated in decision theoretically principled ways

indeed, as argued by Pesaran and Skouras (2002), the decision-

theoretic approach provides a unifying framework for the eval-

uation of both probabilistic and point forecasts



How point forecasts are commonly assessed

many applications require a point forecast, x, for a future real-

valued or positive quantity with realizing value, y

various forecasters or forecasting methods m = 1, . . . , M compete

they issue point forecasts xmn with realizing values yn, at a finite

set of times, locations or instances n = 1, . . . , N

the forecasters are assessed and ranked by the mean score

S̄m =
1

N

N
∑

n=1

S(xmn, yn)

for m = 1, . . . , M , where

S : R × R → [0,∞) or S : (0,∞) × (0,∞) → [0,∞)

is a scoring function, generally satisfying regularity conditions

(S0) S(x, y) ≥ 0 with equality if x = y

(S1) S(x, y) is continuous in x

(S2) The partial derivative ∂xS(x, y) exists and is continuous if y 6= x



Some frequently used scoring functions

often, not just one but a whole set of scoring functions is used

to compare and rank competing forecasting methods

the following are among the most commonly used for a positive

quantity

S(x, y) = (x − y)2 squared error (SE)

S(x, y) = |x − y| absolute error (AE)

S(x, y) = |(x − y)/y| absolute percentage error (APE)

S(x, y) = |(x − y)/x| relative error (RE)

according to surveys, organizations and businesses commonly

use the SE, AE and, in particular, the APE

SE AE APE

Carbone and Armstrong (1982) 27% 19% 9%

Mentzner and Kahn (1995) 10% 25% 52%

McCarthy et al. (2006) 6% 20% 45%

Fildes and Goodwin (2007) 9% 36% 44%



Use of scoring functions in the journal literature in 2008

Total FP SE AE APE MSC

Group I: Forecasting

Int J Forecasting 41 32 21 10 8 4
J Forecasting 39 25 23 13 5 3

Group II: Statistics

Ann Appl Stat 62 8 6 3 1 0
Ann Stat 100 5 3 2 0 0
J Am Stat Assoc 129 10 9 1 0 0
J Roy Stat Soc Ser B 49 5 4 1 0 0

Group III: Econometrics

J Bus Econ Stat 26 9 8 2 1 0
J Econometrics 118 5 5 0 0 0

Group IV: Meteorology

Bull Am Meteor Soc 73 1 1 0 0 0
Mon Wea Rev 300 63 58 8 2 0
Q J Roy Meteor Soc 148 19 19 0 0 0
Wea Forecasting 79 26 20 11 0 1



What scoring function(s) ought to be used in practice?

arguably, there is considerable contention about the choice of a

scoring function or error measure

Murphy and Winkler (1987):

“verification measures have tended to proliferate, with relatively little
effort being made to develop general concepts and principles [. . . ]
This state of affairs has impacted the development of a science of
forecast verification.”

Fildes (2008):

“Defining the basic requirements of a good error measure is still a
controversial issue.”

Bowsher and Meeks (2008):

“It is now widely recognized that when comparing forecasting mod-
els [. . . ] no close relationship is guaranteed between model evalua-
tions based on conventional error-based measures such as [squared
error] and those based on the ex post realized profit (or utility) from
using each model’s forecasts to solve a given economic decision or
trading problem. Leitch and Tanner (1993) made just this point in
the context of interest rate forecasting.”



Simulation study: Forecasting a highly volatile asset price

we seek to predict a highly volatile asset price, yt

in this simulation study, yt is a realization of the random variable

Yt = Z2
t ,

where Zt follows a GARCH time series model, namely,

Zt ∼ N (0, σ2
t ) where σ2

t = 0.20Z2
t−1 + 0.75σ2

t−1 + 0.05

we consider three competing forecasters issuing one-step ahead

point predictions of the asset price

• the statistician is aware of the data-generating mechanism

and issues the true conditional mean,

x̂t = E(Yt) = E(Z2
t ) = σ2

t

as point forecast� the optimist always issues ^xt = 5� the pessimist always issues ^xt = 0:05
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Simulation study: Forecasting a highly volatile asset price
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Simulation study: Forecasting a highly volatile asset price

we evaluate and rank the three competing forecasters, namely

the statistician, the optimist and the pessimist, by their mean

scores, which are averaged over 100,000 one-step ahead point

forecasts

Forecaster SE AE APE RE

Statistician 5.07 0.97 2.58 0.97

Optimist 22.73 4.35 13.96 0.87

Pessimist 7.61 0.96 0.14 19.24

(APE to be multiplied by 105)



What does the literature say?

Engelbert, Manski and Williams (2008):

“Our concern is prediction of real-valued outcomes such as firm profit,
GDP, growth, or temperature. In these cases, the users of point pre-
dictions sometimes presume that forecasters report the means of their
subjective probability distributions; that is, their best point predictions
under square loss. However, forecasters are not specifically asked to
report subjective means. Nor are they asked to report subjective me-
dians or modes, which are best predictors under other loss functions.
Instead, they are simply asked to ‘predict’ the outcome or to provide
their ‘best prediction’, without definition of the word ‘best.’ In the
absence of explicit guidance, forecasters may report different
distributional features as their point predictions.”

Murphy and Daan (1985):

“It will be assumed here that the forecasters receive a ‘directive’
concerning the procedure to be followed [. . . ] and that it is desir-
able to choose an evaluation measure that is consistent with this
concept. An example may help to illustrate this concept. Consider
a continuous [. . . ] predictand, and suppose that the directive states
‘forecast the expected (or mean) value of the variable.’ In this situa-
tion, the mean square error measure would be an appropriate scoring
rule, since it is minimized by forecasting the mean of the (judgemental)
probability distribution.”



Resolving the puzzle:

Point forecasters need ‘guidance’ or ‘directives’

requesting ‘some’ point forecast, and then evaluating forecasters

by using ‘some’ (set of) scoring functions, as is common practice

in the literature, is not a meaningful endeavor

rather, point forecasters need ‘guidance’ or ’directives’

First option

inform forecasters ex ante about the scoring function(s) to be

employed, and allow them to tailor the point forecast to the

scoring function

Second option

request a specific functional of the forecaster’s predictive distri-

bution, such as the mean or a quantile



First option: Specify scoring function ex ante

inform forecasters ex ante about the scoring function(s) to be

employed to assess their work, and allow them to tailor the point

forecast to the scoring function

this permits the statistically literate forecaster to mutate into

Mr. Bayes, that is, to issue the Bayes predictor,

x̂ = argminx EF [S(x, Y )]

as her point forecast, where the expectation is taken with respect

to the forecaster’s (subjective or objective) predictive distribu-

tion, F

for example, if S is the squared error scoring function (SE), the

Bayes predictor is the mean of the predictive distribution

if S is the absolute error scoring function (AE), the Bayes pre-

dictor is any median of the predictive distribution



Simulation study: Forecasting a highly volatile asset price

we consider the aforementioned point forecasters, namely Mr. Bayes,

the statistician, the optimist, and the pessimist

Mr. Bayes employs the Bayes rule or optimal point forecast

Scoring Function Bayes Rule Simulation Study

SE x̂ = mean(F ) σ2
t

AE x̂ = median(F ) 0.455σ2
t

APE x̂ = med(−1)(F ) ε

RE x̂ = med(1)(F ) 2.366σ2
t

Mr. Bayes dominates his competitors

Forecaster SE AE APE RE

Mr. Bayes 5.07 0.86 < 0.01 0.75

Statistician 5.07 0.97 2.58 0.97

Optimist 22.73 4.35 13.96 0.87

Pessimist 7.61 0.96 0.14 19.24



Second option: Specify functional ex ante

Consistency and elicitability

request a specific functional, T(F), of the forecaster’s predictive

distribution, F , such as the mean or a quantile

and apply any scoring function that is consistent for the func-

tional T, in the sense that

EF [S(T(F), Y )] ≤ EF [S(x, Y )]

for all x, with the natural interpretation when T is set-valued

a consistent scoring function is a special case of a proper scor-

ing rule for probabilistic forecasts

a functional is elicitable if there exists a scoring function that is

strictly consistent for it, in the sense that equality holds if, and

only if, x = T(F)

not all functionals are elicitable, for example, the variance and

the conditional value-at-risk (CVaR) functionals are not



Osband’s principle

given an elicitable functional T, can we characterize the class

of the scoring functions S that are consistent for it?

Osband (1985) argued that if there exists an identification func-

tion V such that

EF [V(x, Y )] = 0 ⇐⇒ x = T(F)

and the consistent scoring function S is smooth in its first argu-

ment, then

S(1)(x, y) = h(x)V(x, y)

with some (typically) strictly positive function h

frequently, we can integrate with respect to x to obtain the gen-

eral form of a scoring rule S that is consistent for T

see the examples below, in which the functional T is a mean, a

ratio of expectations, a quantile or an expectile



Mean functional

the mean functional is elicitable, and the scoring functions that

are consistent for it are of the Bregman form

S(x, y) = φ(y) − φ(x) − φ′(x)(y − x),

where φ is convex with subgradient φ′

an important special case is that of a probability forecast x =

p = E[Y ] for a binary event Y that realizes as y = 0 or y = 1

implying that proper scoring rules for probability forecasts are

also of the Bregman form

for example, if φ(x) = x2 we obtain the squared error (SE) or

Brier scoring function, namely S(x, y) = (x − y)2

rich history: Brier (1950), McCarthy (1956), Shuford, Albert

and Massengil (1966), Savage (1971), Reichelstein and Osband

(1984), Banerjee, Guo and Wang (2005)



Ratios of expectations functional

the ratio of expectations functional

T(F) =
EF [r(Y )]

EF [s(Y )]
,

where r and s are sufficiently regular and s is strictly positive, is

elicitable

the scoring functions that are consistent for the ratio of expec-

tations functional are of the form

S(x, y) = s(y)(φ(y)−φ(x))−φ′(x)(r(y)−xs(y))+φ′(y)(r(y)−ys(y))

where φ is convex with subgradient φ′

if r(y) = y and s(y) ≡ 1, we recover the above classical case of

the mean functional



Quantiles

the α-quantile functional (0 < α < 1) is elicitable, and the scor-

ing functions that are consistent for it are of the generalized

piecewise linear (GPL) form

S(x, y) =

{

α (g(y) − g(x)) if x ≤ y

(1 − α) (g(x) − g(y)) if x ≥ y

where g is nondecreasing

for example, if g(x) = x we obtain the asymmetric piecewise

linear scoring function,

S(x, y) =

{

α |x − y| if x ≤ y

(1 − α) |x − y| if x ≥ y

which includes the absolute error scoring function (AE) in the

special case α = 1
2

history: Thomson (1979), Saerens (2000), Cervera and Muñoz

(1996), Gneiting and Raftery (2007), Jose and Winkler (2009)



Expectiles

Newey and Powell (1987) introduced the τ -expectile functional

(0 < τ < 1) of a probability measure F with finite mean as the

unique solution x = µτ to the equation

τ
∫ ∞

x
(y − x) dF(y) = (1 − τ)

∫ x

−∞
(x − y) dF(y)

the τ -expectile functional is elicitable, and the scoring functions

that are consistent for it are of the form

S(x, y) =

{

τ (φ(y) − φ(x) − φ′(x)(y − x)) if x ≤ y

(1 − τ) (φ(y) − φ(x) − φ′(x)(y − x)) if x ≥ y

where φ is convex with subgradient φ′

for example, if φ(x) = x2 we obtain the asymmetric piecewise

quadratic scoring function

these scoring functions combine key characteristics of the Breg-

man and GPL families



Consistent scoring functions as proper scoring rules

at this point, we return to probabilistic forecasts

if F denote a class of probabilistic forecasts on R, a proper scoring

rule is any function

R : F × R → R

such that

EF R(F, Y ) ≤ EF R(G, Y ) for all F, G ∈ F ,

with the logarithmic score and the continuous ranked proba-

bility score being key examples

any consistent scoring function induces a proper scoring rule, as

follows: if the scoring function

S : R × R → [0,∞)

is consistent for the functional T, the relationship

R : F × R −→ [0,∞), (F, y) 7−→ R(F, y) = S(T(F), y)

defines a proper scoring rule



Discussion: Theoretical perspectives

motivating challenge: methods for forecast evaluation need to

be decision theoretically coherent, so that we avoid pathologies

and paradoxes

in particular, scoring rules for probabilistic forecasts ought to

be proper, and scoring functions for point forecasts ought to

be consistent for the target functional at hand

here, we have characterized the loss (or scoring) functions that

lead to the mean, ratios of expectations, quantiles, and ex-

pectiles as the Bayes rule or optimal point forecast and thus

are consistent for these functionals

pioneering works on the critical notions of consistency and elic-

itability include those of Savage (1971), Thomson (1979) and

Osband (1985)



Discussion: A puzzle in economic forecast evaluation

Bowsher and Meeks (2008):

“It is now widely recognized that when comparing forecasting mod-
els [. . . ] no close relationship is guaranteed between model evalua-
tions based on conventional error-based measures such as [squared
error] and those based on the ex post realized profit (or utility) from
using each model’s forecasts to solve a given economic decision or
trading problem. Leitch and Tanner (1993) made just this point in
the context of interest rate forecasting.”

despite being widely recognized, these are counterintuitive and

disconcerting observations

I contend that they stem from misguided forecast evaluation tech-

niques and disappear when point forecasts are derived from prob-

abilistic forecasts and assessed in decision theoretically princi-

pled ways



Discussion: A puzzle in economic forecast evaluation

our student Sam Dörken has made an attempt to replicate and

extend the study of Leitch and Tanner (1993), using decision

theoretically principled methods

DA AE SE A B C D

DA — 0.41 0.45 0.75 0.57 0.65 0.69

AE 0.41 — 0.97 0.37 0.41 0.48 0.59

SE 0.45 0.97 — 0.45 0.48 0.56 0.65

Profit Rule A 0.75 0.37 0.45 — 0.82 0.86 0.85

Profit Rule B 0.57 0.41 0.48 0.82 — 0.89 0.80

Profit Rule C 0.65 0.48 0.56 0.86 0.89 – 0.94

Profit Rule D 0.69 0.59 0.65 0.85 0.80 0.94 —

absolute correlation between evaluations using various mean scores for 1982
to 1996, treating each forecast horizon separately

in this experiment, the correlations are substantial, contrary to

what Leitch and Tanner (1993) observed



Discussion: Economic perspectives

principled decision making requires full predictive distributions

rather than just point forecasts

in making and evaluating point forecasts, it is critical that

the point forecasts derive from probabilistic forecasts, and are

evaluated in decision theoretically principled ways, using scoring

functions that are consistent for an elicitable target functional

not all functionals are elicitable

in particular, conditional value-at-risk (CVaR) is not elicitable

and thus may not be the ideal risk measure in the revision of the

Basel protocol for banking regulations
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