Conclusions

Tails of inflation forecasts and tales of monetary policy

Philippe Andrade Banque de France

Eric Ghysels UNC Chapel Hill

Julien Idier Banque de France & ECB

Spring conference Bundesbank – Philadelphia Fed May 24, 2012

Risk management and monetary policy

- Central bankers pay attention to measures other than central tendency of inflation expectations
- However, bulk of literature focuses on linear decision rules/symmetric losses. Decisions are made conditional on point inflation forecasts.
- Does the distribution around point inflation forecasts play a role in the conduct of monetary policy?
 - In particular extreme/asymmetric inflation risks

Empirics

Approach

- We introduce a measure of risk: <u>inflation-at-risk</u> (I@R)
 - Tails in the distribution of inflation forecasts
 - Typically the top and bottom 5% quantiles
- We use individual survey data (US & EA) to estimate these indicators
 - Probabilistic assessment of inflation scenarios
- Disentangling upside and downside risks
 - Not possible with the usual indicators (mean forecast, uncertainty, disagreement)

Contributions

- Document evolution of I@R
 - Intriguing patterns of temporal variation
- Show that I@R contains information about future inflation
 - Greater asymmetry to upside risk signals an increase in inflation
- Show that the Fed reacts to I@Rs
 - Greater upside risk amplifies monetary contraction

Related literature: Empirics

- Estimating conditional second moment of future inflation: Engle (1982), Stock & Watson (2007)
- Constructing survey-based disagreement uncertainty measures: Rich & Tracy (2010)
- Estimating deflation probability: Kilian & Manganelli (2007), Christensen, Lopez & Rudebusch (2011)
- Estimating 3rd and 4th order moments of forecast distributions: Garcia & Manzanares (2010), Knüppel & Schultefrankenfeld (2011)

Related literature: Theory

- Central banking and risk management: Kilian & Manganelli (2008)
- Asymmetric preferences of the CB: Ruge-Murcia (2003), Killian & Manganelli (2008)
- Monetary with robust control: Orphanides & Williams (2007), Hansen & Sargent (2010), Woodford (2011)...
- Uncertainty shocks and macroeconomic fluctuations: Bloom (2009), Bloom, Jaimovich & Floetotto (2011)...

Data: Surveys of professional forecasters

- US (Philadelphia Fed)
 - Since 1969/Quarterly/ \simeq 30 institutions
 - 1Y GDP deflator inflation within the US
- Euro area (ECB)
 - Since 1999/Quarterly/~ 60 institutions
 - 1Y headline inflation within the Euro-area
- Provide
 - Individual mean point forecasts
 - Individual probabilistic assessments for a range of inflation scenarios

Individual distributions of inflation risk

- Smoothing individual discontinuous probability distributions
 - Engelberg, Manski & Williams (2009)
 - Best fit of a <u>beta</u> distribution: $\widehat{F}_{it}(\pi_{t+h})$
 - Individual quantiles: $\widehat{q}_{it}(p) = \widehat{F}_{it}^{-1}(p)$
- Other individual information
 - Point forecasts: $\hat{\pi}^{e}_{it,t+h}$
 - Individual variance of point estimates: $\hat{\sigma}_{it}^2$ (using $\hat{\pi}_{it,t+h}^e$ and $\hat{F}_{it}(\pi_{t+h})$)

Measures of inflation risks

• Mean point forecasts (consensus):

$$\widehat{\mathsf{MPF}}_t = (1/n_t) \sum_i \widehat{\pi}^{e}_{it,t+h}$$

• Disagreement:

$$\widehat{\mathsf{DIS}}_t = (1/n_t) \sum_i (\widehat{\pi}^e_{it,t+h} - \widehat{\mathsf{MPF}}_t)^2$$

• Uncertainty:

$$\widehat{\mathsf{UNC}}_t = (1/n_t) \sum_i \widehat{\sigma}_{it}^2$$

Measures of inflation risks

Inflation-at-risk:

$$\widehat{\mathsf{I}@\mathsf{R}}_t(p) = (1/n_t)\sum_i \widehat{q}_{it}(p)$$

• Special case: median,

$$\widehat{\mathsf{MED}}_t = (1/n_t) \sum_i \widehat{q}_{it} (.5)$$

• Interquantile-range (dispersion):

$$\widehat{\mathsf{IQR}}_t(p) = (1/n_t) \sum_i [\widehat{q}_{it}(1-p) - \widehat{q}_{it}(p)]$$

• Asymmetry:

$$\widehat{\mathsf{ASY}}_{t}(p) = (1/n_{t}) \sum_{i} \{ [\widehat{q}_{it}(1-p) - \widehat{q}_{it}(.5)] - [\widehat{q}_{it}(.5) - \widehat{q}_{it}(p)] \}$$

I@R in the EA & the US - Realizations and MPF

I@R in the EA & the US - Realizations and I@R

Conclusions

I@R in the EA & the US - Overlapping sample comparison

I@R in the EA & the US - Asymmetries in the risks

United States, inflation asymmetries

We estimate

$$\pi_{t+k} = a_k + b_k \pi^e_{t+k|t} + \beta_k * Z_t + c_k \mathsf{IQR}^k_t(p) + d_k \mathsf{ASY}^k_t(p) + e_{t+k}$$

- Baseline specification
 - Risk p = 5%
 - Horizon: *k* = 1, 2, 3 years
 - Expected inflation: MPF^k_t
 - Controls: Z_t = (Output gap_t, Energy price inflation_t)

• Specification preferred to

$$\pi_{t+k} = a_k + b_k \pi^{e}_{t+k|t} + \beta_k * Z_t + c_k |@\mathbb{R}^k_t(1-p) + d_k |@\mathbb{R}^k_t(p) + e_{t+k}$$

- Reason why
 - $I@R_t^k(p)$, $I@R_t^k(1-p)$ and $\pi_{t+h|t}^e$ are strongly correlated
 - collinearity issues

	(1)	(2)	(3)	(4)	(5)
k = 1 year ahead					
MPF	0.688	0.716	0.693	0.716	0.519
	[6.913]	[7.761]	[7.231]	[7.612]	[6.593]
IQR		-0.162		-0.136	-0.135
		[-1.299]		[-1.091]	[-1.827]
ASY			3.925	3.845	3.576
			[2.861]	[2.634]	[2.773]
Lagged inf					0.215
					[2.128]
intercept	0.342	0.57	0.356	0.546	0.579
	[0.966]	[1.227]	[0.979]	[1.106]	[1.489]
\overline{R}^2	0.81	0.811	0.823	0.824	0.831

	(1)	(2)	(3)	(4)	(5)
k = 2 years ahead					
MPF	0.903	0.941	0.905	0.935	0.648
	[3.597]	[3.89]	[4.204]	[4.422]	[2.481]
IQR		-0.226		-0.178	-0.175
		[-1.181]		[-0.86]	[-1.037]
ASY			7.306	7.204	6.729
			[2.643]	[2.549]	[2.162]
Lagged inf					0.349
					[1.305]
intercept	0.523	0.841	0.563	0.812	0.797
	[0.821]	[1.058]	[0.846]	[1.025]	[1.097]
\overline{R}^2	0.511	0.512	0.558	0.558	0.575

(1)	(2)	(3)	(4)	(5)
0.936	0.979	0.935	0.969	0.425
[3.804]	[3.965]	[3.984]	[4.303]	[1.284]
	-0.256		-0.206	-0.194
	[-1.148]		[-0.902]	[-1.193]
		7.857	7.746	6.639
		[2.092]	[2.029]	[1.854]
				0.768
				[1.742]
0.75	1.117	0.811	1.104	0.905
[1.027]	[1.15]	[0.984]	[1.063]	[1.151]
0.303	0.304	0.356	0.355	0.443
	(1) 0.936 [3.804] 0.75 [1.027] 0.303	(1) (2) 0.936 0.979 [3.804] [3.965] -0.256 [-1.148] 0.75 1.117 [1.027] [1.15] 0.303 0.304	(1) (2) (3) 0.936 0.979 0.935 [3.804] [3.965] [3.984] -0.256 [-1.148] [-1.148] 7.857 [2.092] [2.092] 0.75 1.117 0.811 [1.027] [1.15] [0.984] 0.303 0.304 0.356	(1) (2) (3) (4) 0.936 0.979 0.935 0.969 [3.804] [3.965] [3.984] [4.303] -0.256 -0.206 [-1.148] [-0.902] 7.857 7.746 [2.092] [2.029] 0.75 1.117 0.811 1.104 [1.027] [1.15] [0.984] [1.063] 0.303 0.304 0.356 0.355

We estimate

$$\pi_{t+k} = a_k + b_k \pi_{t+k|t}^e + \beta_k * Z_t + c_k \mathsf{UNC}_t^k + d_k \frac{\mathsf{ASY}_t^k}{\mathsf{ASY}_t^k} + e_{t+k}$$

- Expected inflation:
 - MED^k_t
 - π_t
- Uncertainty:
 - survey-based uncertainty
 - disagreement
 - realized VOL
 - GARCH
- Others:
 - forecast errors
 - linear extrapolation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
k = 1 year ah	ead							
EXP	0.705	1.181	0.514	0.407	0.475	0.51	0.668	0.516
	[3.319]	[5.003]	[5.909]	[2.539]	[2.796]	[5.744]	[2.627]	[6.929]
UNC	-0.291	-0.028	-0.275	0.489	0.354	0.122	-0.232	-n0.13
	[-1.191]	[-0.149]	[-1.652]	[2.022]	[1.444]	[0.543]	[-n1.507]	[-2.076]
ASY	3.68	3.315	3.652	3.489	2.843	3.587	3.996	0.493
	[2.205]	[2.125]	[2.724]	[2.579]	[2.122]	[2.509]	[2.892]	[1.225]
LAG	0.03	-0.649	0.213	0.198	0.222	0.211	-0.619	0.225
	[0.183]	[-2.329]	[1.958]	[1.748]	[1.865]	[1.873]	[-3.053]	[2.807]
intercept	0.653	0.743	0.527	0.357	0.357	0.317	0.16	0.538
	[1.768]	[2.332]	[1.43]	[1.195]	[1.06]	[0.935]	[0.293]	[1.617]
\overline{R}^2	0.838	0.829	0.831	0.838	0.84	0.831	0.34	0.822

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
k = 2 years ah	ead							
EXP	0.505	1.414	0.644	0.487	0.582	0.624	0.623	0.662
	[1.526]	[4.235]	[2.429]	[1.588]	[2.024]	[2.486]	[1.825]	[2.423]
UNC	-0.237	-0.098	-0.387	0.7	0.55	0.049	-0.247	-0.126
	[-0.666]	[-0.324]	[-0.927]	[1.663]	[2.328]	[0.204]	[-1.238]	[-0.904]
ASY	6.668	6.477	6.829	6.615	5.583	6.8	7.036	1.545
	[1.811]	[1.989]	[2.217]	[2.298]	[2.05]	[2.202]	[2.56]	[1.826]
LAG	0.357	-1.168	0.345	0.316	0.358	0.348	-0.371	0.345
	[1.017]	[-4.371]	[1.283]	[1.286]	[1.337]	[1.328]	[-1.021]	[1.202]
intercept	1.06	1.00	0.746	0.526	0.514	0.521	0.47	0.653
	[1.692]	[1.794]	[1.093]	[0.854]	[0.805]	[0.8]	[0.659]	[0.966]
\overline{R}^2	0.549	0.575	0.575	0.59	0.596	0.573	0.219	0.556

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
k = 3 years and	ead							
EXP	0.226	1.626	0.427	0.244	0.395	0.33	0.813	0.434
	[0.63]	[4.457]	[1.287]	[0.673]	[1.225]	[1.007]	[1.969]	[1.36]
UNC	-0.445	-0.325	-0.565	0.76	-0.065	-n0.522	-0.312	-0.145
	[-1.051]	[-0.905]	[-1.259]	[2.12]	[-n0.287]	[-1.343]	[-1.67]	[-1.184]
ASY	6.599	6.734	6.757	6.552	6.882	6.952	7.073	1.576
	[1.65]	[1.882]	[1.869]	[1.973]	[1.763]	[1.897]	[2.215]	[1.893]
LAG	0.826	-1.223	0.761	0.726	0.768	0.797	-0.2	0.752
	[1.806]	[-4.859]	[1.719]	[1.716]	[1.776]	[1.886]	[-0.647]	[1.643]
intercept	1.195	0.962	0.923	0.635	0.629	0.892	0.357	0.791
	[1.651]	[1.491]	[1.184]	[0.892]	[0.913]	[1.138]	[0.44]	[1.121]
\overline{R}^2	0.432	0.472	0.444	0.459	0.44	0.454	0.241	0.425

Monetary policy reaction to I@R

• Let *i*_t be the interest rate targeted by the central bank, we investigate

$$\Delta i_t^Q = \alpha + \beta * X_t + \gamma \mathsf{IQR}_t^k + \delta \mathsf{ASY}_t^k + u_t$$

- Baseline specification, controls: X_t
 - MPF^k_t, Lagged inflation, Output gap_t, Energy price inflation_t)
 - (Risk *p* = 5%)

Monetary policy reaction to I@R

Dependent variable	(1) Δi_t^Q	(2) ∆ <i>i</i> ^M _t	(3) ∆ <i>i</i> ^M _t	(4) ∆ <i>i</i> ^M _t	(5) ∆ <i>i</i> ^M _t
Sample period	1969-2011	1969-2011	1969-1979	1981-2011	1990-2011
IQR ^h	08	05	32	02	04
	[-1.53]	[-1.15]	[-2.01]	[99]	[-1.46]
ASY ^h	2.12	.93	1.27	1.13	.93
	[2.32]	[1.78]	[1.06]	[1.91]	[2.60]

Empirics

Conclusions

Monetary policy reaction to I@R

• Endogenous reaction of I@R to policy?

$$\Delta i_t^M = \alpha + \beta * X_t + \gamma \mathsf{IQR}_t^h + \delta \mathsf{ASY}_t^h + u_t$$

• Shifts in policy?

- Pre-Volcker: 1969–1979
- Post-Volcker: 1981–2011
- Great-moderation/Great recession: 1990-2011

Monetary policy reaction to I@R

Dependent variable	(1) Δi_t^Q 1969-2011	(2) Δi_t^M 1969-2011	(3) Δi_t^M 1969-1979	(4) Δi_t^M 1981-2011	(5) Δi_t^M 1990-2011
IQR ^h	08	05	32	02	04
ASY ^h	[-1.53] 2.12	[-1.15] .93	[-2.01] 1.27	[-n.99] 1.13	[-1.46] .93
•	[2.32]	[1.78]	[1.06]	[1.91]	[2.60]

Empirics

Conclusion

- We introduced new survey-based measures of inflation risks
- We showed that
 - these measures have explanatory power of future inflation realizations beyond standard linear predictions
 - monetary authorities interact with these risks
- Our risk measure is model free
- Challenge: correspondance between our purely data driven measure and underlying structural interpretation