

Inst **Moneta**i Finan Stal



## Workshop on "Money, Finance and Banking in East Asia"

Training Centre of the Deutsche Bundesbank, Eltville 5-6 December 2011

#### **Enzo Weber**

University of Regensburg and IAB

Discussion of

"Modelling East Asian economies in a small open economy VECM: the influence of international and domestic shocks"



Institute for Employment Research

The Research Institute of the Federal Employment Agency

# M. Dungey / T. Vehbi: Modelling East Asia economics in a small open economy VECM: The inferences of international and domestic shocks

3<sup>rd</sup> Workshop on Money, Finance, and Banking in East Asia
December 6, 2011, Eltville

**Enzo Weber** 

IAB and Universität Regensburg



### Why should you read this paper?

- Theory-based framework
- Empirical modelling with minimal assumptions
- Both long-run and short-run structure
- Consideration of history of currency regimes
- Comparison between South-East Asian countries
- Comparison between US and Chinese shocks

#### Why should you read this paper...

... only after some revisions?

#### **Theoretical Model**

Real interest rate parity

$$E_t \Delta q_{t+1} = (r_t - E_t \pi_{t+1}) - (r_t^* - E_t \pi_{t+1}^*) - \epsilon_{RER_t}$$

- Risk premium?
- Shock to expected RER change?

#### Regimes

Output and Phillips equations:

$$y_{t} = \mu E_{t} y_{t+1} + (1 - \mu) y_{t-1} - \emptyset (\mathbf{r}_{t-1} - \mathbf{E}_{t-1} \pi_{t}) + \theta_{2} y_{t}^{*} + I_{t} [\mu E_{t} y_{t+1} + (1 - \mu) y_{t-1} - \emptyset (r_{t-1} - E_{t-1} \pi_{t}) + \theta_{1} \Delta q_{t} + \theta_{2} y_{t}^{*}] + \varepsilon_{AS_{t}}$$
(18)  

$$\pi_{t} = \delta_{1} E_{t} \pi_{t+1} + (1 - \delta_{1}) \pi_{t-1} + \lambda_{1} y_{t} + I_{t} [\delta_{1} E_{t} \pi_{t+1} + (1 - \delta_{1}) \pi_{t-1} + \lambda_{1} y_{t} + \theta_{3} \Delta q_{t}] + \varepsilon_{AS_{t}}$$

- Indicator only for q-term?
- Why do reactions of output and inflation to RER depend on exchange rate regime?

#### Regimes II

Taylor rule and interest rate parity

$$r_{t} = I_{t}[\rho r_{t-1} + (1 - \rho)(\beta E_{t} \pi_{t+1} + \gamma y_{t})] + \varepsilon_{MP_{t}}$$

$$E_{t} \Delta q_{t+1} = I_{t}[(r_{t} - E_{t} \pi_{t+1}) - (r_{t}^{*} - E_{t} \pi_{t+1}^{*}) - \varepsilon_{RER_{t}}$$

- Fixed FX regime: r = policy shock?
- If exchange rate constant then r=r\*!
- Solution to regime change: structural break in parameters – rather only for r and q equations? Test?

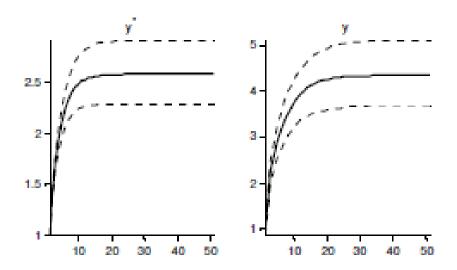
### (Co-) Integration

- Unit root tests with break (e.g. RER in Asian crisis)
- Test for cointegration (between q, y, y\*)
- Inflation and interest rates treated as I(0) RER clearly I(1)?

#### **Empirical Model**

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ b_{21}^{0} & 1 & 0 & 0 & 0 \\ 0 & b_{32}^{0} & 1 & 0 & 0 \\ 0 & b_{42}^{0} & b_{43}^{0} & 1 & 0 \\ b_{51}^{0} & b_{52}^{0} & b_{53}^{0} & b_{54}^{0} & 1 \end{bmatrix} \Delta Y_{t} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \alpha_{32} & 0 \\ 0 & \alpha_{42} & \alpha_{43} \\ \alpha_{51} & \alpha_{52} & \alpha_{53} \end{bmatrix} \begin{bmatrix} \beta_{11} & 1 & 0 & 0 & \beta_{51} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} Y_{t-1}$$

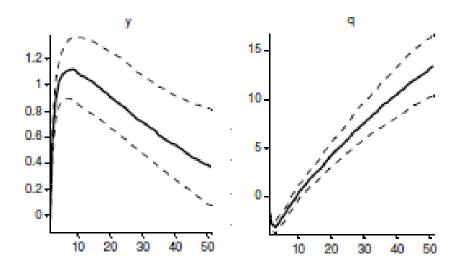
$$+ \begin{bmatrix} b_{11}^{l} & 0 & 0 & 0 & 0 \\ b_{21}^{l} & b_{22}^{l} & b_{23}^{l} & b_{24}^{l} & b_{25}^{l} \\ 0 & b_{32}^{l} & b_{33}^{l} & 0 & b_{35}^{l} \\ 0 & b_{42}^{l} & b_{43}^{l} & b_{44}^{l} & 0 \\ b_{51}^{l} & b_{52}^{l} & b_{53}^{l} & b_{54}^{l} & 1 \end{bmatrix} \Delta Y_{t-1} + \begin{bmatrix} 0 \\ 0 \\ c \\ 0 \\ 0 \end{bmatrix} Oil + \begin{bmatrix} \varepsilon_{t}^{AD^{*}} \\ \varepsilon_{t}^{AD} \\ \varepsilon_{t}^{AS} \\ \varepsilon_{t}^{MP} \\ \varepsilon_{t}^{RER} \end{bmatrix}$$


In general: Discuss links between theoretical and empirical model more in detail.

#### **Empirical Model II**

- Contemporaneous structure recursive
  - no long-run identification needed!?
- Many restrictions testable
- Meaning of 3rd cointegration relation?
- Lag length selection?
- Taylor rule: RER?
- Effect of y\*-shock only on y –
   but r\* correlated with y\*-shock
   in fact direct effect of y\*-shock on r!

#### Singapore


Foreign shock:



- Extremely high multiplier!
- 2008/9: Reason for high contribution of domestic inflation shock?

#### Philippines, Malaysia, Indonesia

Foreign shock (domestic shock mirrored):



- Divergence? Check cointegration relation!
- Reason for negative inflation reaction?