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Motivation

Economists are increasingly interested in probabilistic forecasting
@ “Fan charts” issued by central banks
o (European) Survey of Professional Forecasters

Much recent work on constructing & evaluating probabilistic forecasts.

Particular focus: Linear prediction pools.

o Wallis, 2005; Hall & Mitchell, 2007; Gneiting & Ranjan, 2010, 2011,
Jore, Mitchell & Vahey, 2010; Kascha & Ravazzolo, 2010; Clements
& Harvey, 2011; Geweke & Amisano, 2011

= Good performance of linear pools in terms of the log score (LS)
criterion.
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Contribution of this paper: Analyze linear pools under the quadratic and
continuous ranked probability scores

@ Important robustness check since these scoring rules are sensible
alternatives to LS

@ To date, little evidence on this issue, at least for continuous settings

Main findings:
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Contribution of this paper: Analyze linear pools under the quadratic and
continuous ranked probability scores

@ Important robustness check since these scoring rules are sensible
alternatives to LS

@ To date, little evidence on this issue, at least for continuous settings
Main findings:

@ Generally: Good performance of pools carries over to two other
scoring rules

@ Theory: Success of linear pools partly by construction of the scoring
rules (concavity!)

@ Simulations: Simple, misspecified pools may be hard to distinguish
from the true model

@ Empirics: Pools very attractive when there is no “single best model”
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Scoring Rules

Tools for evaluating density forecasts:
© Probability Integral Transforms (PIT; Rosenblatt 1952, Diebold et al

1998, 1999)
@ Scoring Rules (Winkler 1969, Gneiting & Raftery 2007)

e Focus on (proper) Scoring Rules here.

@ Assign score S(y,f(-)) € R when f(-) is the density forecast and
y € R materializes.
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Scoring Rule # 1: Log Score (Good 1952)

LS(y, f()) = Inf(y). (1)

Simple

Related to ML, Kullback-Leibler divergence
Local (Bernardo 1979)

Infinite penalty for tail events (Selten 1998)
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Scoring Rule # 2: Quadratic Score (Brier 1951)

QS(y. () = 2f(y) - / £2(2)dz. )

@ Continuous form of famous Brier score for discrete events
o Neutral (Selten 1998)

@ Numerically more stable than LS
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Scoring Rule # 3: Continuous Ranked Probability Score (Winkler &
Matheson 1976)

CRPS(y.f()) = — / (F(2) — TIsny))2dlz 3)

F(-) is the c.d.f. implied by ()
Sensitive to distance
Generalizes to absolute error if f(-) is a point forecast

Difficult to evaluate when f(+) is non-normal
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Which rule to pick?

@ All rules are proper, i.e. maximized in expectation by true model.
e May (easily) give different rankings of misspecified models.

e Different properties (see above), but no consensus on which
properties are desirable

@ | look at all three rules in the following.
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JI and Linear Pools
Linear Pool (Wallis, 2005)

fc(Y) = Zw;f;(Y), (4)
i=1

weights w; positive and sum to one.
Mean and variance given by

n
pe = Y wih,
i=1

n n
= > wiol + Y wilpi — pe)?
i=1 i=1

o N

where u; and a,-2 are the mean and variance of model /.
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Following proposition implies that success of pools is partly by
construction of the scoring rules

o Extends results by Kascha & Ravazzolo (2010) in the context of the
log score

o Simillar results by McNees (1992) and Manski (2011) for point
forecasts and squared error loss.
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Proposition

Consider a linear pool as defined in Equation (4) and the three scoring
rules defined in (1) to (3). Then, if an outcome Y = y materializes,

LS(y, Y wifi()) = > wilS(y,fi("),
i=1 i=1

QS(y, Y wifi(:)) = > wiQS(y.f("),

=1 =1
CRPS(y,Y wifi(-)) > > wiCRPS(y,f(")).
i=1 i=1
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What does this mean?
o Let wj = % V i. Then the score of the pool is necessarily higher than
the average score of the n components.
o E.g. with n= 2, combination closer to the better of the two models.
@ This holds for

» Each ex-post outcome y € R.
» Each set of densities fi(-);i=1,...,n.
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What does this mean?
o Let wj = % V i. Then the score of the pool is necessarily higher than
the average score of the n components.
o E.g. with n =2, combination closer to the better of the two models.
@ This holds for

» Each ex-post outcome y € R.
» Each set of densities fi(-);i=1,...,n.
@ Attractive property since predicting the relative performance of n
models is usually very hard
» Pool is “always on the side that's winning”
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Example: Quadratic score of two Gaussian densities
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Corollary

Let fy(Y) be the true density of Y, and denote by ELSy(f(-)) the
expected log score of a predictive density f(-), with respect to the true
density fo(-). Then,

ELS(> wif() 2 3 wiELSo(5(). )
=1 i=1

and analogous relations hold for the quadratic and continuous ranked
probability scores.
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@ No matter what the true model is, the expected score of the
combination is at least as high as the average expected score of the

components.
@ Hence combination pays off from an ex-ante perspective.
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Further results in paper:
@ Sharpness of bounds somewhat different across scoring rules
» Stochastic for LS:; deterministic for QS and CRPS

@ Lower bounds do not necessarily hold for logarithmic and
beta-transformed pools

» Argument in favor of linear pools vs these methods

Fabian Kriiger (University of Konstanz) JI and Linear Pools Eltville, June 2, 2012 16 / 33



Restrictions of preceding evidence

@ Simple one-shot scenario # multi-period setup used in time series
contexts
@ Focus on lower bounds

» Shows that pools perform well in a “worst case” sense
» However, up to now no evidence on efficiency
» Tackle this in a simulation study & empirically
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Aim: Analyze the efficiency loss of linear pools relative to the true model

@ From strict propriety, it is clear that this efficiency loss exists

Not straightforward to quantify since numerical score differences are
hard to interpret

My approach: Adopt the perspective of a researcher who tests for
equal predictive ability (Diebold & Mariano 1995, Giacomini & White
2006)

e Many (few) rejections < large (small) efficiency loss of linear pool
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Simulation setup

@ Use a set of n =5 densities from Gaussian autoregressions
» Models calibrated to different subperiods of a US macro series

* Model 1: 1960-2011,..., Model 5: 2000 — 2011
* Series: CPl inflation, IP growth, changes in TBILL rate, change in
unemployment rate

@ The true process i* corresponds to one of the five individual models

o Test for EPA between the true model fi« +_1(-) and the equally
weighted (EW) pool few ¢—1(+)

@ Of course, the null of EPA is false since
1 n
- > ESo(fie-1(-)) < ESo(few.e-1(-)) < ESo(fir.e-1(")),
i=1

where ESy denotes unconditional expectation w.r.t. the true model.
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Average EPA rejection rates (%) by scoring rule & series

CPlI  INDPRO TBILL UNEMP
LS T =120 23.29 9.93 73.17 9.86
T =360 47.44 15.99 95.95 17.47
Qs T =120 14.42 7.11 68.15 7.50
T =360 30.21 11.03 94.75 11.97
CRPS T=120 17.21 9.11 66.09 8.46
T =360 35.93 13.85 01.23 14.46
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The simulation study is intentionally biased against linear pools
@ Assumption: True process coincides with one of the individual models

@ Of course, this need not hold in practice
@ Next turn to empirical application with unknown true process
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Empirics

Use four monthly US macro series also used in simulation study

Data between January 1985 and November 2011 (= 323 obs.) used
as evaluation period; earlier obs. used for model estimation
e Component models are 8 (V)AR specifications which differ with
respect to
@ Estimation sample (short vs long rolling window)
* C.f. simulation study

@ System variables
Simple equally weighted pool in addition to individual models
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Meta view: Rank of EW among the 9 models

CPlI INDPRO TBILL UNEMP

h=1 1 1 1 1
LS 3 1 1 1
h=6 2 1 4 1
h=1 2 1 5 1
B3 5 1 5 1
h=6 5 1 5 1
h=1 2 1 5 1
CRPS 12 2 5 2
h=6 5 3 5 3

» Detailed Tables
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Giacomini-White (2006) EPA tests of each component model vs EW:
8 x 36 = 288 comparisons
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Giacomini-White (2006) EPA tests of each component model vs EW:
8 x 36 = 288 comparisons

@ Nr of cases in which an individual model beats EW: 11
@ Nr of cases in which EW beats an individual model: 118

@ Again, results for EW especially good under LS
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Instability of real-world data plays into the hands of EW
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Instability of real-world data plays into the hands of EW

@ At each evaluation date t, there may be a number of better models
than EW

@ However, it rarely occurs that a particular model is constantly better
than EW

Example: Period-by-period ranks of EW (bold) and best individual model

Best ind. model = VAR's, C T
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Discussion

@ A number of recent papers have pointed to negative features of linear
pools
» Hora (2004), Gneiting and Ranjan (2010, 2011)
> “When the component models are correctly dispersed, the linear pool is
too dispersed”
» Diagnosis of dispersion via PITs
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Discussion

@ A number of recent papers have pointed to negative features of linear
pools
» Hora (2004), Gneiting and Ranjan (2010, 2011)
> “When the component models are correctly dispersed, the linear pool is
too dispersed”
» Diagnosis of dispersion via PITs

@ These results do not contradict my positive findings on linear pools

e In fact, overdispersion results and lower bounds (this paper) both
point to the conservative character of linear pools

» Sacrifice sharpness for good “worst-case properties”
» May be a good deal in turbulent times
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Consumer Price Index Industrial Production
1 2 3 4 5 1 2 3 4 5

-0.066 -0.118 -0.047 -0.052 -0.314 -1.110 -1.080 -1.032 -1.002 -1.105
-0.048 -0.096 -0.032 -0.038 -0.283 -1.104 -1.075 -1.027 -0.998 -1.100

True model (i

W i ESol(fie-a()
ESo(fewa-1(- ;

)

)

)
LS ESo(fi4-1(-)) -0.031 -0.076 -0.027 -0.022 -0.247 -1.100 -1.072 -1.026 -0.992 -1.092
Rej. (T = 120) 0208 0.174  0.191 0328 0.263 0.043  0.033 0.117 0.186 0.118
Rej. (T = 360) 0.440  0.434  0.267 0.551 0.679 0.106  0.074 0.123 0264 0.232
Y ESo(fiaa(:)) 1.094 1.040 1.114 1109 0.862 0.384 0.396  0.416 0.429 0.386
Ebo(fEV,t 1(1) 1114 1.062 1.131 1123 0.879 0.386 0.398 0.417 0430 0.388
Qs ESo(fir-1(-) 1130 1.082 1.135 1.140 0.910 0.388 0.399 0418 0433 0.391
Rej. (T = 120) 0.104  0.109 0.081 0.213 0.215 0.049  0.038 0.066 0.102 0.100
& Rej. (T = 360) 0252 0.283 0.116 0359  0.500 0.092  0.070  0.066 0.150 0.173
Y ESo(fiaa () -0.145 -0.153 -0.142 -0.143 -0.180 -0.413 -0.401 -0.382 -0.370 -0.411
ESo(few,- 1( ) -0.143 -0.150 -0.140 -0.142 -0.178 -0.411 -0.400 -0.381 -0.369 -0.410
CRPS ESo(fi4-1(-)) -0.141 -0.147 -0.140 -0.140 -0.175 -0.410 -0.399 -0.381 -0.368 -0.407
Rej. (T = 120) 0.118  0.141  0.088 0.262 0.252 0.043  0.038 0.098 0.145 0.132
Rej. (T = 360) 0.304  0.374 0.135 0.465 0.519 0.091  0.080 0.097 0.195 0.230

Table 4: Simulation results. Horizontal blocks represent the log score (LS), quadratic score (QS) and cumulative ranked probability
score (CRPS). In each block, the first three rows are simulation estimates of the quantities in Equation (16). All estimates are
averages over 10000 Monte Carlo samples, each of which is 480 periods long. The fourth and fifth rows are rejection frequencies
of the null hypothesis in (18), for two different sample sizes. The frequencies are computed over 10000 Monte Carlo samples A
truncation lag of four is used for the Newey and West (1987) estimator. Columns represent di
different subsamples of CPI inflation and industrial production. See Table 3 for details on calib; non
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Treasury Bill Rate
2 3 4

Unemployment Rate
2 3 4

True model (i*) 1 5 5

LY ESo(fiea(r))  -1175 <1445 -1514 -0.010 -0.024 0.273 0290 0326 0.413  0.362
ESo(fewen())  -0.621 -0.736 -0.767 0061 0048 0280 0296 0332 0.417 0.367

LS ESo(firea())  -0.570 -0.657 -0.681 0299 0275 0286 0298 0332 0424 0378
Rej. (T=120) 0436 0594 0634 0998 0997  0.064 0039 0058 0.184 0.149

Rej. (T=360) 0860 0962 0975 1000 1000 0157 0070 0.064 0279 0.303

Ly ESy(fi 0450 0368 0349 1232 1211 1535 1561 1617 1766 1676
ESy(fewei() 0587 0506 0488 1365 1344 1543 1360 1.625 1773 1.684

Qs ESo(firs1() 0.659  0.603 0.590 1.573 1535 1552 1572 1.626 1.783 1.702
Rej. ( 0424 0570 0594 0919 0901 0073 0054 0055 0.096 0.097

Rej. (T=360) 0835 0947 0957 1000 1000 0130 0.063 0059 0155 0.192

IS ESy(fir()) 0254 -0279 -0286 -0.121 -0.124  -0.103 -0.008 -0.000 -0.005

() -0245 -0.270 -0.277 -0.113 -0.116  -0.103 -0.098 -0.089 -0.095

CRPS () 0241 0264 0270 -0.101 -0.104  -0.103 -0.008 -0.089 -0.004
j. (T=120) 0306 0460 0541 0999 0998  0.080 0069 0142 0.099

Rej. (T=360) 0711 0905 0945 1000 1000 0.5 0072 0202 0243

Table 5: Simulation results (continued). True processes calibrated to the treasury bill rate and the unemployment rate. See Table

4 for details.
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Consumer Price Index

Model LS QS CRPS SE
h=1
AR 0.0229 1497 012098 ,06702
AR' —0.09%° 1360 —0.13%0  0.06**
VARE; 0008 1.46%° —0.137%  0.06"7
VARL, —0.11%¢ 1.33°0  —0.13%°  0.06°7
VAR, 0.04%1 14777 —0.1310% 0.0670!
—0.09%0 1360 —0.13%0  0.06"*
VARL, —0.0157 1465 —0.13%%  0.06*°
VARL,, —012°% 133°0 —0.13%0 0.06°°
EW 0.06 148 —012  0.06
(Rank) (1) (2) (2) (2
h=3
AR* —0.10%% 13947 —0.13%6 08522
AR' 0277 1200 —0.14%0  0.08°°
VARZ,  —0.0976 137704 0,143 00803
—0.28%1  1.18%0  —0.15°0  0.08"!
—0.09%%9 1.38%3  —0.14%2 087
—0.28%1 1170 —0.15°0  0.08°
—0.09%50 137745 —0.14%%9 0,080
—0.29% 11790 —0.15%0  0.08°0
—0.08 136 014 008
(1) (5) 2 (1)
h=6
AR* —0.129% 134010 0140 08522
AR' —0.31%% 113" —0.15°0  0.08"*
VARy, —0.11%4 13496 —0.14%4 008678
VARL, —0.33"1 110" —0.15°0  0.08"°
VAR —0.11%6 13472 —0.14°7%  .08%0
VARLy —0.33%% 10990 —0.15%0  0.08°0
VARL,  —0.1197 134979 —0.14%3  0,0801%
VAR, —0.334 11190 —0.15°0  0.08%°
EW —0.11 132 —014 0.8
(Rank) (2) (5) (5) (5)
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Industrial Production

Model LS QS CRPS SE
h=1
AR® 1042 05124 03500 (.44
AR! —1.02*1 05178 03379 039920
VARj . —1.07"% 0490  —0.36"" 046"
VAR), —1.05°%7 0.50%"  —0.34'15 04193
VARj; —1.01%22 0.51%8  —0.34311 04122
VARY;  —1.05°% 050120 —0.34%%6  0.41%4
VARj;,; —1.02°7 049" —0.35'%  043%7
VAR},;  —1.04% 050" —0.34%2 041400
EW ~0.98 052  -033 040
(Rank) )] )] ) 2
h=3
AR® 10510 04977 —0.35*9  0.43%
AR! 10470 048155 —0.337M7 (.37
VARj, —1.042M1 04984 —0.35%4 04202
VAR, —1.0779  048%1  —0.34%6 041777
VARj; —1.03%19 049377 —0.34%1 04225
VAR, —1.08%1 048102 —0.34°6 .407"3
VARj, —1.04"3 04837 —0.35°2  0.43°°
VAR},, —1.08%2 04877 —0.34'81 040"
EW —~1.01 050  —034 040
(Rank) 1 m 2 (2
h=6
AR® —114%% 04710 03707 0.49%%
AR —112%% 047 —0.357  0.42000
VARj, —L10°1 048%9 —0.35'26 0439
VAR —111%0 0477 03591 041208
VARj, —1.09%% 0.48%08 S 04377
VAR), —11270 047197 —0.352 0.41%°
VARj,, —1.10%0 0.48%6 —035%5  0.4410%
VARY, —1.14%  046%% —0.35'%5 04348
EW —~1.08 048 035 043
(Rank) m ) ®3) )
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bian Kriiger (University of Konstanz)

Treasury Bill Rate

Model LS QS CRPS SE
h=1
AR® —0.02%%9 16100 0128 0,042
AR' 023" 11190 —0.15°0  0.05%0
VAR‘TC —0.02°00 1,610% —0.12°%4  0.04>¢
VARG, —026°0  1.07°0 —0.15°0  0.04'0
VARg, 0.04%%4 1640 —0.12226 0,04'54
VARG, —0.24°0 1080 —0.14°0  0.04%0
VA *U —0.07%0 1,607 —0.12%%1 0.04%!
VARG, —024%0  1.09°0 —0.14°0  0.04%
EW 0.04 149 012 0.04
(Rank) (1) (5) (5) (1)
h=3
AR® —0.21"7  1.40%%  —0.13°0%  0.05%%
AR' 03200 0,990 —0.16°°  0.06%!
VARj, —021'7% 140%% —0.13"* 005
VARG, —0.35°0  0.96°° —0.16°°  0.05°%
VAR, —0.1175 14400 —013%9  0.057!
VAR, —034°0 0980 —0.16°°  0.057
VARG, —0.21%%2 1.42°% 0135 0.05°>!
VARG, 0340 0.98°0  —0.16°° 005777
EW —0.08 130 —013 005
(Rank) O (5) (5) ()
h=6
AR® —0.109% 1.39%7 —0.13%6 0,052
AR' 03490 0.97°0 —0.16°°  0.06%°
VARj  —0.0951% 13995 —0.13%7 0057
VARG, 0360 0.96°° —0.16°°  0.0570
VAR$,; —0.00%0 1.39°7 —0.13%7 .05
VARL,  —0.36"0 0960 —0.16°0  0.05%
VARg,, —0.09%12 1.38°9 —0.13%4 0.05°72
VARLy, —0.36%0  0.96°0 —0.16°0  0.05%%
EW —0.10 128 014 005
(Rank) ) (5) (5) 2
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bian Kriiger (University of Konstanz)

Unemployment Rate

Model LS QS CRPS SE
h=1
AR® 0.38*1 178 —0.09'2  0.03"0
AR 04119 187607 —0,09%0  0.02752
VARj o 0372 179" —0.09°%  0.03"?
VAR[ 036 1.80°7  —0.09*7  0.03%7
VAR, 0407 1.80"%  —0.09*° 0.037
VARL, 041 1.85%2  —0.09%9 0.02°47
VARj,  0.39210 1.86%0 —0.09' 0.037
VARG, 03485 18037 —0.09%0  0.03°0
EW 044 189  —0.09  0.02
(Rank) (1) ) (O] 2
h=3
AR® 0.38210 1.80" 0.03147
AR' 040%2 1.86%° 0.02121
VARj,, 0.38%  1.82°7 0.03%0
VARp 037%% 184210 0.02°36
VAR, 0.38%0 1.81%0 0.03%
VAR, 0384  1.84"3 00973 0.02%24
VARj; 040%5 18425 00930 00319
VARG, 03609 183204 00904 0,02003
EW 041 187 =009 002
(Rank) (1) M (2) (3)
h=6
AR® 03375 1L77% —0.09'%  0.03%?
AR' 0353 182095 0,076 0,033
VARj o 03501 18075 —0.09%!  0.03°0
VARp 03592 182005 —0,000 0.03%3
VARj, 0340 1794 —0.09°0  0.03°0
VARj,, 035™ 181227 —0.09%7 0.03%0
VARj, 036° 1.80°°  —0.09"%  0.03*6
VARG, 03355 180106 —0.09%0 0.03%5
EW 037 183 —0.09 003
(Rank) (1) S 3) )
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