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Motivation

Economists are increasingly interested in probabilistic forecasting

“Fan charts” issued by central banks

(European) Survey of Professional Forecasters

Much recent work on constructing & evaluating probabilistic forecasts.

Particular focus: Linear prediction pools.

Wallis, 2005; Hall & Mitchell, 2007; Gneiting & Ranjan, 2010, 2011;
Jore, Mitchell & Vahey, 2010; Kascha & Ravazzolo, 2010; Clements
& Harvey, 2011; Geweke & Amisano, 2011

⇒ Good performance of linear pools in terms of the log score (LS)
criterion.
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Contribution of this paper: Analyze linear pools under the quadratic and
continuous ranked probability scores

Important robustness check since these scoring rules are sensible
alternatives to LS

To date, little evidence on this issue, at least for continuous settings

Main findings:

Generally: Good performance of pools carries over to two other
scoring rules

Theory: Success of linear pools partly by construction of the scoring
rules (concavity!)

Simulations: Simple, misspecified pools may be hard to distinguish
from the true model

Empirics: Pools very attractive when there is no “single best model”
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Fabian Krüger (University of Konstanz) JI and Linear Pools Eltville, June 2, 2012 3 / 33



Contribution of this paper: Analyze linear pools under the quadratic and
continuous ranked probability scores

Important robustness check since these scoring rules are sensible
alternatives to LS

To date, little evidence on this issue, at least for continuous settings

Main findings:

Generally: Good performance of pools carries over to two other
scoring rules

Theory: Success of linear pools partly by construction of the scoring
rules (concavity!)

Simulations: Simple, misspecified pools may be hard to distinguish
from the true model

Empirics: Pools very attractive when there is no “single best model”
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Scoring Rules

Tools for evaluating density forecasts:

1 Probability Integral Transforms (PIT; Rosenblatt 1952, Diebold et al
1998, 1999)

2 Scoring Rules (Winkler 1969, Gneiting & Raftery 2007)

Focus on (proper) Scoring Rules here.

Assign score S(y , f (·)) ∈ R when f (·) is the density forecast and
y ∈ R materializes.
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Scoring Rule # 1: Log Score (Good 1952)

LS(y , f (·)) = ln f (y). (1)

Simple

Related to ML, Kullback-Leibler divergence

Local (Bernardo 1979)

Infinite penalty for tail events (Selten 1998)
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Scoring Rule # 2: Quadratic Score (Brier 1951)

QS(y , f (·)) = 2f (y)−
∫

f 2(z)dz . (2)

Continuous form of famous Brier score for discrete events

Neutral (Selten 1998)

Numerically more stable than LS
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Scoring Rule # 3: Continuous Ranked Probability Score (Winkler &
Matheson 1976)

CRPS(y , f (·)) = −
∫

(F (z)− I(z≥y))
2dz (3)

F (·) is the c.d.f. implied by f (·)
Sensitive to distance

Generalizes to absolute error if f (·) is a point forecast

Difficult to evaluate when f (·) is non-normal
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Which rule to pick?

All rules are proper, i.e. maximized in expectation by true model.

May (easily) give different rankings of misspecified models.

Different properties (see above), but no consensus on which
properties are desirable

I look at all three rules in the following.
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JI and Linear Pools

Linear Pool (Wallis, 2005)

fc(Y ) =
n∑

i=1

ωi fi (Y ), (4)

weights ωi positive and sum to one.
Mean and variance given by

µc =
n∑

i=1

ωiµi ,

σ2c =
n∑

i=1

ωiσ
2
i +

n∑

i=1

ωi (µi − µc)2,

where µi and σ2i are the mean and variance of model i .
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Following proposition implies that success of pools is partly by
construction of the scoring rules

Extends results by Kascha & Ravazzolo (2010) in the context of the
log score

Simillar results by McNees (1992) and Manski (2011) for point
forecasts and squared error loss.
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Proposition

Consider a linear pool as defined in Equation (4) and the three scoring
rules defined in (1) to (3). Then, if an outcome Y = y materializes,

LS(y ,
n∑

i=1

ωi fi (·)) ≥
n∑

i=1

ωiLS(y , fi (·)), (5)

QS(y ,
n∑

i=1

ωi fi (·)) ≥
n∑

i=1

ωiQS(y , fi (·)), (6)

CRPS(y ,
n∑

i=1

ωi fi (·)) ≥
n∑

i=1

ωiCRPS(y , fi (·)). (7)
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What does this mean?

Let ωi = 1
n ∀ i . Then the score of the pool is necessarily higher than

the average score of the n components.

E.g. with n = 2, combination closer to the better of the two models.

This holds for
I Each ex-post outcome y ∈ R.
I Each set of densities fi (·); i = 1, . . . , n.

Attractive property since predicting the relative performance of n
models is usually very hard

I Pool is “always on the side that’s winning”
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Fabian Krüger (University of Konstanz) JI and Linear Pools Eltville, June 2, 2012 12 / 33



What does this mean?

Let ωi = 1
n ∀ i . Then the score of the pool is necessarily higher than

the average score of the n components.

E.g. with n = 2, combination closer to the better of the two models.

This holds for
I Each ex-post outcome y ∈ R.
I Each set of densities fi (·); i = 1, . . . , n.

Attractive property since predicting the relative performance of n
models is usually very hard

I Pool is “always on the side that’s winning”
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Example: Quadratic score of two Gaussian densities
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Corollary

Let f0(Y ) be the true density of Y , and denote by ELS0(f (·)) the
expected log score of a predictive density f (·), with respect to the true
density f0(·). Then,

ELS0(
n∑

i=1

ωi fi (·)) ≥
n∑

i=1

ωiELS0(fi (·)), (8)

and analogous relations hold for the quadratic and continuous ranked
probability scores.
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No matter what the true model is, the expected score of the
combination is at least as high as the average expected score of the
components.

Hence combination pays off from an ex-ante perspective.

Fabian Krüger (University of Konstanz) JI and Linear Pools Eltville, June 2, 2012 15 / 33



Further results in paper:

Sharpness of bounds somewhat different across scoring rules
I Stochastic for LS; deterministic for QS and CRPS

Lower bounds do not necessarily hold for logarithmic and
beta-transformed pools

I Argument in favor of linear pools vs these methods
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Restrictions of preceding evidence

1 Simple one-shot scenario 6= multi-period setup used in time series
contexts

2 Focus on lower bounds
I Shows that pools perform well in a “worst case” sense
I However, up to now no evidence on efficiency
I Tackle this in a simulation study & empirically
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Aim: Analyze the efficiency loss of linear pools relative to the true model

From strict propriety, it is clear that this efficiency loss exists

Not straightforward to quantify since numerical score differences are
hard to interpret

My approach: Adopt the perspective of a researcher who tests for
equal predictive ability (Diebold & Mariano 1995, Giacomini & White
2006)

Many (few) rejections ↔ large (small) efficiency loss of linear pool
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Simulation setup

Use a set of n = 5 densities from Gaussian autoregressions
I Models calibrated to different subperiods of a US macro series

F Model 1: 1960–2011,. . . , Model 5: 2000 – 2011
F Series: CPI inflation, IP growth, changes in TBILL rate, change in

unemployment rate

The true process i∗ corresponds to one of the five individual models

Test for EPA between the true model fi∗,t−1(·) and the equally
weighted (EW) pool fEW ,t−1(·)
Of course, the null of EPA is false since

1

n

n∑

i=1

ES0(fi ,t−1(·)) ≤ ES0(fEW ,t−1(·)) < ES0(fi∗,t−1(·)),

where ES0 denotes unconditional expectation w.r.t. the true model.
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Average EPA rejection rates (%) by scoring rule & series

CPI INDPRO TBILL UNEMP

LS
T = 120 23.29 9.93 73.17 9.86
T = 360 47.44 15.99 95.95 17.47

QS
T = 120 14.42 7.11 68.15 7.50
T = 360 30.21 11.03 94.75 11.97

CRPS
T = 120 17.21 9.11 66.09 8.46
T = 360 35.93 13.85 91.23 14.46

Detailed Tables
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The simulation study is intentionally biased against linear pools

Assumption: True process coincides with one of the individual models

Of course, this need not hold in practice

Next turn to empirical application with unknown true process
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Empirics

Use four monthly US macro series also used in simulation study

Data between January 1985 and November 2011 (= 323 obs.) used
as evaluation period; earlier obs. used for model estimation

Component models are 8 (V)AR specifications which differ with
respect to

1 Estimation sample (short vs long rolling window)
F C.f. simulation study

2 System variables

Simple equally weighted pool in addition to individual models
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Meta view: Rank of EW among the 9 models

CPI INDPRO TBILL UNEMP

LS
h=1 1 1 1 1
h=3 1 1 1 1
h=6 2 1 4 1

QS
h=1 2 1 5 1
h=3 5 1 5 1
h=6 5 1 5 1

CRPS
h=1 2 1 5 1
h=2 2 2 5 2
h=6 5 3 5 3

Detailed Tables

Fabian Krüger (University of Konstanz) JI and Linear Pools Eltville, June 2, 2012 23 / 33



Giacomini-White (2006) EPA tests of each component model vs EW:
8 × 36 = 288 comparisons

Nr of cases in which an individual model beats EW: 11

Nr of cases in which EW beats an individual model: 118

Again, results for EW especially good under LS
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Instability of real-world data plays into the hands of EW

At each evaluation date t, there may be a number of better models
than EW
However, it rarely occurs that a particular model is constantly better
than EW

Example: Period-by-period ranks of EW (bold) and best individual model

(light)
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Discussion

A number of recent papers have pointed to negative features of linear
pools

I Hora (2004), Gneiting and Ranjan (2010, 2011)
I “When the component models are correctly dispersed, the linear pool is

too dispersed”
I Diagnosis of dispersion via PITs

These results do not contradict my positive findings on linear pools

In fact, overdispersion results and lower bounds (this paper) both
point to the conservative character of linear pools

I Sacrifice sharpness for good “worst-case properties”
I May be a good deal in turbulent times
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Thank You!
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Consumer Price Index Industrial Production
True model (i∗) 1 2 3 4 5 1 2 3 4 5

LS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.066 -0.118 -0.047 -0.052 -0.314 -1.110 -1.080 -1.032 -1.002 -1.105
ES0(fEW,t−1(·)) -0.048 -0.096 -0.032 -0.038 -0.283 -1.104 -1.075 -1.027 -0.998 -1.100
ES0(fi∗,t−1(·)) -0.031 -0.076 -0.027 -0.022 -0.247 -1.100 -1.072 -1.026 -0.992 -1.092

Rej. (T = 120) 0.208 0.174 0.191 0.328 0.263 0.043 0.033 0.117 0.186 0.118
Rej. (T = 360) 0.440 0.434 0.267 0.551 0.679 0.106 0.074 0.123 0.264 0.232

QS

1
n

∑n
i=1ES0(fi,t−1(·)) 1.094 1.040 1.114 1.109 0.862 0.384 0.396 0.416 0.429 0.386
ES0(fEW,t−1(·)) 1.114 1.062 1.131 1.123 0.879 0.386 0.398 0.417 0.430 0.388
ES0(fi∗,t−1(·)) 1.130 1.082 1.135 1.140 0.910 0.388 0.399 0.418 0.433 0.391

Rej. (T = 120) 0.104 0.109 0.081 0.213 0.215 0.049 0.038 0.066 0.102 0.100
Rej. (T = 360) 0.252 0.283 0.116 0.359 0.500 0.092 0.070 0.066 0.150 0.173

CRPS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.145 -0.153 -0.142 -0.143 -0.180 -0.413 -0.401 -0.382 -0.370 -0.411
ES0(fEW,t−1(·)) -0.143 -0.150 -0.140 -0.142 -0.178 -0.411 -0.400 -0.381 -0.369 -0.410
ES0(fi∗,t−1(·)) -0.141 -0.147 -0.140 -0.140 -0.175 -0.410 -0.399 -0.381 -0.368 -0.407

Rej. (T = 120) 0.118 0.141 0.088 0.262 0.252 0.043 0.038 0.098 0.145 0.132
Rej. (T = 360) 0.304 0.374 0.135 0.465 0.519 0.091 0.080 0.097 0.195 0.230

Table 4: Simulation results. Horizontal blocks represent the log score (LS), quadratic score (QS) and cumulative ranked probability
score (CRPS). In each block, the first three rows are simulation estimates of the quantities in Equation (16). All estimates are
averages over 10000 Monte Carlo samples, each of which is 480 periods long. The fourth and fifth rows are rejection frequencies
of the null hypothesis in (18), for two different sample sizes. The frequencies are computed over 10000 Monte Carlo samples. A
truncation lag of four is used for the Newey and West (1987) estimator. Columns represent different true processes, calibrated to
different subsamples of CPI inflation and industrial production. See Table 3 for details on calibration.
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Treasury Bill Rate Unemployment Rate
True model (i∗) 1 2 3 4 5 1 2 3 4 5

LS

1
n

∑n
i=1ES0(fi,t−1(·)) -1.175 -1.445 -1.514 -0.010 -0.024 0.273 0.290 0.326 0.413 0.362
ES0(fEW,t−1(·)) -0.621 -0.736 -0.767 0.061 0.048 0.280 0.296 0.332 0.417 0.367
ES0(fi∗,t−1(·)) -0.570 -0.657 -0.681 0.299 0.275 0.286 0.298 0.332 0.424 0.378

Rej. (T = 120) 0.436 0.594 0.634 0.998 0.997 0.064 0.039 0.058 0.184 0.149
Rej. (T = 360) 0.860 0.962 0.975 1.000 1.000 0.157 0.070 0.064 0.279 0.303

QS

1
n

∑n
i=1ES0(fi,t−1(·)) 0.450 0.368 0.349 1.232 1.211 1.535 1.561 1.617 1.766 1.676
ES0(fEW,t−1(·)) 0.587 0.506 0.488 1.365 1.344 1.543 1.569 1.625 1.773 1.684
ES0(fi∗,t−1(·)) 0.659 0.603 0.590 1.573 1.535 1.552 1.572 1.626 1.783 1.702

Rej. (T = 120) 0.424 0.570 0.594 0.919 0.901 0.073 0.054 0.055 0.096 0.097
Rej. (T = 360) 0.835 0.947 0.957 1.000 1.000 0.130 0.063 0.059 0.155 0.192

CRPS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.254 -0.279 -0.286 -0.121 -0.124 -0.103 -0.102 -0.098 -0.090 -0.095
ES0(fEW,t−1(·)) -0.245 -0.270 -0.277 -0.113 -0.116 -0.103 -0.101 -0.098 -0.089 -0.095
ES0(fi∗,t−1(·)) -0.241 -0.264 -0.270 -0.101 -0.104 -0.103 -0.101 -0.098 -0.089 -0.094

Rej. (T = 120) 0.306 0.460 0.541 0.999 0.998 0.080 0.034 0.069 0.142 0.099
Rej. (T = 360) 0.711 0.905 0.945 1.000 1.000 0.151 0.055 0.072 0.202 0.243

Table 5: Simulation results (continued). True processes calibrated to the treasury bill rate and the unemployment rate. See Table
4 for details.
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Consumer Price Index
Model LS QS CRPS SE

h = 1

ARs 0.0222.9 1.4975.8 −0.1263.3 0.0676.2

ARl −0.092.5 1.360.0 −0.130.0 0.062.3

VARs
C,I 0.0010.3 1.4653.5 −0.137.8 0.064.7

VARl
C,I −0.110.6 1.330.0 −0.130.0 0.060.7

VARs
C,T 0.0439.1 1.4778.7 −0.1340.8 0.0676.1

VARl
C,T −0.091.0 1.360.0 −0.130.0 0.064.4

VARs
C,U −0.016.7 1.4641.5 −0.132.8 0.062.9

VARl
C,U −0.120.8 1.330.0 −0.130.0 0.060.0

EW 0.06 1.48 −0.12 0.06
(Rank) (1) (2) (2) (2)

h = 3

ARs −0.1058.3 1.3941.7 −0.1346.6 0.0882.2

ARl −0.273.5 1.200.0 −0.140.0 0.080.5

VARs
C,I −0.0977.6 1.3770.4 −0.1475.3 0.0840.3

VARl
C,I −0.282.1 1.180.0 −0.150.0 0.080.1

VARs
C,T −0.0968.9 1.3864.3 −0.1499.2 0.0870.2

VARl
C,T −0.282.1 1.170.0 −0.150.0 0.080.0

VARs
C,U −0.0968.0 1.3774.8 −0.1458.9 0.0831.0

VARl
C,U −0.291.6 1.170.0 −0.150.0 0.080.0

EW −0.08 1.36 −0.14 0.08
(Rank) (1) (5) (2) (1)

h = 6

ARs −0.1285.8 1.3451.0 −0.1445.6 0.0882.2

ARl −0.312.4 1.130.0 −0.150.0 0.080.3

VARs
C,I −0.1198.4 1.3453.6 −0.1443.4 0.0865.8

VARl
C,I −0.331.4 1.100.0 −0.150.0 0.080.0

VARs
C,T −0.1196.6 1.3458.2 −0.1457.8 0.0893.0

VARl
C,T −0.331.2 1.090.0 −0.150.0 0.080.0

VARs
C,U −0.1199.7 1.3447.9 −0.1439.3 0.0861.8

VARl
C,U −0.331.4 1.110.0 −0.150.0 0.080.0

EW −0.11 1.32 −0.14 0.08
(Rank) (2) (5) (5) (5)

Table 6: Performance of density forecasts of the US consumer price index, for an evaluation
sample from January 1985 to November 2011 (323 monthly observations), for forecast horizons
of h = 1, 3 and 6 months. In column one, superscript s indicates that a model was estimated
based on a short rolling window (72 obs.); l indicates a long rolling window (288 obs.). For
the VARs, subscripts indicate the system variables, where C = CPI inflation, I = industrial
production, T = treasury bill rate, U = unemployment rate. “EW” is an equally weighted
pool of all models. The second to third columns give the scoring rules defined in the text (the
larger the better); ”SE” denotes the squared prediction error of a point forecasts (the smaller the
better). Superscript numbers are p-values (in percent) of the two-sided Giacomini-White test
for equal predictive ability, using EW as a benchmark model.
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Industrial Production
Model LS QS CRPS SE

h = 1

ARs −1.043.2 0.5120.4 −0.350.9 0.441.1

ARl −1.022.1 0.5131.8 −0.3379.9 0.3962.0

VARs
I,C −1.070.6 0.491.0 −0.360.1 0.461.1

VARl
I,C −1.056.7 0.503.1 −0.3411.5 0.4143.3

VARs
I,T −1.0122.2 0.5151.8 −0.3434.4 0.4128.2

VARl
I,T −1.055.8 0.5012.0 −0.3428.6 0.4143.4

VARs
I,U −1.029.7 0.491.3 −0.351.4 0.435.7

VARl
I,U −1.040.9 0.501.4 −0.345.2 0.4146.0

EW −0.98 0.52 −0.33 0.40
(Rank) (1) (1) (1) (2)

h = 3

ARs −1.0511.9 0.4927.7 −0.352.9 0.432.4

ARl −1.049.6 0.4815.8 −0.3371.7 0.3723.9

VARs
I,C −1.0421.1 0.4918.4 −0.350.4 0.420.2

VARl
I,C −1.077.9 0.483.1 −0.3423.6 0.4157.7

VARs
I,T −1.0331.9 0.4937.7 −0.344.4 0.422.5

VARl
I,T −1.086.1 0.4810.2 −0.3440.6 0.4077.3

VARs
I,U −1.0415.3 0.4813.7 −0.350.2 0.430.0

VARl
I,U −1.083.2 0.487.7 −0.3418.1 0.4047.3

EW −1.01 0.50 −0.34 0.40
(Rank) (1) (1) (2) (2)

h = 6

ARs −1.149.4 0.4711.0 −0.374.7 0.498.8

ARl −1.125.3 0.479.4 −0.3552.8 0.4266.0

VARs
I,C −1.1056.1 0.4846.9 −0.3512.6 0.4315.9

VARl
I,C −1.119.4 0.4734.7 −0.3569.4 0.4126.3

VARs
I,T −1.0980.2 0.4856.8 −0.3533.8 0.4358.7

VARl
I,T −1.127.0 0.4719.7 −0.3594.2 0.4128.5

VARs
I,U −1.1048.0 0.4839.6 −0.358.5 0.4410.8

VARl
I,U −1.141.1 0.465.3 −0.3512.5 0.4341.8

EW −1.08 0.48 −0.35 0.43
(Rank) (1) (1) (3) (4)

Table 7: Same as Table 6, but for industrial production.
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Treasury Bill Rate
Model LS QS CRPS SE

h = 1

ARs −0.0258.9 1.610.4 −0.1234.8 0.0424.2

ARl −0.230.0 1.110.0 −0.150.0 0.050.0

VARs
T,C −0.0256.0 1.610.5 −0.1258.4 0.045.6

VARl
T,C −0.260.0 1.070.0 −0.150.0 0.041.6

VARs
T,I 0.0499.4 1.640.1 −0.1222.6 0.0415.4

VARl
T,I −0.240.0 1.080.0 −0.140.0 0.0420.0

VARs
T,U −0.0745.0 1.600.7 −0.1288.1 0.042.1

VARl
T,U −0.240.0 1.090.0 −0.140.0 0.040.1

EW 0.04 1.49 −0.12 0.04
(Rank) (1) (5) (5) (1)

h = 3

ARs −0.2145.7 1.405.3 −0.1350.3 0.0539.8

ARl −0.320.0 0.990.0 −0.160.0 0.060.1

VARs
T,C −0.2147.6 1.402.8 −0.1352.1 0.0539.1

VARl
T,C −0.350.0 0.960.0 −0.160.0 0.0521.8

VARs
T,I −0.1179.5 1.440.1 −0.135.9 0.0577.1

VARl
T,I −0.340.0 0.980.0 −0.160.0 0.0547.4

VARs
T,U −0.2148.2 1.420.5 −0.1351.8 0.0532.1

VARl
T,U −0.340.0 0.980.0 −0.160.0 0.0577.7

EW −0.08 1.30 −0.13 0.05
(Rank) (1) (5) (5) (3)

h = 6

ARs −0.1099.2 1.390.7 −0.1335.6 0.0521.4

ARl −0.340.0 0.970.0 −0.160.0 0.060.5

VARs
T,C −0.0981.5 1.390.5 −0.1323.7 0.0530.7

VARl
T,C −0.360.0 0.960.0 −0.160.0 0.0572.0

VARs
T,I −0.0982.0 1.390.7 −0.1327.7 0.0544.4

VARl
T,I −0.360.0 0.960.0 −0.160.0 0.0580.6

VARs
T,U −0.0981.2 1.380.9 −0.1324.4 0.0537.2

VARl
T,U −0.360.0 0.960.0 −0.160.0 0.0595.8

EW −0.10 1.28 −0.14 0.05
(Rank) (4) (5) (5) (2)

Table 8: Same as Table 6, but for the treasury bill rate.
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Unemployment Rate
Model LS QS CRPS SE

h = 1

ARs 0.382.1 1.780.4 −0.091.2 0.034.0

ARl 0.4114.9 1.8761.5 −0.0999.0 0.0278.2

VARs
U,C 0.371.2 1.790.9 −0.090.2 0.030.2

VARl
U,C 0.363.3 1.800.7 −0.092.7 0.036.7

VARs
U,I 0.407.8 1.801.8 −0.092.8 0.037.9

VARl
U,I 0.4111.4 1.8530.2 −0.0939.9 0.0251.7

VARs
U,T 0.3921.0 1.8639.0 −0.0911.0 0.037.1

VARl
U,T 0.343.8 1.803.7 −0.096.6 0.039.6

EW 0.44 1.89 −0.09 0.02
(Rank) (1) (1) (1) (2)

h = 3

ARs 0.3821.9 1.801.9 −0.096.9 0.0314.7

ARl 0.4048.2 1.8681.3 −0.0960.7 0.0242.1

VARs
U,C 0.388.4 1.823.7 −0.090.0 0.030.0

VARl
U,C 0.379.2 1.8424.0 −0.0937.9 0.0253.6

VARs
U,I 0.388.0 1.812.0 −0.090.1 0.030.1

VARl
U,I 0.382.4 1.8414.3 −0.0979.3 0.0242.4

VARs
U,T 0.4030.5 1.8424.5 −0.093.0 0.031.9

VARl
U,T 0.366.3 1.8320.4 −0.0936.3 0.0260.3

EW 0.41 1.87 −0.09 0.02
(Rank) (1) (1) (2) (3)

h = 6

ARs 0.339.5 1.772.5 −0.091.3 0.032.2

ARl 0.3529.3 1.8268.5 −0.0974.6 0.0338.9

VARs
U,C 0.3520.4 1.807.8 −0.090.1 0.030.0

VARl
U,C 0.3515.2 1.8260.8 −0.0965.0 0.0323.3

VARs
U,I 0.3414.0 1.794.3 −0.090.0 0.030.0

VARl
U,I 0.357.4 1.8122.5 −0.0969.7 0.0339.9

VARs
U,T 0.3648.5 1.809.5 −0.091.8 0.032.6

VARl
U,T 0.356.5 1.8016.6 −0.0959.9 0.0351.5

EW 0.37 1.83 −0.09 0.03
(Rank) (1) (1) (3) (5)

Table 9: Same as Table 6, but for the unemployment rate.
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