Dynamics or diversity? An empirical appraisal of distinct means to measure inflation uncertainty

M. Hartmann and H. Herwartz

Institut für Statistik und Ökonometrie Christian-Albrechts-Universität zu Kiel

June 2nd, 2012

Bundesbank/Ifo Workshop Uncertainty and Forecasting in Macroeconomics

- Introduction
- Objective
- Measuring inflation uncertainty
- Inflation uncertainty measures as preditors of interest rates
- 5 Impact of inflation uncertainty on interest rates
- Conclusion
- Appendix

Introduction

- (Inflation-) expectations play a key role in many economic models
- Examples: New Keynesian Phillips curve, consumption smoothing, firms' investment, price setting,...
- ⇒ Under risk aversion, considering inflation uncertainty makes sense whenever inflation expectations are part of the model
 - → Inflation uncertainty (IU) is unobservable
 - → Distinct ways to measure IU have been proposed
 - Any empirical study involving inflation risk has to motivate choice of particular uncertainty measure

Objective

- This study: Pseudo out-of-sample forecasting 'horse race' with alternative IU measures as predictors for interest rates
- Objective: Empirical ranking of distinct approaches to measure inflation uncertainty (IU)

Distinguish two families of IU measurement:

- \rightarrow Dynamic approaches (e.g. (G)ARCH)
- → Disparity (or Dispersion) of expectations, typically based on surveys of expert forecasts, e.g. ASA-NBER Quarterly Economic Outlook Survey, ZEW survey

Median IU trajectories - 4×Dynamic (above), 4×Dispersion (below)

The figure shows the median over 18 economies. GARCH(1,1) and ZEW-survey IU are benchmark measures from the related literature

Measuring IU by means of inflation forecasting

- We consider forecast-based measures of IU
- Autoregressive (AR) scheme is among most successful models to predict inflation $\pi_t = \ln(CPI_t/CPI_{t-4})$

$$\pi_{t+\ell} = \alpha_0 + \alpha_1 t + \alpha_2 \pi_t + \epsilon_{t+\ell}, \quad t = \tau - B + 1, ..., \tau, \quad \epsilon_{t+\ell} \stackrel{iid}{\sim} (0, \sigma_{\epsilon}^2)$$
 (1)

- ullet Predictions $\hat{\pi}_{ au+\ell| au}$ obtained at forecast horizons $\ell\in\{1,2,3,4\}$
- $\tau = T_0 \ell, ..., T \ell :=$ rolling forecast origin, B is estimation window size
- time instances T₀ and T delimit period for which IU measures are obtained (1988Q1 to 2011Q1)
- Cross section comprises 18 developed economies (Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK, US)

Distinct ways to measure IU - 1. Dynamic measures

• 1.1 Predictive standard deviation

$$\hat{\sigma}_{\tau+\ell|\tau} = \tilde{\sigma}_{\epsilon} \sqrt{(1 + \mathbf{z}_{\tau}'(Z_{\tau}'Z_{\tau})^{-1}\mathbf{z}_{\tau})},\tag{2}$$

with $Z_{\tau} :=$ design matrix of linear (AR) inflation forecasting model, $\mathbf{z}_{\tau} :=$ most recent observations for out-of-sample forecasting.

• 1.2 Exponential smoothing (Zangari 1996)

$$h_{\tau+1|\tau}^{(\lambda)} = \sqrt{\lambda(\Delta\pi_{\tau})^2 + (1-\lambda)\overline{(\Delta\pi)^2}}.$$
 (3)

In (3), $\Delta \pi_t = \pi_t - \pi_{t-1}$, and $\overline{(\Delta \pi)^2} = (1/(B-1)) \sum_{t=\tau-B+1}^{\tau-1} (\Delta \pi_t)^2$, Presetting: $\lambda \in \{0.1, 0.2\} \approx \text{typical estimates (e.g. Bollerslev 1986)}$

1.3 Unanticipated volatility (Ball and Cecchetti 1990)

$$\hat{\mathbf{a}}_{\tau+\ell} = |\hat{\pi}_{\tau+\ell}|_{\tau} - \pi_{\tau+\ell}|,\tag{4}$$

based on AR-implied inflation forecasts $\hat{\pi}_{\tau+\ell\mid\tau}$

Distinct ways to measure IU - 2. Dispersion measures

2.1 Disagreement of expectations

$$\hat{s}_{\tau+\ell|\tau} = \sqrt{(1/(J-1)) \sum_{j=1}^{J} (\hat{\pi}_{j,\tau+\ell|\tau} - \overline{\pi}_{\tau+\ell|\tau})^2}$$
 (5)

from j=1,...,5 linear autoregressive distributed lag (ADL) forecasting models

• 2.2 Average uncertainty (Zarnowitz and Lambros 1987)

$$\bar{\sigma}_{\tau+\ell|\tau} = (1/J) \sum_{j=1}^{J} \hat{\sigma}_{j,\tau+\ell|\tau}$$
 (6)

• 2.3 Augmenting the disagreement measure (cf. Lahiri and Liu 2005, Wallis 2005)

$$\xi_{\tau+\ell|\tau} = 0.5(\hat{s}_{\tau+\ell|\tau} + \bar{\sigma}_{\tau+\ell|\tau}) \tag{7}$$

• 2.4 Alternative augmentation (cf. Lahiri and Sheng 2010)

$$\zeta_{\tau+\ell|\tau} = 0.5(\hat{\mathbf{s}}_{\tau+\ell|\tau} + h_{\tau+1|\tau}^{(0.1)}) \tag{8}$$

Forcasting by means of the 'augmented Fisher equation'

$$R_{\tau+\ell} = \gamma_{10} + \gamma_{11}\tau + \sum_{p=1}^{P} \gamma_{12,p}\pi_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{13,p}R_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{14,p}IU_{\tau-p+\ell+1|\tau} + e_{\tau+\ell}, \quad \tau = T_0 - \ell, ..., T - \ell$$
(9)

following Levi and Makin (1979), Blejer and Eden (1979), inter alia.

- ullet $IU_{ au+\ell| au}$ represents a particular inflation uncertainty measure, $e_{ au+\ell}\stackrel{iid}{\sim} \left(0,\sigma_e^2
 ight)$
- $R_{\tau+\ell}$: Interest rate on 10-year government bond
- \rightarrow Each observation $R_{\tau+\ell}$ from the sample period $\tau=T_0-\ell,...,T-\ell$ is predicted ℓ -steps ahead by means of a respective leave-one-out cross-validation estimate
- \rightarrow This yields distinct forecasts of $R_{\tau+\ell}$ based on alternative IU measures (2) to (8)
- Maximum lag order $P = 4 \Rightarrow 2^{12}$ distinct subset models

4 D L 4 D L 4 E L 4 E L 500 Q

Subset modelling by Bayesian model averaging (BMA)

- Averaging forecasts improves predictive accuracy (Bates and Granger 1969, Timmermann 2005, Wright 2009)
- Combine forecasts from $m = 1, ..., M = 2^{12}$ reformulations of augmented Fisher equation:

$$\hat{R}_{\tau+\ell|\tau} = \sum_{m=1}^{M} w_m^* \hat{R}_{\tau+\ell|\tau}^{(m)},\tag{10}$$

 $w_m^* = \frac{w_m}{\sum_m w_m} \text{ and } w_m = \int L_m(\gamma^{(m)}) p_m(\gamma^{(m)}) d\gamma^{(m)}.$ (11)

 $L_m(\gamma^{(m)}):=$ likelihood function, $p_m(\gamma^{(m)}):=$ a-priori distribution of $\gamma^{(m)}$

• Based on log-likelihood $I(\gamma^{(m)}) = \ln L(\gamma^{(m)})$, posterior probabilities w_m in (11) can be approximated as

$$\ln \hat{w}_m = I(\hat{\gamma}^{(m)}) - \frac{n_m}{2} \ln(T - T_0), \tag{12}$$

 $\hat{\gamma}^{(m)}:=(\mathsf{Q})\mathsf{ML}$ estimator of $\gamma^{(m)}$ and n_m stands for the number of right hand side variables in model m.

• Forecast combination weights obtain as w_m in (11) by $\exp\left(I(\hat{\gamma}^{(m)}) - \frac{n_m}{2}\ln(T - T_0)\right)$

- ロ ト 4 回 ト 4 重 ト 4 重 - り Q (C)

Performance criterion

Forecast ranking based on absolute forecast error (AE)

$$|e_{\tau+\ell|\tau}^{\bullet}| = |\hat{R}_{\tau+\ell|\tau}^{\bullet} - R_{\tau+\ell}| \tag{13}$$

- '•' represents IU measures $\hat{\sigma}_{\tau+\ell|\tau}, h_{\tau+1|\tau}^{(\lambda)}, \hat{a}_{\tau}, \hat{s}_{\tau+\ell|\tau}, \bar{\sigma}_{\tau+\ell|\tau}, \xi_{\tau+\ell|\tau}$ $\zeta_{\tau+\ell|\tau}$, max(IU), min(IU), median(IU), mean(TS), mean(DS).
- Frequency by which IU measure produces forecasts among the 3 best (Stock and Watson 1999):

$$\mathsf{TOP3}^{\bullet} = (1/((T - T_0 + 1) \times 18)) \sum_{\tau = T_0 - \ell}^{T - \ell} \sum_{i=1}^{18} \mathsf{I}(|e_{i,\tau + \ell}^{\bullet}| \le |e_{i,\tau + \ell}^{(3)}|), \tag{14}$$

where $|e_{i\; \tau\perp\ell}^{(3)}|$ is the 3rd smallest AE and I(·) is the indicator function

(□) (□) (□) (□) (□) (□)

TOP3 frequencies

-	Dynamic measures					Dispersion measures				
	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$		$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	
$\hat{\sigma}_{ au+\ell au}$	21.45	24.16	25.32	25.19	$\hat{s}_{ au+\ell au}$	21.51	20.09	20.54	20.74	
$h_{ au+1 au}^{(0.1)} \ h_{ au+1 au}^{(0.2)}$	23.32	22.03	21.77	21.77	$ar{\sigma}_{ au+\ell au}$	22.35	27.65	28.62	27.97	
$h_{\tau+1 \tau}^{(0.2)}$	23.26	21.77	17.57	18.09	$\varsigma_{\tau+\ell au}$	15.96	18.15	20.80	21.90	
$\hat{a}_{ au}$	26.94	23.06	22.93	23.13	$\zeta_{\tau+\ell \tau}$	19.44	20.22	22.22	20.93	
TS	28.81	24.22	21.38	20.99	DS	19.06	18.28	18.99	21.12	
	Further IU statistics									
max(IU)	15.70	16.86	20.80	20.09	median	20.74	23.00	22.48	23.39	
min(IU)	19.51	21.83	20.16	17.12	0	22.16	19.51	18.22	19.32	

Cell entries represent the frequencies in which distinct IU measures lead to forecasts which are among the 3 most accurate ones. The row labelled as 'o' reports respective ranking frequencies for a forecasting model without an IU term.

Percentage of cases where $|e_{ au+\ell| au}^ullet| < c imes |e_{ au+\ell| au}^{(\circ)}|$

-	c = 1				c = 0.8			
	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	$\ell=1$	$\ell = 2$	$\ell = 3$	$\ell = 4$
$\hat{\sigma}_{\tau+\ell \tau}$	51.03	53.29	55.49	54.84	22.22	29.07	30.75	31.20
$h_{\tau+1 \tau}^{(0.1)}$	51.87	54.20	52.71	52.00	18.09	21.25	21.25	19.77
$h_{ au+1 au}^{(0.2)}$	51.74	53.94	52.84	51.74	15.50	17.64	17.70	15.31
$\hat{a}_{ au}$	49.55	51.16	52.78	52.78	26.94	29.13	28.94	28.10
$\hat{\mathbf{s}}_{ au+\ell au}$	51.42	53.55	54.97	54.97	26.49	31.65	35.79	34.82
$ar{\sigma}_{ au+\ell au}$	49.68	53.04	53.29	55.10	22.87	34.04	35.34	36.82
$\varsigma_{\tau+\ell au}$	50.19	53.10	56.07	55.56	25.32	31.65	35.47	35.92
$\zeta_{\tau+\ell au}$	50.45	52.71	54.91	54.72	27.45	33.01	37.34	35.21
max(IU)	50.45	53.10	56.20	55.62	25.26	32.11	35.47	35.59
min(ÌU)	49.94	53.62	52.97	50.97	18.80	22.42	22.80	22.87
median(IU)	51.55	55.88	52.26	55.62	21.45	30.62	30.30	34.30
TS	51.16	51.36	52.39	53.23	26.94	28.42	28.55	27.78
DS	50.65	53.23	56.14	55.62	25.97	31.91	35.85	35.79

^{&#}x27;o' represents forecast errors for Fisher eq. WITHOUT IU term.

Comparison to benchmark measures

Percentage of cases where $|\mathbf{e}_{ au+\ell| au}^{ullet}| < |\mathbf{e}_{ au+\ell| au}^{(bm)}|$

$\hat{\sigma}_{ au+1 au}$	$\mathit{h}_{ au+1 au}^{(0.1)}$	$\mathit{h}_{ au+1 au}^{(0.2)}$	$\hat{a}_{ au}$	$\hat{s}_{ au+1 au}$	$\bar{\sigma}_{\tau+1 au}$	$\varsigma_{\tau+1 au}$	$\zeta_{\tau+1 \tau}$
52.97	52.58	54.13	50.06	52.00	52.07	52.45	51.94
$\hat{\sigma}_{ au+4 au}$	$h_{ au+1 au}^{(0.1)}$	$h_{ au+1 au}^{(0.2)}$	$\hat{a}_{ au}$	$\hat{s}_{\tau+4 au}$	$\bar{\sigma}_{\tau+4 au}$	$\varsigma_{\tau+4 au}$	$\zeta_{\tau+4 au}$
52.65	52.78	47.62	48.94	52.91	52.53	56.61	53.70

Upper panel: bm = GARCH(1,1)Lower panel: bm = IU based on ZEW survey

TOP3* for subsamples

-	$\ell=1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	$\ell=1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	
	Turbule	ent period	ds		Calm periods				
$\hat{\sigma}_{\tau+\ell au}$	19.64	23.39	22.61	24.55	23.26	24.94	28.04	25.8	
$\hat{a}_{ au}$	26.23	23.00	21.19	20.93	27.24	23.13	24.68	25.32	
$ar{\sigma}_{ au+\ell au}$	22.61	27.91	28.29	27.00	22.09	27.39	28.94	28.94	
	Sample	period 1	988Q1-1	998Q3	Sample period 1998Q4-2011Q1				
$\hat{\sigma}_{\tau+\ell au}$	21.71	24.68	27.00	26.61	21.19	23.64	23.64	23.77	
$\hat{a}_{ au}$	29.36	23.51	23.64	21.83	25.19	22.61	22.22	24.42	
$ar{\sigma}_{ au+\ell au}$	20.67	26.61	27.91	27.26	24.03	28.37	29.33	28.68	
	Higher-	inflation	economie	es	Lower-inflation economies				
$\hat{\sigma}_{\tau+\ell au}$	19.38	22.48	24.94	22.74	23.51	25.84	25.71	27.43	
$\hat{a}_{ au}$	25.19	21.06	19.12	19.64	28.68	25.06	26.74	26.61	
$ar{\sigma}_{ au+\ell au}$	20.93	27.15	29.33	28.29	23.77	27.11	27.91	27.65	

Median IU trajectories - 4×Dynamic (above), 4×Dispersion (below)

The figure shows the median over 18 economies. GARCH(1,1) and ZEW-survey IU are benchmark measures from the related literature

Relation between IU and $R_{\tau+\ell}$

$$R_{\tau+\ell} = \gamma_{10} + \gamma_{11}\tau + \sum_{p=1}^{P} \gamma_{12,p}\pi_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{13,p}R_{\tau-p+1} + \sum_{p=1}^{P} \gamma_{14,p}IU_{\tau-p+\ell+1|\tau} + e_{\tau+\ell}$$

$$(15)$$

- Overall IU effect for $\tau = T_0 + 1, ..., T$ (i.e. 1988Q1 to 2011Q1) in economies i = 1, ..., 18is denoted $\bar{\hat{\gamma}}_{i\pi}^{(IU)} = \sum_{p=1}^{P} \gamma_{14,p}$.
- First theory: Inflation Risk Premium Investors require compensation for holding non-indexed bonds (Barnea et al. 1979, Brenner and Landskroner 1983)
- Second theory: Investment Barrier IU reduces demand for loanable funds since returns to real investments are more uncertain (Blejer and Eden 1979)

IU effect on $R_{\tau+\ell}$

Summary and Conclusions

We distinguish 2 families of IU measures.

- → Both groups indicate IU decrease during *Great Moderation* period
- → Distinct IU indication after 2008, post-Lehman

Forecast ranking shows: Dispersion outperforms Dynamic measures.

→ Average over individual models' uncertainty is most informative predictor

Across time instances and economies,

impact of IU on interest is uniformly positive.

→ Call IU influence on bond yields a risk premium

Measuring IU - Inflation forecasting models

Alternative ways to predict inflation:

$$\pi_{t+\ell} = \alpha_{10} + \alpha_{11}t + \alpha_{12}\pi_{t-1} + \alpha_{13}\tilde{y}_{t-1} + \epsilon_{t+\ell}, \quad t = \tau - B + 1, ..., \tau.$$
 (16)

$$\pi_{t+\ell} = \alpha_{20} + \alpha_{21}t + \alpha_{22}\pi_{t-1} + \alpha_{23}\tilde{y}_{t-1} + \alpha_{24}\bar{m}_{t-1} + \epsilon_{t+\ell}. \tag{17}$$

$$\pi_{t+\ell} = \alpha_{30} + \alpha_{31}t + \alpha_{32}\pi_{t-1} + \alpha_{33}\tilde{y}_{t-1} + \alpha_{34}\bar{m}_{t-1} + \alpha_{35}\Delta^2 oil_{t-1} + \epsilon_{t+\ell}.$$
 (18)

$$\pi_{t+\ell} = \alpha_{40} + \alpha_{41}\tilde{\pi}_{t-1} + \epsilon_{t+\ell}. \tag{19}$$

- $\tilde{y}_t = y_t \bar{y}_t$: output gap, with potential output \bar{y}_t estimated by means of HP-filter
- \bar{m}_t : core money growth
- $\Delta^2 oil_{t-1}$ oil price dynamics (WTI crude)
- $\tilde{\pi}_{t-1} = \pi_t \bar{\pi}_t$: inflation gap $\to \tilde{\pi}_{t-1}$ in (19) resembles error-correction term