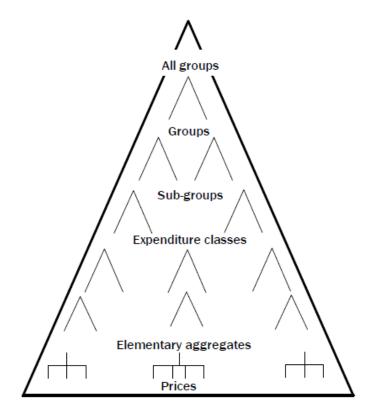


Making Greater Use of Transactions Data to compile the Australian CPI

Presented by:
Marcel van Kints
Prices Branch Program Manager

Background

- ABS in a transformation environment seeking ways to utilise 'big data' for compilation of economic statistics
- Enhancing the Australian CPI: a roadmap (ABS 2015) sets out four research priorities
 - Frequency of weight updates
 - Transactions/scanner data
 - Monthly CPI
 - Other enhancements
- Transactions data contains detailed information about individual transactions, date, quantities, product descriptions, and values of products sold

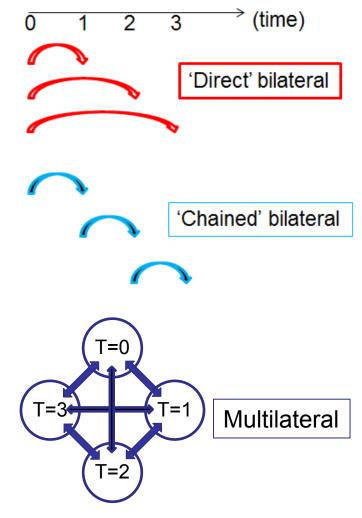


Background

- Transactions data used to compile ~ 25% of CPI
- Stock keeping unit (SKU) defines a product
- Current method directly replaces field collected prices with unit values derived from transactions data within elementary aggregates (Jevons formula)
- Quality benefits: average unit value, increased respondent coverage, informed sampling choices
- Cost benefits: less labour intensive

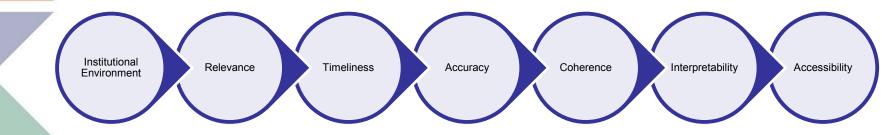
Multilateral methods

- While the current method is a significant improvement for the CPI, further enhancements are possible. These enhancements include:
 - Using census of products
 - Weighting prices at the product level
 - Automated processes
- ABS (2016) undertook research into a selection of multilateral and extension methods. This presentation will cover:
 - Key findings of ABS (2016)
 - Feedback received from users
 - Subsequent research toward a recommendation for the Australian CPI



Multilateral methods

- One option the ABS has considered is a weighted bilateral index formula (e.g. Törnqvist, Fisher)
- Could use 'direct' or 'chained' weighted bilateral indexes
- Dynamic nature of transactions data can make these methods perform badly
- 'Direct' bilateral indexes suffer from a 'matching' problem (i.e. item attrition)
- 'Chained' bilateral indexes suffer from a 'chain drift' problem
- Multilateral methods a solution to these issues



Multilateral methods

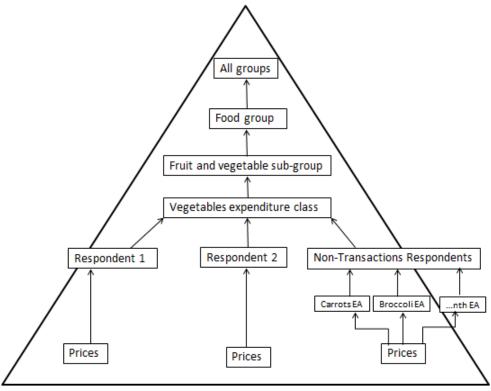
- Four multilateral methods:
 - 1. Gini, Eltetö and Köves, and Szulc (GEKS-Törnqvist)
 - Weighted Time Product Dummy (TPD)
 - 3. Geary-Khamis (GK)
 - 4. Quality Adjusted Unit Value using TPD (QAUV_TPD)
- Results in this presentation focus on GEKS-Törnqvist and TPD
- The ABS Data Quality Framework (ABS 2009) used to guide choice of multilateral method

Extension methods

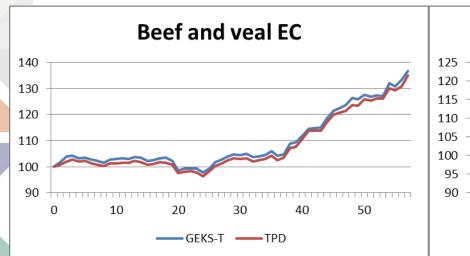
- When a multilateral method is extended an additional period, previous price movements are revised
- To deal with this revisions problem, the ABS is researching a selection of extension methods
- These extension methods tested are characterised as:
 - 1. Rolling window approaches (Ivancic, Diewert and Fox 2011, Krsinich 2016, de Haan 2015)
 - 2. Direct annual extension (Chessa 2016)
- Window size of 2 years + 1 period (i.e. 25 months, 9 quarters) for rolling window extension methods

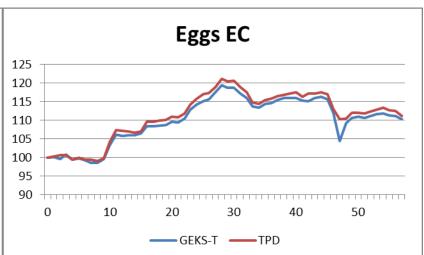
Framework for assessing methods

	Criterion	Considerations	Quality dimensions
	Resources	Facilitates automation? Makes good use of information?	Institutional Environment, Timeliness
	Theoretical properties	Axiomatic and economic approaches to index numbers	Accuracy
	Transitivity	Risk of drift over time	Accuracy, Coherence
	Characteristicity	Relevance of bilateral price comparisons to periods at hand	Accuracy, Relevance
	Flexibility	Scope for adaptation for new products or data sources	Coherence, Institutional Environment
	Interpretability	Ease of understanding method in general and price movements it calculates	Interpretability

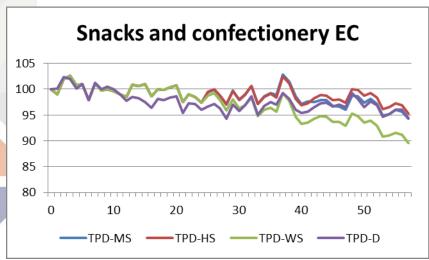


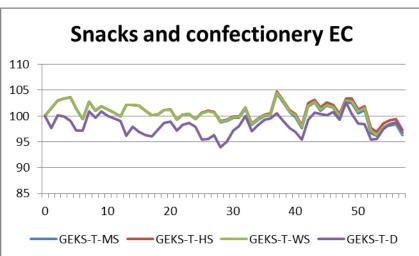
- Modified aggregation structure than traditional CPI
- Price aggregation directly to EC level for each respondent
- Respondents weighted by market share to produce published level indexes



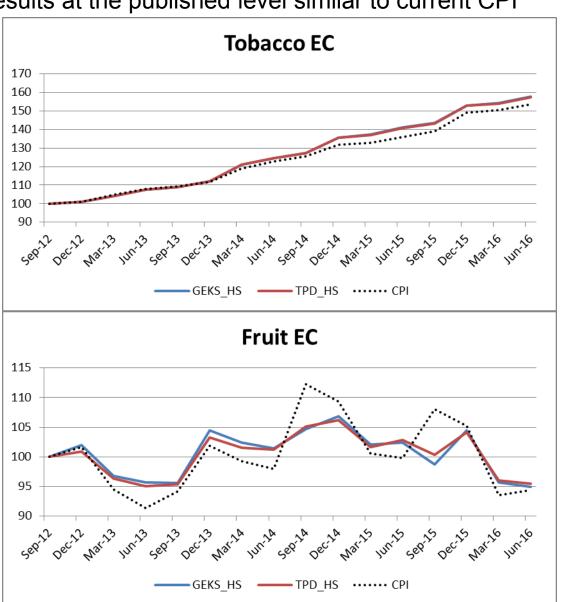


- All multilateral methods produced similar price indexes
- No method consistently higher/lower relative to others
- GEKS-T price movements susceptible to small quantities in some instances





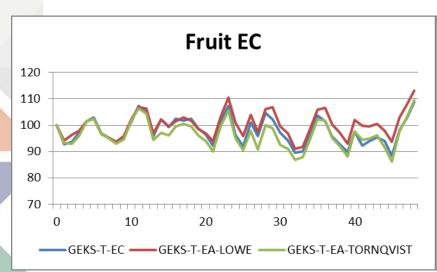
- Results more sensitive to extension method
- Across various commodities, half splice (on average) reported results closest to a revisable/transitive series

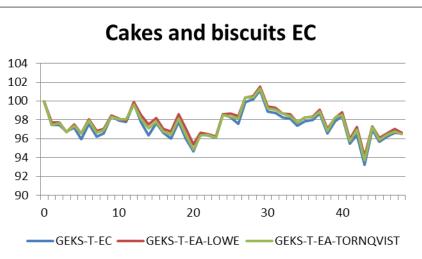


Results at the published level similar to current CPI

Feedback on ABS (2016)

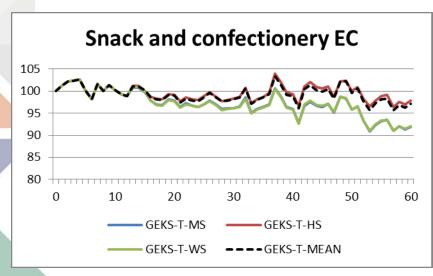
- Users support the use of multilateral/extension methods for the aggregation of transactions data
- Users preferred GEKS-Törnqvist for multilateral method
- Users recognise empirical results more sensitive to the choice of extension method
- The ABS has pursued some additional empirical work using GEKS-Törnqvist on the following:
 - 1) Elementary aggregation direct to EC level
 - 2) Comparing mean splice (Diewert and Fox 2017) to other extension methods
 - 3) Review of 9 quarter (25 month) estimation window
 - 4) Definition of product using SKU for certain commodities ("relaunch" issue)

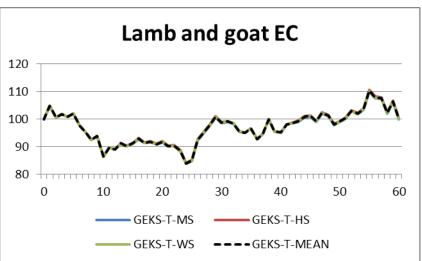




Multilateral methods at different levels of aggregation

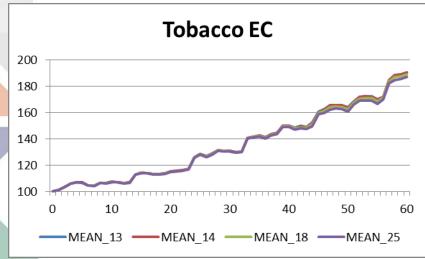
- Multilateral methods applied at a more homogenous product groupings (consumption segments)
- Aggregated to EC level using Lowe and Törnqvist formula
- Small differences comparing EC vs EA aggregation using Törnqvist

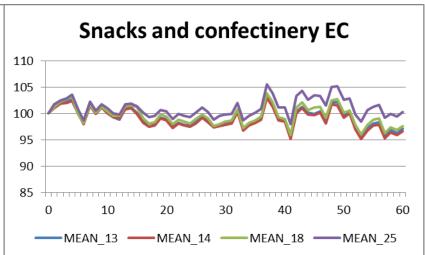




Comparing mean splice

- ABS (2016) empirically assessed three rolling window extension methods
- Diewert and Fox (2017) recommend a "mean splice" extension method
- Empirical testing of "mean splice" looks promising





Length of estimation window

- GEKS-T using a "mean splice" for different estimation window lengths (i.e. 13, 14, 18, 25) months
- Longer estimation window usually produced "flatter" price series

Future developments

- ABS to release a paper mid-2017 recommending a preferred multilateral/extension method for implementation
- At this stage, the ABS will likely recommend the following:
 - GEKS-Törnqvist as preferred multilateral method; and TPD as a secondary method.
 - Aggregate below the EC level using <u>respondent</u> <u>classes</u> as the primary method
 - Aggregate respondent classes together using <u>Törnqvist</u> index formula
 - Mean splice with a rolling window of 9 quarters (i.e. 25 months)
- Some commodities show signs of "relaunch" problem using SKU
- Will consult further with users following the release of recommendation. Pending feedback, will implement this change in the Australian CPI in DQ17

References

- Australian Bureau of Statistics (ABS) 2009. ABS Data Quality Framework. cat. no. 1520.0. ABS, Canberra.
- ABS, 2015. Enhancing the Australian CPI: A roadmap. cat. no. 6401.0.60.001. ABS, Canberra.
- ABS, 2016. Information Paper: Making Greater Use of Transactions Data to compile the Consumer Price Index. cat. no. 6401.0.60.003. ABS, Canberra.
- Chessa, A.G. 2016, A New Methodology for Processing Scanner Data in the Dutch CPI, *Eurona* 1/2016, 49-69.
- Diewert, W.E. and K.J. Fox 2017, Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data, Discussion Paper 17-02, Vancouver School of Economics, University of British Columbia, Canada.

References

- de Haan, J. 2015, Rolling Year Time Dummy Indexes and the Choice of Splicing Method, 14th meeting of the Ottawa Group, May 22, Tokyo.
- Ivancic, L., Fox, K. J. & Diewert, E. W. 2011. Scanner data, time aggregation and the construction of price indexes.
 Journal of Econometrics, 161, 24-35.
- Krsinich, F. 2016, The FEWS Index: Fixed Effects with a Window Splice, *Journal of Official Statistics* 32, 375-404.

