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Motivation: Density forecasts

I Complete probability distributions over outcomes provide
information helpful for making economic decisions.

I Asset allocation decisions involve higher moments than just
first moment.

I Many central banks publish fancharts for forecasts of their
variables of interest.
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Motivation: US Real GDP Quarterly Growth Rate
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Models: 1-quarter ahead forecasts from AR(1) and MS(2)-AR(1).
Simple time series models give large uncertainty in forecasts.
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Motivation: Survey Data of US Stock Market (S&P500)
Returns
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Livingstone survey forecasts for 6-month ahead S&P500 index
returns.
Upturn in 1995 well forecasted; downturns around 2001 and in
2009 missed.
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Motivation: combination issues

• Averaging as tool to improve forecast accuracy (Barnes (1963),
Bates and Granger (1969)).
• Parameter and model uncertainties play an important role
(BMA, Roberts (1965)).
• Model performance varies over time, but with some persistence
(Diebold and Pauly (1987), Guidolin and Timmermann (2009),
Hoogerheide et al. (2010), Gneiting and Raftery (2007)).
• Model set is possible incomplete (Geweke (2009), Geweke and
Amisano (2010), Waggoner and Zha (2010)).
• Correlations between forecasts, therefore correlation between
weights (Garratt, Mitchell and Vahey (2011)).
• Model performances might differ over quantiles (mixture of
predictives).
• Models might perform differently for multiple variables of interest
(specific weight for each series, univariate models).
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Our contributions: non-Gaussian densities and time varying
non-linear weights

• We propose a distributional state-space representation of the
predictive densities and of the combination scheme. This
representation is general enough to include:

I Linear and Gaussian models (Granger and Ramanathan
(1994)).

I T-student models (Feng, Villani and Kohn (2009)).

I Dynamic mixtures of predictives (Huerta, Jiang and Tanner
(2003), Villagran and Huerta (2006)).

I Markov-switching models, copulas, as special cases.
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Our contributions: non-Gaussian densities and time varying
non-linear weights

• We consider time-varying (and logistic-transformed) weights via
convex combinations of the predictive densities (the time-varying
weights associated to the different forecasts densities belong to the
standard simplex) (Jacobs, Jordan, Nowlan and Hinton (1991)).

• Learning is a possible extension (Diebold and Pauly, (1987)).

• Our weights extend (optimal) least square weights in Granger
and Ramanathan (1984), Liang, Zou, Wan and Zhang (2011) and
Hansen (2006, 2007).

Billio Casarin Ravazzolo van Dijk Combining Predictive Densities



Applications and results

• We apply our methodology to combine stock index (S&P500)
model and survey based density forecasts. Economic and statistical
gains. Weight distributions vary over time with with survey based
forecasts getting a larger weight in the second of the sample (but
some opposite evidence in the tails).

• Model combinations improve the economics gains in our set up.

• Application to GDP growth rate shows the contribution of the
learning mechanism in the weights.

• Application to GDP and Inflation still gives large uncertainty in
the weights (cannot rule out equal weights).
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Previous Papers: Model combinations

• Barnes (1963): the first mention of model combination.

• Roberts (1965): obtained a distribution which includes the
predictions from two experts (or models). This distribution is
essentially a weighted average of the posterior distributions of two
models. This is similar to a Bayesian Model Averaging (BMA)
procedure.

• Bates and Granger (1969): seminal paper about combining
predictions from different forecasting models.

• Genest and Zidek (1986): pooling of density forecasts.

• Useful reviews: Hoeting et al. (1999) (on BMA with historical
perspective), Granger (2006) and Timmermann (2006) (forecasts
combination).
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Previous Papers: Combination via State-space models

• Granger and Ramanathan (1984): combine the forecasts with
unrestricted regression coefficients as weights.
• Diebold and Pauly, (1987) discuss time-varying weights as
random walk or with learning.
• Terui and Van Dijk (2002): generalize the least squares model
weights by representing the dynamic forecast combination as a
state space. In their work the weights are assumed to follow a
random walk process.
• Guidolin and Timmermann (2009): introduced Markov-switching
weights.
• Hoogerheide et al. (2010) and Groen et al. (2009): robust
time-varying weights and accounting for both model and parameter
uncertainty in model averaging.
• Hansen (2006, 2007): least squares model averaging and Mallow
criteria for optimal restricted [0,1] weights.
• Liang, Zou, Wan and Zhang (2011): theoretical foundation of
Bates and Granger.
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Notation

• yt ∈ Y ⊂ RL: vector of observable variables;

• yt ∼ p(yt |y1:t−1): conditional forecast density;

• ỹk,t ∈ Y ⊂ RL, with k = 1, . . . ,K : a set of one-step-ahead
predictors for yt . (The combination methodology can be extended
to multi-step-ahead predictors).

• ỹk,t ∼ p(ỹk,t |y1:t−1), k = 1, . . . ,K : conditional density of
observable predictive densities.

• ỹt = vec(Ỹ ′
t ), where Ỹt = (ỹ1,t , . . . , ỹK ,t).
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Previous Combination Methods

Linear pooling

p(yt |y1:t−1) =
K∑

k=1

wk,tp(ỹk,1:t |y1:t−1)

where wk,t is scalar and it is computed minimizing a loss function.
Mixture of predictives

p(yt |y1:t−1) =
K∑

k=1

gk,t(wk,t |y1:t−1, ỹ1:t−1)p(ỹk,1:t |y1:t−1)

where gk,t(wk,t |y1:t−1, ỹ1:t−1) is a density.
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Combination of Densities (a general representation)

Combination scheme: a probabilistic relation between the density
of the observable variable and the predictive densities:

p(yt |y1:t−1) =

∫
ỸKt

p(yt |ỹ1:t , y1:t−1)p(ỹ1:t |y1:t−1)d ỹ1:t

(Conditional dependence structure between yt and ỹ1:t : not
defined yet).
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Combination of Densities (the latent space for the weights)

• 1n = (1, . . . , 1)′ ∈ Rn, 0n = (0, . . . , 0)′ ∈ Rn

• ∆[0,1]n ⊂ Rn: the set of w ∈ Rn s.t. w′1n = 1 and wk ≥ 0,
k = 1, . . . , n. ∆[0,1]n is called the standard n-dimensional simplex
and is the latent space.

• Wt ∈ W ⊂ RL × RKL: time-varying weights of the combination
scheme. Denote with w l

k,t the k-column and l-row elements of Wt ,

wl
t = (w l

1,t , . . . ,w
l
KL,t)

′ s.t. wl
t ∈ ∆[0,1]K

Latent space: the time series of [0, 1] weights

Weights: interpreted as a discrete p.d.f. over the set of predictors.
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Combination of Densities (weight dynamics)

Let Wt ∼ p(Wt |Wt−1, ỹt−τ :t−1) be the density of the time-varying
weights, then p(yt |y1:t−1) can be written as∫

YKt

(∫
W
p(yt |Wt , ỹt)p(Wt |y1:t−1, ỹ1:t−1)dWt

)
p(ỹ1:t |y1:t−1)d ỹ1:t

where

p(Wt |y1:t−1, ỹ1:t−1) =∫
W
p(Wt |Wt−1, ỹt−τ :t−1)p(Wt−1|y1:t−2, ỹ1:t−2)dWt−1
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Combination of Densities

I Incomplete set of models in p(yt |Wt , ỹt) (introducing an error
term).

I Multivariate averaging (if yt is multivariate).

I Random weights and learning in p(Wt |y1:t−1, ỹ1:t−1).

I Weights dynamics can account for correlations between
forecasts.
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Combination of Densities (Example)

Gaussian combination, Logistic-Gaussian Weights with
Learning and correlations

p(yt |Wt , ỹt) ∝ exp

{
−1

2
(yt −Wt ỹt)

′Σ−1 (yt −Wt ỹt)

}
where the weights are logistic transforms with k elements

w l
k,t =

exp{x lk}∑KL
j=1 exp{x lj }

, with k = 1, . . . ,KL

with l = 1, . . . , L of the latent process xt , which has transition

Billio Casarin Ravazzolo van Dijk Combining Predictive Densities



Combination of Densities (Example)

p(xt |xt−1, ỹ1:t−1)∝exp

{
−1

2
(∆xt −∆et)

′ Λ−1 (∆xt −∆et)

}
where et = vec(Et), with the elements of et defined by

e l ,dk,t = (1− λ)
τ∑

i=1

λi−1(y lt−i − ŷ l ,dk,t−i )
2

• We do not choose between learning and time-varying weights

(Diebold and Pauly (1987), Timmermann (2006)), but combine
the two approaches. Λ estimates correlation between weights
(extending Clements and Harvey (2011)).
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Combination of Densities (Our choice non-linear filtering)

The conditional density p(yt |yt−1) can be approximated as follows.

• First, draw j independent values yj1:t+1, with j = 1, . . . ,M from
p(ỹs+1|y1:s), with s = 1, . . . , t.

• Conditionally on ỹj1:t+1 obtain the particle sets

Ξi ,j
1:t+1 = {zi ,j1:t+1, ω

i ,j
t }Ni=1, with j = 1, . . . ,M.

• Simulate yi ,jt+1 from p(yt+1|zi ,jt+1, ỹ
j
t+1) and obtain

pN,M(yt+1|y1:t) =
1

M

M∑
j=1

N∑
i=1

ωi ,j
t δ

yi,jt+1
(yt+1)

Billio Casarin Ravazzolo van Dijk Combining Predictive Densities



Empirical Applications: GDP and Inflation

• Variables: GDP and inflation measured as PCE deflator.
• Source: Bureau of Economic Analysis.

• Sample: 1960Q1 - 2009Q4.
• Forecasting: 1-step ahead 1980Q1 - 2009Q4.

• Point and density forecasting.
• Individual models: AR and VAR, (2-state) MS AR and VAR.

• BMA: based on predictive likelihood (KLIC).
• TVW: time variation.
• TVW(λ, τ): learning with (λ = 0.95, τ = 9)
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Univariate Results (GDP)

AR VAR ARMS VARMS BMA TVW TVW(λ, τ)
RMSPE 0.882 0.875 0.907 1.000 0.885 0.799 0.691
CW 1.625 1.274 1.587 -0.103 7.185 7.984
LS -1.323 -1.381 -1.403 -1.361 -2.791 -1.146 -1.151
p LS 0.337 0.003 0.008 0.001 0.016 0.020
PITS 0.042 0.098 0.164 0.000 0.316 0.468 0.851

Table: TVW : time-varying weights without learning. TVW(λ, τ):
time-varying weights with learning mechanism (smoothness parameter
λ = 0.95 and window size τ = 9.)
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Weight dynamics: learning effect
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Median weights change over time; learning effect is evident mainly
on the tails.
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Time-varying weights with learning
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Large uncertainty and equal weights is possible.
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Incompleteness
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Fan chart Turning point predictions
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Still large time-variation.
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Multivariate Results

AR VAR ARMS VARMS BMA TVW(λ, τ)
GDP

RMSPE 0.882 0.875 0.907 1.000 0.885 0.718
CW 1.625 1.274 1.587 -0.103 8.554
LS -1.323 -1.381 -1.403 -1.361 -2.791 -1.012

(p-value) 0.337 0.003 0.008 0.001 0.015
PITS 0.042 0.098 0.164 0.000 0.316 0.958

PCE
RMSPE 0.385 0.384 0.384 0.612 0.382 0.307
CW 1.036 1.902 1.476 1.234 6.715
LS -1.538 -1.267 -1.373 -1.090 -1.759 -0.538

(p-value) 0.008 0.024 0.007 0.020 0.024
PITS 0.001 0.000 0.000 0.000 0.000 0.095

Table: Upper table: GDP. Bottom table: PCE.
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Empirical Application: Stock Index

• Variables: 6-month Standard & Poor 500 index returns.
• Individual densities: White Noise (WN) and Survey (SR)
(nonparametric combination of point forecasts. Parametric:
ensemble methodology; Sloughter, Gneiting and Raftery (2010)).
• Source: Livingston Survey Database.

• Sample: 1991M06-2009M12.
• Forecasting: 6-month ahead.

• Point and density forecasting.

• Time-varying weight combinations with learning (λ = 0.95,
τ = 9)

• Risky-risk free power utility investor (no short selling):
annualized mean portfolio return, annualized standard deviation,
annualized Sharpe ratio and equivalent final values.
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Density Combination
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Accuracy evaluation 1

WN SR DC

Panel A: Statistical accuracy

RMSPE 12.62 11.23 11.54
SIGN 0.692 0.718 0.692

LS -3.976 -20.44 -3.880
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Accuracy evaluation 2

Panel B: Economic analysis

γ = 4 γ = 6 γ = 8

WN SR DC WN SR DC WN SR DC

Mean 5.500 7.492 7.228 4.986 7.698 6.964 4.712 7.603 6.204
St dev 14.50 15.93 14.41 10.62 15.62 10.91 8.059 15.40 8.254
SPR 0.111 0.226 0.232 0.103 0.244 0.282 0.102 0.241 0.280

Utility -12.53 -12.37 -12.19 -7.322 -7.770 -6.965 -5.045 -6.438 -4.787
rs 73.1 157.4 254.2 471.5 234.1 671.6 950.9 254.6 1101
rm -202.1 -117.8 -20.94 -114.3 -351.7 85.84 3.312 -693.0 153.5
rb -138.2 -53.9 43.03 -131.3 -368.8 68.79 -98.86 -795.1 51.32

Results robust to transaction costs.
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Weight Dynamics
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SR weight contours
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Model weights differ over quantiles and time.
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SR weight contours
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Conclusions

• New combination approaches of predictive densities:

1. Distributional state-space representation and nonlinear
Bayesian filtering (Regularised Particle Filter) for the optimal
weights estimation.

2. Nonparametric forecast performance measures for optimal
weights estimation.

• Applications to macroeconomics (GDP and PCE) and finance
(stock prices).

• Nonlinear combinations with learning outperform (economically
and statistically) individual models and BMA.
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Future research

• Combining models for turning point forecasts.

• Combining larger set of models, e.g., FAVAR, DSGE.

• Efficient simulation techniques for combining forecast densities
defined on high dimensional state space.

Billio Casarin Ravazzolo van Dijk Combining Predictive Densities


