Comments on

"Optimal Sovereign Debt Default" by Klaus Adam and Michael Grill

Andreas Schabert TU Dortmund University

- Very interesting paper
- Elegant and transparent analysis
- Fun to read!

I SUMMARY

II COMMENTS

Topic

- Sovereign defaulting on debt held by foreigners
 - Seminal work: Eaton and Gersovitz (1981) and Grossmann and Van Huyck (1988)
 - Starting point: Borrower does not commit to fully repay debt
 - Debt is either fully repaid or not repaid at all (default)
- Adam and Grill's (2011) paper
 - Default under perfect commitment \rightarrow Purely normative analysis
 - Government decides on fractional repayment of debt

Adam and Grill's paper

• Main effect of default

- Defaulting on non-state contingent (NSC) debt makes debt state contingent
- Incomplete financial markets can become more complete with default
- <u>Main results</u>
 - Default can be welfare enhancing due to international risk sharing
 - Whether defaulting is optimal or not depends on
 - 1. Costs of default
 - 2. Magnitude of aggregate shocks

Recent literature on default

- <u>Default under discretion</u>
 - Arellano (2008): Positive analysis of sovereign default
 - Aguiar and Gopinath (2006): Endowment process with stochastic trend
 - Mendoza and Yue (2010): Default cost due to corporate borrowing
 - Yue (2009): Ex post debt renegotiation
- <u>Default under commitment</u>
 - Pouzo (2010): Sovereign default in a closed economy

The model

• Small open economy

- Risk avers domestic households
- Production with physical capital and stochastic productivity \boldsymbol{z}
- Foreign lenders/borrowers
 - Risk neutral international investor
 - Trade in NSC internationally traded bonds and domestic government bonds

Government

• <u>Government</u>

- Invests in NSC one-period bonds G^L
- Borrows in NSC one-period bonds without commitment ${\cal G}^S$
- Decides on the repayment rate $\delta(z)$

 $(1-\lambda)\delta(z)G^S$

where λ are dead weight costs associated with default

Default decision

- Government maximizes household welfare under full commitment
 - Price of government bonds depends on expected repayment rate
- <u>Reformulation</u>: Considering state contingent debt a(z) without default
 - Optimal allocation can also be implemented by defaulting on NSC debt
 - Equivalence: NSC debt can be made SC by defaulting

Results I/II

- Case without exogenous default costs
 - Optimal solution is characterized by constant consumption
 - Default occurs frequently and in almost all states
- Case with exogenous default costs
 - Fixed costs $\lambda > 0$ reduce payoff from state contingent claims $(1 \lambda)a$
 - Analysis for two productivity states (high/low) under a natural borrowing limit
 - 1. Default is optimal for low λ levels and with high net foreign debt
 - 2. Less future default in low productivity states

Results II/II

- Adding extremely low productivity levels (disaster states)
 - Default is optimal in disaster states for wide range of net foreign debt
 - Welfare gains from defaulting: 1-2% of permanent consumption
- <u>Similar effects</u>
 - Government always defaults in disaster states and never in normal states
 - Repurchasing non-maturing long term bonds at devaluated market price

I SUMMARY

II COMMENTS

Default under commitment

- Is this a default analysis? Or, is this an analysis of different payoff structures?
 - Government perfectly commits to a state contingent payoff plan
 - Default is predictable and does not surprise the lender
- Motivation for λ "Defending legal positions in foreign courts or disruptions in financial markets"
 - doesn't fit to default costs when investors expect state contingent payoffs

 \rightarrow Compare to default without commitment

Default costs

- Costs of default have typically been assumed to be (see e.g. Arellano, 2008)
 - financial autarky, i.e. losing access to international credit
 - direct resource costs
- Here, a sovereign faces dead weight costs when defaulting
 - Does it simplify the analysis?
 - \rightarrow Explain how resource costs affect the results/analysis

Natural borrowing limit

- NBL defined as the maximum debt level consistent with non-explosive debt
 - NBL binds marginally and debt levels are stationary
- Default when NBL is **not** satisfied
 - Defaults should be more likely with higher debt levels
 - Investors might stop lending once NBL is exceeded
 - \rightarrow Examine less restrictive borrowing constraints

Welfare gains from default

- Welfare losses of imperfect international risk sharing
 - Default gains due to international risk sharing
 - Government *defaults* even as a net lender (figure 2)
- Aren't there more obvious gains from default?
 - Government collects taxes and issues debt
 - Defaulting on public debt allows to lower distortionary taxes

Sovereign default and fiscal policy

- Pouzo (2010): Optimal taxation and sovereign default in a closed economy
 - Commitment to the path of tax rates under full repayment
 - No commitment to fully repay debt
- Juessen and Schabert (2011): Default under discretion in a closed economy
 - Default costs like in Arellano (2008)
 - Lowering income tax rates with default
 - Higher repayment rate (smaller haircut) increases debt and default probability

II COMMENTS

Fixed repayment rate under default $1-\Delta=0.5$

II COMMENTS

Fixed repayment rate under default $1 - \Delta = 0.6$

Very nice paper on a hot topic

I am looking forward to see the next version.