

Inst **Moneta**i Finan Stal

Workshop on "Money, Finance and Banking in East Asia"

Training Centre of the Deutsche Bundesbank, Eltville 5-6 December 2011

Mardi Dungey

University of Tasmania and CAMA

Presentation to

"Modelling East Asian economies in a small open economy VECM: the influence of international and domestic shocks"

Modelling East Asian economies in a small open economy VECM: the influences of international and domestic shocks

Mardi Dungey*% and Tugrul Vehbi%

* University of Tasmania and CAMA,ANU

** CFAP, Cambridge

December 2011

Motivation

- Apply recent macroeconometric modelling techniques to ASEAN economies
 - address the issue of the source of international shocks in the region
- We want to relate to contemporary modelling techniques
 - DSGE models particularly for New Keynesian theory
 - structural VAR for empirical dynamics
- There is an identification problem in open economy modelling in DSGE and VAR models
 - often resolved by a small open economy assumption as here
 - longer term agenda is to move to interdependent economies

Aspects of the Solution

- Use contemporary NK theory as basis of restrictions
- A SVAR framework to capture dynamics
- explicit modelling of the long run
- separation of long and short run shocks
- Apply this framework to 5 ASEAN economies
 - Singapore, the Philippines, Thailand, Malaysia, Indonesia
 - Foreign effects represented by US or China

Outline

- 1 Introduction and some literature
- 2 A basic theoretical framework
- 3 Econometric specification
 - 1 Permanent versus transitory shocks
 - 2 VECM specification
- 4 Data
- 6 Results
 - 1 impulse response functions
 - ② historical decompositions
- 6 Concluding remarks

Existing empirical literature

- 100s of VAR studies on the US, closed economy
 - classic benchmarks are Sims (1980, 1992)
- Common findings are:
 - price puzzle: tighter monetary policy does not result in lower inflation
 - exchange rate puzzle: increaeses in domestic interest rates do not result in appreciation of US dollar
 - but these are worked around and seem to work in general quite well
- New Keynesian DSGE models
 - largely Bayesian estimations: eg
 - Christiano, Eichenbaum, Evans (2005), Lubik and Schorfheide (2005), del Negro and Shorfheide (2008)
 - Calvo pricing, staggered contracts
 - Gali and Monacelli (2005) and Monacelli (2005)

Existing empirical literature

ASEAN economies

- Chow and Yoonbai (2003) 3 variable VARs in output
- Zhang et al (2004) 3 variable VAR for demand, supply, monetary policy shocks
- Huang and Feng (2006) 4 variable VAR, find some commonality amongst countries
- Zhang et al (2010) closest to us
 - structural VAR with exogenous US shocks
 - find US shocks to be a dominant influence

A Basic Theoretical Framework

 A stylized small open economy model IS curve, NK Phillips curve, monetary policy reaction function, UIP condition

$$\begin{array}{rcl} y_t & = & \mu E_t(y_{t+1}) + (1-\mu)y_{t-1} + \phi(r_t - E_{t-1}\pi_t) + \theta_1 \Delta q_t \\ & & + \theta_2 y_t^* + \epsilon_{AD,t} \\ \pi_t & = & \delta E_t \pi_{t+1} + (1-\delta)\pi_{t-1} + \lambda y_t + \theta_3 \Delta q_t + \epsilon_{AS,t} \\ r_t & = & \rho r_{t-1} + (1-\rho)(\beta E_t \pi_{t+1} + \gamma y_t) + \epsilon_{MP,t} \\ E_t(\Delta q_{t+1}) & = & (r_t - E_t \pi_{t+1}) - (r_t^* - E_t \pi_{t+1}^*) - \epsilon_{RER,t} \end{array}$$

 $y_t(y_t^*)$: domestic (foreign) output gap

 r_t : domestic nominal interest rate

 π_t : domestic inflation rate

 q_t : real exchange rate

- We want to use a SVAR approach building on the theoretical relationships
- Want SVAR for empirical coherence, allows better dynamics
- Innovation:
 - using the properties of the data (empirical and theoretical) to provide identification
 - accounting for changes in exchange rate regime in some ASEAN economies in 1997/1998

- Properties of the data
 - We know that y_t , q_t , y_t^* will be I(1)
 - In fact from the IS equation we know they should cointegrate
 - Therefore we will have a mix of permanent and transitory shocks in the system
- This leads us naturally to a SVECM framework
 - but we will need to be able to encompass I(0) and I(1) variables within it
 - solution suggested by Pagan and Pesaran (2009)

SVECM

$$B(L)\Delta Y_t = \prod Y_{t-1} + \varepsilon_t = \alpha \beta' Y_{t-1} + \varepsilon_t$$

with B_0 nonsingular and $E(\varepsilon_t \varepsilon_t')$ diagonal

- Partition the $n \times 1$ vector $Y_t = (Y'_{1t}, Y'_{2t})'$ has r cointegrating vectors
 - Y_{1t} is $((n-r) \times 1)$ which experience permanent shocks
 - Y_{2t} is $(r \times 1)$ which experience temporary shocks

• Common trends representation

$$\Delta Y_t = F(L)(B_0)^{-1} \varepsilon_t$$

where
$$F(L) = I_{n+k} + F_1 L + F_2 L^2 + ...$$

• and F(1) = F

$$F = \beta_{\perp} \left[\alpha_{\perp}' \Psi \left(L \right) \beta_{\perp} \right] \alpha_{\perp}^{-1}$$
,

with
$$\alpha'_{\perp}\alpha=0$$
, $\beta'_{\perp}\beta=0$, $F\alpha=0$ and $\beta'F=0$.

- Practically what does this mean?
 - means we can partition the matrix and figure out what happens in the case of permanent and transitory shocks

• Take the first (n-r) permanent shocks represented with ε_{1jt} and the ε_{2jt} to be transitory

$$\Delta Y_t = F(L)(B_0)^{-1} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

• Take the first (n-r) permanent shocks represented with ε_{1jt} and the ε_{2jt} to be transitory

$$\Delta Y_t = F(L)(B_0)^{-1} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

• So we know the effects of the transitory shocks on $\Delta Y_t = 0$ so

$$F(B_0^*)^{-1} {0_{(n-r)\times r} \choose I_{r+k}} = 0$$

12/3

• Take the first (n-r) permanent shocks represented with ε_{1jt} and the ε_{2jt} to be transitory

$$\Delta Y_t = F(L)(B_0)^{-1} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

• So we know the effects of the transitory shocks on $\Delta Y_t = 0$ so

$$F(B_0^*)^{-1} \binom{0_{(n-r)\times r}}{I_{r+k}} = 0$$

So we can write this to show that

$$\begin{pmatrix} 0_{(n-r)\times r} \\ I_{r+k} \end{pmatrix} = B_0^* \alpha R = \alpha^* R = \begin{pmatrix} \alpha_1^* R \\ \alpha_2^* R \end{pmatrix}$$

The only way to satisfy this is if $\alpha_1^* = 0$

• Take the first (n-r) permanent shocks represented with ε_{1jt} and the ε_{2jt} to be transitory

$$\Delta Y_t = F(L)(B_0)^{-1} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

• So we know the effects of the transitory shocks on $\Delta Y_t = 0$ so

$$F(B_0^*)^{-1} \binom{0_{(n-r)\times r}}{I_{r+k}} = 0$$

So we can write this to show that

$$\begin{pmatrix} 0_{(n-r)\times r} \\ I_{r+k} \end{pmatrix} = B_0^* \alpha R = \alpha^* R = \begin{pmatrix} \alpha_1^* R \\ \alpha_2^* R \end{pmatrix}$$

The only way to satisfy this is if $\alpha_1^* = 0$

 MEANS: that transitory shocks may have a non-zero error correction term, permanent shocks must have a zero error correction term

• One further important aspect:

- One further important aspect:
 - exchange rate regime changes are handled with an interactive dummy variable specification for the break

$$B(L)\Delta Y_t + B^*(L)D_t\Delta Y_t = \Pi_1 Y_{t-1} + D_t\Pi_2 Y_{t-1} + \varepsilon_t$$

where

$$D_t = \left\{ egin{array}{ll} 0 : ext{before regime change} \ 1 : ext{after regime change} \end{array}
ight.$$

13/3

Application: the long run

- from the IS equation we should have cointegrating vector between
 - y_t ASEAN country GDP
 - y_t* US GDP
 - qt real exchange rate
- This is 3 × I(1) variables, with 1 cointegrating vector ⇒ 2
 permanent shocks
- Assume these originate in y_t and y_t^*

The structural form:

• $\{y_t^*, \pi_t^*, r_t^*, y_t, \pi_t, r_t, q_t\}$, augment the Phillips curve with exogeneous oil price inflation

$$\begin{bmatrix} 1 & & & & \\ b_{21}^{0} & 1 & & & \\ & b_{32}^{0} & 1 & & \\ & b_{42}^{0} & b_{43}^{0} & 1 & \\ b_{51}^{0} & b_{52}^{0} & b_{53}^{0} & b_{54}^{0} & 1 \end{bmatrix} \Delta Y_{t} = \alpha \beta' Y_{t-1} \\ + \begin{bmatrix} b_{11}^{l} & 0 & 0 & 0 & 0 \\ b_{21}^{l} & b_{22}^{l} & b_{23}^{l} & b_{24}^{l} & b_{25}^{l} \\ 0 & b_{32}^{l} & b_{33}^{l} & 0 & b_{35}^{l} \\ 0 & b_{42}^{l} & b_{43}^{l} & b_{44}^{l} & 0 \\ b_{51}^{l} & b_{52}^{l} & b_{53}^{l} & b_{54}^{l} & b_{55}^{l} \end{bmatrix} \Delta Y_{t-1} + \begin{bmatrix} 0 \\ c \\ 0 \\ 0 \\ 0 \end{bmatrix} oil_{t} + \epsilon_{t}$$

Application: the long run

where

$$lphaeta' = egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & lpha_{32} & 0 \ 0 & lpha_{42} & lpha_{43} \ lpha_{51} & lpha_{52} & lpha_{53} \end{bmatrix} egin{bmatrix} eta_{11} & 1 & 0 & 0 & eta_{51} \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

 note that UIP is not imposed as there is little empirical support in the literature

16/3

Data

- Variables list: $\{y_t^*, \pi_{\overline{t}}^*, r_{\overline{t}}^*, y_t, \pi_t, r_t, q_t\}$
- Sample period: 1986Q1 to 2009Q4
- Estimated with 3 lags in levels (2 lags in changes)
- dummy variable added for 1997Q3 to 1998Q4
- Show the example of Singapore for the impulses
- Historical decompositions for Singapore, Thailand, Malaysia
- Influence of foreign shocks from US and China for all countries

Singapore

Impulse responses for foreign output shock in Singapore

Historical Decomposition: Singapore output

Historical Decomposition: Singapore inflation

Historical Decomposition: Singapore

- Output decomposition:
 - prior to 2001 domestic output shocks largest contributor to variation in output
 - after Asian crisis influence of foreign shocks started to rise
 - from June 2001 foreign shocks exceeded domestic shocks
 - after Sept 2007 positive impact of foreign shocks falls, corresponds to financial crisis
- Inflation decomposition:
 - Inflationary pressures from domestic inflation shocks from March 2008
 - substantial offset from foreign output shocks global financial crisis
 - 2004-2008 foreign inflation shocks reduced Singaporean output volatility
- Summary: Singaporean economy had dramatic change of focus for sources of output variation in the period

Historical Decomposition: Thailand Output Inflation

- output: contribution of foreign shocks begins to increase after Asian crisis
- inflation: domestic monetary policy shocks are evident source (other than own shocks)
- suggests model not great for this country + - - -

Historical Decomposition: Malaysia

- output: contribution of foreign shocks begins to increase after Asian crisis
- inflation: persistent and affected by own past behaviour

Comparing responses to US output shocks: Output responses

- Singapore most sensitive to shock, followed by Thailand, Malaysia
- lines up with degree of openness of the different economies

Comparing responses to US output shocks: Inflation responses

- inflation response in Singapore, Thailand, Malaysia synchronised
- Philippines, Indonesia negative effects of 1997 need work

Comparing responses to US output shocks: Interest rate responses

- central banks react to increased AD by increasing interest rates
- except Indonesia where price puzzle exists

Chinese output shocks: output responses

- replace the role of US in the model with the Chinese economy
- consider the role of Chinese output shocks to compare the models

Chinese output shocks: inflation responses

these are very small,

Output shocks: exchange rate responses

- scale for Chinese responses is 1/3 of the size of US.
- output shocks are the same size

Summary

- output shocks from China result in smaller responses in the ASEAN countries
- Chinese shocks are comparatively less important than US shocks of same size
 - consistent with Zhang et al (2010)
- Evidence is that more explanatory power is gained using US than China despite China's growing importance
 - Could be because
 - importance of US as source of final demand for Asian production
 - trade contracts priced in US dollar
- Paper has implemented a modern SVECM framework for ASEAN economies relatively successfully
 - challenges are to extend to proper 3 country model to allow ASEAN/US/China interactions