DISCUSSION OF SIGNALING EFFECTS OF MONETARY POLICY BY L. MELOSI

> JAMES M. NASON FRB-Philadelphia

Prepared for Spring 2012 Bundesbank/Philly Fed Conference Monetary policy, Inflation, and International Linkages @ Training Centre of the Bundesbank Eltville am Rhein, Germany 24 May 2012

LM: INCOMPLETE INFORMATION AND POLICY SIGNALS

・ロン ・四 ・ ・ 回 ・ ・ 回 ・

LM: NK MODEL OF INCOMPLETE INFORMATION

DISPERSE INFORMATION AND EXPECTATIONS

HETERODOX NKPCS AND EXPECTATIONS?

CHARACTERIZING THE SPF

JIM NASON

FINAL THOUGHTS

ヘロア 人間 アメヨア 人口 ア LM: INCOMPLETE INFORMATION AND POLICY SIGNALS

э

LM SUMMARY

Incorporate agents with "Dispersed Information Sets" into a small NK model only states are exogenous shocks.

æ

LM SUMMARY

- Incorporate agents with "Dispersed Information Sets" into a small NK model only states are exogenous shocks.
- The model is a household, a government, monopolistically competitive firms, and an information structure.

ヘロア 人間 アメヨア 人間 アー

LM SUMMARY

- Incorporate agents with "Dispersed Information Sets" into a small NK model only states are exogenous shocks.
- The model is a household, a government, monopolistically competitive firms, and an information structure.

(1) Household: sell labor services into spot market, buy a 1-period unit discount bond from the govt, consume, and suffer a AR(1) preference shock, g_t .

LM SUMMARY

- Incorporate agents with "Dispersed Information Sets" into a small NK model only states are exogenous shocks.
- The model is a household, a government, monopolistically competitive firms, and an information structure.

(1) Household: sell labor services into spot market, buy a 1-period unit discount bond from the govt, consume, and suffer a AR(1) preference shock, g_t .

(2) Govt: lump-sum tax on household to pay off bonds and interest and targets its policy rate, R_t , using a Taylor rule hit by AR(1) shock $\eta_{r,t}$.

・ロト・日本・日本・日本・日本・今日・

LM SUMMARY

- Incorporate agents with "Dispersed Information Sets" into a small NK model only states are exogenous shocks.
- The model is a household, a government, monopolistically competitive firms, and an information structure.

(1) Household: sell labor services into spot market, buy a 1-period unit discount bond from the govt, consume, and suffer a AR(1) preference shock, g_t .

(2) Govt: lump-sum tax on household to pay off bonds and interest and targets its policy rate, R_t , using a Taylor rule hit by AR(1) shock $\eta_{r,t}$.

(3) Firm j mixes its idiosyncratic TFP shock, $A_{j,t}$ with labor to produce its good and, although a monopolist, is afflicted by time-dependent reset pricing rules.

INFORMATION STRUCTURE AND INCENTIVES

Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π^{*} and R^{*}, a noisy version of g_t, and R_t.

・ロト・西ト・ヨト・ヨー もくや

INFORMATION STRUCTURE AND INCENTIVES

- Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π^{*} and R^{*}, a noisy version of g_t, and R_t.
- Household and govt see everything including common AR(1) TFP shock a_t , g_t , and $\eta_{r,t}$.

- Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π^{*} and R^{*}, a noisy version of g_t, and R_t.
- Household and govt see everything including common AR(1) TFP shock a_t , g_t , and $\eta_{r,t}$.
- Assumption is these agents cannot credibly tell firms history of $\mathcal{H}_{\tau} = \left\{ a_t \ g_t \ \eta_{r,t} \right\}_{t=0}^{\tau}$.

- Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π^{*} and R^{*}, a noisy version of g_t, and R_t.
- Household and govt see everything including common AR(1) TFP shock a_t , g_t , and $\eta_{r,t}$.
- Assumption is these agents cannot credibly tell firms history of $\mathcal{H}_{\tau} = \left\{ a_t \ g_t \ \eta_{r,t} \right\}_{t=0}^{\tau}$.

(1) Firms expect govt to produce surprise inflation. Will it?

- Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π* and R*, a noisy version of g_t, and R_t.
- Household and govt see everything including common AR(1) TFP shock a_t , g_t , and $\eta_{r,t}$.
- Assumption is these agents cannot credibly tell firms history of $\mathcal{H}_{\tau} = \left\{ a_t \ g_t \ \eta_{r,t} \right\}_{t=0}^{\tau}$.

(1) Firms expect govt to produce surprise inflation. Will it?(2) Either govt committed to its Taylor rule or it isn't.

LM: INCOMPLETE INFORMATION AND POLICY SIGNALS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Information structure assumes at date *t* firms only see their own A_{j,t} and own good price, P_{j,t}, steady state inflation and R_t, π* and R*, a noisy version of g_t, and R_t.
- Household and govt see everything including common AR(1) TFP shock a_t , g_t , and $\eta_{r,t}$.
- Assumption is these agents cannot credibly tell firms history of $\mathcal{H}_{\tau} = \left\{ a_t \ g_t \ \eta_{r,t} \right\}_{t=0}^{\tau}$.

(1) Firms expect govt to produce surprise inflation. Will it? (2) Either govt committed to its Taylor rule or it isn't. (3) Household may not want inflation surprise anymore than firms; could sell \mathcal{H}_{τ} to firms at a price.

FIRMS AND DISPERSED INFORMATION

► Dispersed information: firm *j*'s $\mathcal{H}_{j,\tau}$ never equals firm ℓ 's.

But firm *j* has to form expectations of its future marginal cost, $mc_{j,t+1}$, and future aggregate inflation, π_{t+1} , to understand NKPC.

イロン イロン イヨン イヨン 三日

FIRMS AND DISPERSED INFORMATION

► Dispersed information: firm *j*'s $\mathcal{H}_{j,\tau}$ never equals firm ℓ 's.

But firm *j* has to form expectations of its future marginal cost, $mc_{j,t+1}$, and future aggregate inflation, π_{t+1} , to understand NKPC.

 Nimark (2011) solves Euler equations under DI with linear version of Singleton's (1987) average expectations operator.

 \Rightarrow iterate expectations forward by averaging instead of law of iterated expectations.

イロン 不良 とくほう 不良 とうせい

FIRMS AND DISPERSED INFORMATION

► Dispersed information: firm *j*'s $\mathcal{H}_{j,\tau}$ never equals firm ℓ 's.

But firm *j* has to form expectations of its future marginal cost, $mc_{j,t+1}$, and future aggregate inflation, π_{t+1} , to understand NKPC.

 Nimark (2011) solves Euler equations under DI with linear version of Singleton's (1987) average expectations operator.

 \Rightarrow iterate expectations forward by averaging instead of law of iterated expectations.

▶ Not Townsend's "Forecasting the Forecasts of Others".
⇒ where agents know same stuff with a lag.

JIM NASON

▶ NK model has firm *j* computing its optimal reset price,

$$\ln P_{j,t}^* = \int \mathbf{E} \Big\{ \mathcal{K} \Big(\ln mc_{j,t}, \ln P_t, \ln P_{j,t+1}^* \Big| \mathcal{H}_{j,t} \Big) \Big\} dj.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

JIM NASON

▶ NK model has firm *j* computing its optimal reset price,

$$\ln P_{j,t}^* = \int \mathbf{E} \Big\{ \mathcal{K} \Big(\ln mc_{j,t}, \ln P_t, \ln P_{j,t+1}^* \Big| \mathcal{H}_{j,t} \Big) \Big\} dj.$$

• $\mathcal{K}(\cdot)$ linearized NKPC and $\mathcal{H}_{j,t} = \left\{ A_{jt} \ g_{j,t} \ P_{j,t}, \ R_t \right\}_{t=0}^{\tau}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

JIM NASON

▶ NK model has firm *j* computing its optimal reset price,

$$\ln P_{j,t}^* = \int \mathbf{E} \Big\{ \mathcal{K} \Big(\ln mc_{j,t}, \ln P_t, \ln P_{j,t+1}^* \Big| \mathcal{H}_{j,t} \Big) \Big\} dj.$$

• $\mathcal{K}(\cdot)$ linearized NKPC and $\mathcal{H}_{j,t} = \left\{ A_{jt} \ g_{j,t} \ P_{j,t}, \ R_t \right\}_{t=0}^{\tau}$.

• Solution using
$$\ln P_{j,t+1|t}^{*1} = \int \mathbf{E} \left\{ \ln P_{j,t+1}^* \middle| \mathcal{H}_{j,\tau} \right\} dj.$$

LM: INCOMPLETE INFORMATION AND POLICY SIGNALS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ NK model has firm *j* computing its optimal reset price,

$$\ln P_{j,t}^* = \int \mathbf{E} \Big\{ \mathcal{K} \Big(\ln mc_{j,t}, \ln P_t, \ln P_{j,t+1}^* \Big| \mathcal{H}_{j,t} \Big) \Big\} dj.$$

• $\mathcal{K}(\cdot)$ linearized NKPC and $\mathcal{H}_{j,t} = \left\{ A_{jt} \ g_{j,t} \ P_{j,t}, \ R_t \right\}_{t=0}^{\tau}$.

• Solution using
$$\ln P_{j,t+1|t}^{*1} = \int \mathbf{E} \left\{ \ln P_{j,t+1}^* \middle| \mathcal{H}_{j,\tau} \right\} dj.$$

• Can iterate forward and average, but a linearized NK model.

◆□ > ◆□ > ◆ □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ● < □ > ●

APPROXIMATION ERROR?

JIM NASON

 Implicit in iterate forward, average expectations, iterate forward, ..., average expectations, iterate forward,,

$$\ln P_{j,t+k|t+k-1|...|t+1|t}^{*k} = \int \mathbf{E} \left\{ \ln P_{t+k-1|t+k-2|...|t+1|t}^{*} \middle| \mathcal{H}_{j,\tau} \right\} dj$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

APPROXIMATION ERROR?

 Implicit in iterate forward, average expectations, iterate forward, ..., average expectations, iterate forward,,

$$\ln P_{j,t+k|t+k-1|...|t+1|t}^{*k} = \int \mathbf{E} \left\{ \ln P_{t+k-1|t+k-2|...|t+1|t}^{*} \middle| \mathcal{H}_{j,\tau} \right\} dj$$

is that approximation error

$$\ln P_{j,t+k|t+k-1|\dots|t+1|t}^{*k} - \int \int \dots \int \mathbf{E} \left\{ \ln P_{t+1}^* \middle| \mathcal{H}_{j,\tau} \right\} dj dj \dots dj$$

 \rightarrow 0, as expectation order $k \rightarrow \infty$.

APPROXIMATION ERROR?

 Implicit in iterate forward, average expectations, iterate forward, ..., average expectations, iterate forward,,

$$\ln P_{j,t+k|t+k-1|...|t+1|t}^{*k} = \int \mathbf{E} \left\{ \ln P_{t+k-1|t+k-2|...|t+1|t}^{*} \middle| \mathcal{H}_{j,\tau} \right\} dj$$

is that approximation error

$$\ln P_{j,t+k|t+k-1|\dots|t+1|t}^{*k} - \int \int \dots \int \mathbf{E} \left\{ \ln P_{t+1}^* \middle| \mathcal{H}_{j,\tau} \right\} dj dj \dots dj$$

 \rightarrow 0, as expectation order $k \rightarrow \infty$.

 Implies impact of expectations shock decays, say, as a persistent high order AR to shock.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

PROS OF HIGHER ORDER BELIEFS

 A compelling story that firms misconstrue supply and demand (preference) shocks.

PROS OF HIGHER ORDER BELIEFS

- A compelling story that firms misconstrue supply and demand (preference) shocks.
- Monetary policymaker may be able to signal to firms the source of the shock.

PROS OF HIGHER ORDER BELIEFS

- A compelling story that firms misconstrue supply and demand (preference) shocks.
- Monetary policymaker may be able to signal to firms the source of the shock.
- Dispersed information is a mechanism to evaluate forward guidance of monetary policy, say, of the sort the FOMC offered after its August 2011 meeting.

PROS OF HIGHER ORDER BELIEFS

- A compelling story that firms misconstrue supply and demand (preference) shocks.
- Monetary policymaker may be able to signal to firms the source of the shock.
- Dispersed information is a mechanism to evaluate forward guidance of monetary policy, say, of the sort the FOMC offered after its August 2011 meeting.
- If you work for a member or members of the FOMC, this paper could be useful.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CONS OF HIGHER ORDER BELIEFS

Approximation error issue not settled; see Rondina and Walker (2012) for examples suggesting error could be large.

э

CONS OF HIGHER ORDER BELIEFS

- Approximation error issue not settled; see Rondina and Walker (2012) for examples suggesting error could be large.
- Append an auxiliary model, a VAR(1), to state equations of NK state space model to restrict path of dispersed information equilibrium in KF filtering routines.

 \Rightarrow Invoke Weierstrass Theorem to obtain better approximating non-Gaussian auxiliary model?

・ロン ・四 ・ ・ 回 ・ ・ 回 ・

CONS OF HIGHER ORDER BELIEFS

- Approximation error issue not settled; see Rondina and Walker (2012) for examples suggesting error could be large.
- Append an auxiliary model, a VAR(1), to state equations of NK state space model to restrict path of dispersed information equilibrium in KF filtering routines.

 \Rightarrow Invoke Weierstrass Theorem to obtain better approximating non-Gaussian auxiliary model?

Similar to Sargent (JPE, 1989).

 \Rightarrow Econometrician handles measurement error in data adding VAR(1) to state equations when constructing likelihood via the KF.

・ロト ・四ト ・ヨト ・ ヨト

 Averaging of expectations in NKPC first in Roberts (JMCB, 1995) and Nunes (JMCB, 2011) and Smith (JEDC, 2011).

- Averaging of expectations in NKPC first in Roberts (JMCB, 1995) and Nunes (JMCB, 2011) and Smith (JEDC, 2011).
- Nunes follows Galí and Gertler (JME, 1999) tradition, but backward-looking "rule of thumb" price setters update their price with last period's optimal update and survey expectations rather than rational expectations,

$$P_t^B = P_{t-1}^* + E_{t-1}^S \pi_t.$$

- Averaging of expectations in NKPC first in Roberts (JMCB, 1995) and Nunes (JMCB, 2011) and Smith (JEDC, 2011).
- Nunes follows Galí and Gertler (JME, 1999) tradition, but backward-looking "rule of thumb" price setters update their price with last period's optimal update and survey expectations rather than rational expectations,

$$P_t^B = P_{t-1}^* + E_{t-1}^S \pi_t.$$

► $E_t \pi_{t+1}$, π_{t-1} , $E_{t+1}^S \pi_t$, and $E_{t-1}^S \pi_t$ enter Nunes' hybrid NKPC.

LM: INCOMPLETE INFORMATION AND POLICY SIGNALS

- Averaging of expectations in NKPC first in Roberts (JMCB, 1995) and Nunes (JMCB, 2011) and Smith (JEDC, 2011).
- Nunes follows Galí and Gertler (JME, 1999) tradition, but backward-looking "rule of thumb" price setters update their price with last period's optimal update and survey expectations rather than rational expectations,

$$P_t^B = P_{t-1}^* + E_{t-1}^S \pi_t.$$

► $E_t \pi_{t+1}$, π_{t-1} , $E_{t+1}^S \pi_t$, and $E_{t-1}^S \pi_t$ enter Nunes' hybrid NKPC.

Smith draws on Gottfries and Persson (QJE, 1988): construct optimal recursive projection of RE forecast and survey forecast turning hybrid NKPC into OLS regression.

 Identify average expectations with SPF-GDP deflator inflation at 1-quarter and 4-quarter ahead horizons.

Average across SPF participants, but in an unbalanced panel.

 Identify average expectations with SPF-GDP deflator inflation at 1-quarter and 4-quarter ahead horizons.

Average across SPF participants, but in an unbalanced panel.

► Forecasting literature uses Median SPF inflation more often.

SPF

 Identify average expectations with SPF-GDP deflator inflation at 1-quarter and 4-quarter ahead horizons.

Average across SPF participants, but in an unbalanced panel.

- ► Forecasting literature uses Median SPF inflation more often.
- Why? Avoid outliers, changing composition of SPF participants, and Jensen's inequality problems.

・ロン ・四 ・ ・ 回 ・ ・ 回 ・

 Identify average expectations with SPF-GDP deflator inflation at 1-quarter and 4-quarter ahead horizons.

Average across SPF participants, but in an unbalanced panel.

- ► Forecasting literature uses Median SPF inflation more often.
- Why? Avoid outliers, changing composition of SPF participants, and Jensen's inequality problems.
- Does this matter

 $E{\pi_{t+1|t}}, 1974Q3 - 2012Q2$

SPF - Alternative Medians for Q/Q Inflation (PGDP)

Horizon: 1 Quarters Ahead

Ambitious, challenging work, that creates value-added for the literature.

æ

JIM NASON

- Ambitious, challenging work, that creates value-added for the literature.
- What matters for expectations formation of firms with dispersed information sets?

・ロト ・四ト ・ヨト ・ ヨト

э

- Ambitious, challenging work, that creates value-added for the literature.
- What matters for expectations formation of firms with dispersed information sets?
- Averaging their expectations? Or endowing firms and econometrician with stationary auxiliary DGP that approximates expectations with a reduced-form joint probability density of shocks not observed by firms?

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Ambitious, challenging work, that creates value-added for the literature.
- What matters for expectations formation of firms with dispersed information sets?
- Averaging their expectations? Or endowing firms and econometrician with stationary auxiliary DGP that approximates expectations with a reduced-form joint probability density of shocks not observed by firms?
- Is using SPF as source of expected inflation consistent with firms facing problem of dispersed information?

・ロト・日本・日本・日本・日本・今日・