Dynamics or diversity? An empirical appraisal of distinct means to measure inflation uncertainty

M. Hartmann and H. Herwartz

Institut für Statistik und Ökonometrie Christian-Albrechts-Universität zu Kiel

June 2nd, 2012

Bundesbank/Ifo Workshop Uncertainty and Forecasting in Macroeconomics

M. Hartmann and H. Herwartz (CAU) [Inflation uncertainty measurement](#page-19-0) June 2nd, 2012 1/20

 299

[Objective](#page-3-0)

- 3 [Measuring inflation uncertainty](#page-5-0)
- 4 [Inflation uncertainty measures as preditors of interest rates](#page-8-0)
- 5 [Impact of inflation uncertainty on interest rates](#page-16-0)
	- **[Conclusion](#page-18-0)**

 OQ G.

Introduction

- (Inflation-) expectations play a key role in many economic models
- Examples: New Keynesian Phillips curve, consumption smoothing, firms' investment, price setting,...
- \Rightarrow Under risk aversion, considering inflation uncertainty makes sense whenever inflation expectations are part of the model
	- \rightarrow Inflation uncertainty (IU) is unobservable
	- \rightarrow Distinct ways to measure IU have been proposed
		- Any empirical study involving inflation risk has to motivate choice of particular uncertainty measure

Objective

- This study: Pseudo out-of-sample forecasting 'horse race' with alternative IU measures as predictors for interest rates
- Objective: Empirical ranking of distinct approaches to measure inflation uncertainty (IU)

Distinguish two families of IU measurement:

- \rightarrow Dynamic approaches (e.g. (G)ARCH)
- \rightarrow Disparity (or Dispersion) of expectations, typically based on surveys of expert forecasts, e.g. ASA-NBER Quarterly Economic Outlook Survey, ZEW survey

Objective

Median IU trajectories - $4 \times$ Dynamic (above), $4 \times$ Dispersion (below)

The figure shows the median over 18 economies. $GARCH(1,1)$ and ZEW -survey IU are benchmark measures from the related literatu[re](#page-3-0) QQ

M. Hartmann and H. Herwartz (CAU) [Inflation uncertainty measurement](#page-0-0) June 2nd, 2012 5 / 20

Measuring IU by means of inflation forecasting

- We consider forecast-based measures of IU
- Autoregressive (AR) scheme is among most successful models to predict inflation $\pi_t = \ln(CPI_t/CPI_{t-4})$

 $\pi_{t+\ell} = \alpha_0 + \alpha_1 t + \alpha_2 \pi_t + \epsilon_{t+\ell}, \quad t = \tau - B + 1, ..., \tau, \quad \epsilon_{t+\ell} \stackrel{\text{iid}}{\sim} (0, \sigma_{\epsilon}^2)$ (1)

- Predictions $\hat{\pi}_{\tau+\ell|\tau}$ obtained at forecast horizons $\ell \in \{1, 2, 3, 4\}$
- $\bullet \tau = T_0 \ell, ..., T \ell :=$ rolling forecast origin, B is estimation window size
- \bullet time instances T_0 and T delimit period for which IU measures are obtained (1988Q1 to 2011Q1)
- Cross section comprises 18 developed economies (Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK, US)

Distinct ways to measure IU - 1. Dynamic measures

1.1 Predictive standard deviation 0

$$
\hat{\sigma}_{\tau+\ell|\tau} = \tilde{\sigma}_{\epsilon} \sqrt{(1 + \mathbf{z}_{\tau}' (Z_{\tau}' Z_{\tau})^{-1} \mathbf{z}_{\tau})},\tag{2}
$$

with $Z_{\tau} :=$ design matrix of linear (AR) inflation forecasting model, $z_{\tau} :=$ most recent observations for out-of-sample forecasting.

● 1.2 Exponential smoothing (Zangari 1996)

$$
h_{\tau+1|\tau}^{(\lambda)} = \sqrt{\lambda(\Delta \pi_{\tau})^2 + (1-\lambda)\overline{(\Delta \pi)^2}}.
$$
 (3)

In [\(3\)](#page-6-0), $\Delta \pi_t = \pi_t - \pi_{t-1}$, and $\overline{(\Delta \pi)^2} = (1/(B-1)) \sum_{t=\tau-B+1}^{\tau-1} (\Delta \pi_t)^2$, Presetting: $\lambda \in \{0.1, 0.2\}$ \approx typical estimates (e.g. Bollerslev 1986)

1.3 Unanticipated volatility (Ball and Cecchetti 1990)

$$
\hat{a}_{\tau+\ell} = |\hat{\pi}_{\tau+\ell|\tau} - \pi_{\tau+\ell}|,\tag{4}
$$

based on AR-implied inflation forecasts $\hat{\pi}_{\tau+\ell|\tau}$

Distinct ways to measure IU - 2. Dispersion measures

• 2.1 Disagreement of expectations

$$
\hat{\mathbf{s}}_{\tau+\ell|\tau} = \sqrt{(1/(J-1))\sum_{j=1}^{J}(\hat{\pi}_{j,\tau+\ell|\tau} - \overline{\pi}_{\tau+\ell|\tau})^2}
$$
(5)

from $j = 1, ..., 5$ linear autoregressive distributed lag (ADL) forecasting models ● 2.2 Average uncertainty (Zarnowitz and Lambros 1987)

$$
\bar{\sigma}_{\tau+\ell|\tau} = (1/J) \sum_{j=1}^{J} \hat{\sigma}_{j,\tau+\ell|\tau}
$$
 (6)

2.3 Augmenting the disagreement measure (cf. Lahiri and Liu 2005, Wallis 2005)

$$
\xi_{\tau+\ell|\tau} = 0.5(\hat{s}_{\tau+\ell|\tau} + \bar{\sigma}_{\tau+\ell|\tau}) \tag{7}
$$

2.4 Alternative augmentation (cf. Lahiri and Sheng 2010) \bullet

$$
\zeta_{\tau+\ell|\tau} = 0.5(\hat{s}_{\tau+\ell|\tau} + h_{\tau+1|\tau}^{(0.1)})
$$
\n(8)

 Ω

 $\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \mathbf{B} \rightarrow \mathbf{A} \mathbf{B} \rightarrow \mathbf{A} \mathbf{B}$

Forcasting by means of the 'augmented Fisher equation'

$$
R_{\tau+\ell} = \gamma_{10} + \gamma_{11}\tau + \sum_{p=1}^{P} \gamma_{12,p}\pi_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{13,p}R_{\tau-p+1} + + \sum_{p=1}^{P} \gamma_{14,p}IU_{\tau-p+\ell+1|\tau} + e_{\tau+\ell}, \quad \tau = \mathcal{T}_0 - \ell, ..., \mathcal{T} - \ell
$$
 (9)

following Levi and Makin (1979), Blejer and Eden (1979), inter alia.

- $I U_{\tau+\ell|\tau}$ represents a particular inflation uncertainty measure, $e_{\tau+\ell} \stackrel{iid}{\sim} (0,\sigma_e^2)$
- \bullet $R_{\tau+\ell}$: Interest rate on 10-year government bond
- \rightarrow Each observation $R_{\tau+\ell}$ from the sample period $\tau = T_0 \ell, ..., T \ell$ is predicted ℓ -steps ahead by means of a respective leave-one-out cross-validation estimate
- \rightarrow This yields distinct forecasts of $R_{\tau+\ell}$ based on alternative IU measures [\(2\)](#page-6-1) to [\(8\)](#page-7-0)
	- Maximum lag order $P = 4 \Rightarrow 2^{12}$ distinct subset models

KORK EX KEY KEY YOUR

Subset modelling by Bayesian model averaging (BMA)

- Averaging forecasts improves predictive accuracy (Bates and Granger 1969, Timmermann 2005, Wright 2009)
- Combine forecasts from $m = 1, ..., M = 2^{12}$ reformulations of augmented Fisher equation: \bullet

$$
\hat{R}_{\tau+\ell|\tau} = \sum_{m=1}^{M} w_m^* \hat{R}_{\tau+\ell|\tau}^{(m)}, \tag{10}
$$

$$
\bullet
$$

$$
w_m^* = \frac{w_m}{\sum_m w_m} \text{ and } w_m = \int L_m(\gamma^{(m)}) p_m(\gamma^{(m)}) d\gamma^{(m)}.
$$
 (11)

 ${\sf L}_m(\boldsymbol{\gamma}^{(m)}) :=$ likelihood function, $\rho_m(\boldsymbol{\gamma}^{(m)}) :=$ a-priori distribution of $\boldsymbol{\gamma}^{(m)}$

Based on log-likelihood $\mathit{l}(\gamma^{(m)})=$ In $\mathit{L}(\gamma^{(m)}),$ posterior probabilities w_m in (11) can be approximated as

$$
\ln \hat{w}_m = l(\hat{\gamma}^{(m)}) - \frac{n_m}{2} \ln(T - T_0), \tag{12}
$$

 $\hat{\gamma}^{(m)}:=(\mathsf{Q})\mathsf{ML}$ estimator of $\gamma^{(m)}$ and n_m stands for the number of right hand side variables in model m.

Forecast combination weights obtain as w_m in [\(11\)](#page-9-0) by exp $\left(l(\hat{\gamma}^{(m)}) - \frac{n_m}{2} \ln(T - T_0)\right)$

Performance criterion

Forecast ranking based on absolute forecast error (AE) \bullet

$$
|e_{\tau+\ell|\tau}^{\bullet}| = |\hat{R}_{\tau+\ell|\tau}^{\bullet} - R_{\tau+\ell}| \tag{13}
$$

- ' \bullet ' represents IU measures $\hat{\sigma}_{\tau+\ell|\tau}, h_{\tau+1|\tau}^{(\lambda)}, \hat{\mathsf{a}}_{\tau}, \hat{\mathsf{s}}_{\tau+\ell|\tau}, \bar{\sigma}_{\tau+\ell|\tau}, \xi_{\tau+\ell|\tau},$ $\zeta_{\tau+\ell|\tau}$, max(IU), min(IU), median(IU), mean(TS), mean(DS).
- \rightarrow Frequency by which IU measure \bullet produces forecasts among the 3 best (Stock and Watson 1999):

$$
\mathsf{TOP3}^{\bullet} = (1/((\mathcal{T}-\mathcal{T}_0+1)\times 18))\sum_{\tau=\mathcal{T}_0-\ell}^{\mathcal{T}-\ell}\sum_{i=1}^{18} \mathsf{I}(|e_{i,\tau+\ell}^{\bullet}| \leq |e_{i,\tau+\ell}^{(3)}|),\tag{14}
$$

where $|e_{i,\tau+\ell}^{(3)}|$ is the 3rd smallest AE and I(\cdot) is the indicator function

TOP3• frequencies

Cell entries represent the frequencies in which distinct IU measures lead to forecasts which are among the 3 most accurate ones. The row labelled as '○' reports respective ranking frequencies for a forecasting model without an IU term.

 \equiv \cap α

ADA 4 B A 4 B A

Percentage of cases where $|e^{\bullet}_{\tau}\rangle$ $|\sigma_{\tau+\ell|\tau}^{\bullet}| < c \times |e_{\tau+1}^{(\circ)}|$ $\left| \frac{\zeta}{\tau + \ell} \right| \tau$

'◦' represents forecast errors for Fisher eq. WITHOUT IU term.

Single Strip

 η ar

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Comparison to benchmark measures

 ℓ

Upper panel: $bm =$ GARCH $(1,1)$ Lower panel: $bm =$ IU based on ZEW survey

M. Hartmann and H. Herwartz (CAU) [Inflation uncertainty measurement](#page-0-0) June 2nd, 2012 14 / 20

 QQ

目

何) (三) (三)

 $4.171 +$

TOP3• for subsamples

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 \equiv 990

Median IU trajectories - $4 \times$ Dynamic (above), $4 \times$ Dispersion (below)

The figure shows the median over 18 economies. $GARCH(1,1)$ and ZEW -survey IU are benchmark measures from the related literatu[re](#page-14-0) QQ

M. Hartmann and H. Herwartz (CAU) [Inflation uncertainty measurement](#page-0-0) June 2nd, 2012 16 / 20

Relation between IU and $R_{\tau+\ell}$

$$
R_{\tau+\ell} = \gamma_{10} + \gamma_{11}\tau + \sum_{p=1}^{P} \gamma_{12,p}\pi_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{13,p}R_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{14,p}I U_{\tau-p+\ell+1|\tau} + e_{\tau+\ell}
$$
\n(15)

- O Overall IU effect for $\tau = T_0 + 1, ..., T$ (i.e. 1988Q1 to 2011Q1) in economies $i = 1, ..., 18$ is denoted $\bar{\hat{\gamma}}_{i\tau}^{(\prime\prime\prime)} = \sum_{p=1}^{P} \gamma_{14,p}$.
- **•** First theory: Inflation Risk Premium Investors require compensation for holding non-indexed bonds (Barnea et al. 1979, Brenner and Landskroner 1983)
- **•** Second theory: *Investment Barrier* IU reduces demand for loanable funds since returns to real investments are more uncertain (Blejer and Eden 1979)

IU effect on $R_{\tau+\ell}$

 \leftarrow \Box

 $AB + 4$ 佳 × G

 290

Summary and Conclusions

We distinguish 2 families of IU measures.

- \rightarrow Both groups indicate IU decrease during Great Moderation period
- \rightarrow Distinct IU indication after 2008, post-Lehman

Forecast ranking shows: Dispersion outperforms Dynamic measures.

 \rightarrow Average over individual models' uncertainty is most informative predictor

Across time instances and economies,

impact of IU on interest is uniformly positive.

 \rightarrow Call IU influence on bond yields a risk premium

KORK EXTERNS ORA

Measuring IU - Inflation forecasting models

Alternative ways to predict inflation:

$$
\pi_{t+\ell} = \alpha_{10} + \alpha_{11}t + \alpha_{12}\pi_{t-1} + \alpha_{13}\tilde{y}_{t-1} + \epsilon_{t+\ell}, \quad t = \tau - B + 1, ..., \tau.
$$
 (16)

$$
\pi_{t+\ell} = \alpha_{20} + \alpha_{21}t + \alpha_{22}\pi_{t-1} + \alpha_{23}\tilde{y}_{t-1} + \alpha_{24}\bar{m}_{t-1} + \epsilon_{t+\ell}.
$$
\n(17)

$$
\pi_{t+\ell} = \alpha_{30} + \alpha_{31}t + \alpha_{32}\pi_{t-1} + \alpha_{33}\tilde{y}_{t-1} + \alpha_{34}\bar{m}_{t-1} + \alpha_{35}\Delta^2\text{oil}_{t-1} + \epsilon_{t+\ell}.
$$
 (18)

$$
\pi_{t+\ell} = \alpha_{40} + \alpha_{41}\tilde{\pi}_{t-1} + \epsilon_{t+\ell}.\tag{19}
$$

 $\hat{y}_t = y_t - \bar{y}_t$: output gap, with potential output \bar{y}_t estimated by means of HP-filter

\bullet \bar{m}_t : core money growth

•
$$
\Delta^2 \text{oil}_{t-1}
$$
 oil price dynamics (WTI crude)

 \bullet $\tilde{\pi}_{t-1} = \pi_t - \bar{\pi}_t$: inflation gap $\to \tilde{\pi}_{t-1}$ in [\(19\)](#page-19-1) resembles error-correction term