Making and Evaluating Point Forecasts

Tilmann GNEITING

Typically, point forecasting methods are compared and assessed by means of an error measure or scoring function, with the absolute error
and the squared error being key examples. The individual scores are averaged over forecast cases, to result in a summary measure of the
predictive performance, such as the mean absolute error or the mean squared error. I demonstrate that this common practice can lead to
grossly misguided inferences, unless the scoring function and the forecasting task are carefully matched. Effective point forecasting requires
that the scoring function be specified ex ante, or that the forecaster receives a directive in the form of a statistical functional, such as the mean
or a quantile of the predictive distribution. If the scoring function is specified ex ante, the forecaster can issue the optimal point forecast,
namely, the Bayes rule. If the forecaster receives a directive in the form of a functional, it is critical that the scoring function be consistent for
it, in the sense that the expected score is minimized when following the directive. A functional is elicitable if there exists a scoring function
that is strictly consistent for it. Expectations, ratios of expectations and quantiles are elicitable. For example, a scoring function is consistent
for the mean functional if and only if it is a Bregman function. It is consistent for a quantile if and only if it is generalized piecewise linear.
Similar characterizations apply to ratios of expectations and to expectiles. Weighted scoring functions are consistent for functionals that
adapt to the weighting in peculiar ways. Not all functionals are elicitable; for instance, conditional value-at-risk is not, despite its popularity
in quantitative finance.
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1. INTRODUCTION

In many aspects of human activity, a major desire is to
make forecasts for an uncertain future. Consequently, forecasts
ought to be probabilistic in nature, taking the form of probabil-
ity distributions over future quantities or events (Dawid 1984;
Gneiting 2008a). Still, many practical situations require single-
valued point forecasts, for reasons of decision making, market
mechanisms, reporting requirements, communication, or tradi-
tion, among others.

1.1 Using Scoring Functions to Evaluate Point Forecasts

In this type of situation, competing point forecasters or fore-
casting procedures are compared and assessed by means of an
error measure, such as the absolute error or the squared error,
which is averaged over forecast cases. Thus, the performance
criterion takes the form

S
S=-) Sy, 1
&
where there are n forecast cases with corresponding point fore-
casts, xi,...,X,, and verifying observations, yi,...,y,. The
function S depends both on the forecast and the realization, and
we refer to it as a scoring function.
Table 1 lists some commonly used scoring functions. We
generally take scoring functions to be negatively oriented, that
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is, the smaller, the better. The absolute error and the squared
error are of the prediction error form, in that they depend on
the forecast error, x — y, only, and they are symmetric, in that
S(x,y) = S(y, x). The absolute percentage error and the relative
error are used for strictly positive quantities only; they are nei-
ther of the prediction error form nor symmetric. Patton (2011)
discusses these as well as many other scoring functions that
have been used to assess point forecasts for a strictly positive
quantity, such as an asset value or a volatility proxy.

Our next two tables summarize the use of scoring functions
in academia, the public and the private sector. Table 2 sur-
veys the 2008 volumes of peer-reviewed journals in forecasting
(Group I) and statistics (Group II), along with premier jour-
nals in two prominent application areas, namely econometrics
(Group III) and meteorology (Group IV). We call an article
a forecasting article if it contains a table or a figure in which the
predictive performance of a forecaster or forecasting method is
summarized in the form of the mean score (1), or a monotone
transformation thereof, such as the root mean squared error. Not
surprisingly, the majority of the Group I articles are forecasting
articles, and many of them employ several scoring functions
simultaneously. Overall, the squared error is the most popular
scoring function in academia, particularly in Groups III and IV,
followed by the absolute error and the absolute percentage er-
ror.

Table 3 reports the use of scoring functions in businesses and
organizations, according to surveys conducted or summarized
by Carbone and Armstrong (1982), Mentzner and Kahn (1995),
McCarthy et al. (2006) and Fildes and Goodwin (2007). In ad-
dition to the squared error and the absolute error, the absolute
percentage error has been very widely used in practice, pre-
sumably because business forecasts focus on demand, sales, or
costs, all of which are nonnegative quantities.

There are many options and considerations in choosing
a scoring function. What scoring function ought to be used in
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Table 1. Some commonly used scoring functions

S(x,y) = (x—y)?
S(x,y) =[x —y|
S, y) =[(x—=y)/yl
Sx,y) =1(x—y)/x|

squared error (SE)

absolute error (AE)
absolute percentage error (APE)

relative error (RE)

practice? Do the standard choices have theoretical support? Ar-
guably, there is considerable contention in the scientific com-
munity, along with a critical need for theoretically principled
guidance. Some 20 years ago, Murphy and Winkler (1987,
p. 1330) commented on the state of the art in forecast evalu-
ation, noting that

“[...] verification measures have tended to proliferate, with relatively little ef-
fort being made to develop general concepts and principles [...] This state of
affairs has impacted the development of a science of forecast verification.”
Nothing much has changed since. Armstrong (2001) called for
further research, while Moskaitis and Hansen (2006) asked

“Deterministic forecasting and verification: A busted system?”

Similarly, the recent review by Fildes et al. (2008, p. 1158)
states that

“Defining the basic requirements of a good error measure is still a controversial
issue.

1.2 Simulation Study

To focus on issues and ideas, we consider a simulation study
in which we seek point forecasts for a highly volatile daily asset
value, y,. The data-generating process is such that y; is a real-

ization of the random variable
Y, =277, (2)

where Z; follows a conditionally heteroscedastic Gaussian time
series model (Engle 1982; Bollerslev 1986), with the parameter
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values proposed by Christoffersen and Diebold (1996), in that

Z;~N(0,07), where 0 =0.20Z> | +0.7507> ; + 0.05.

We consider three forecasters, each of whom issues a one-day-
ahead point forecast for the asset value. The statistician has
knowledge of the data-generating process and the actual value
of the conditional variance 0,2, and thus predicts the true condi-
tional mean,

3 =E(Ylo?) = o,

as her point forecast. The optimist always predicts X; = 5. The
pessimist always issues the point forecast x; = 0.05. Figure 1
shows these point forecasts along with the realizing asset value
for 200 successive trading days. There ought to be little con-
tention as to the predictive performance, in that the statistician
is more skilled than the optimist or the pessimist.

Table 4 provides a formal evaluation of the three forecasters
for a sequence of n = 100,000 sequential forecasts, using the
mean score (1) and the scoring functions listed in Table 1. The
results are counterintuitive and disconcerting, in that the pes-
simist has the best (lowest) score both under the absolute error
and the absolute percentage error scoring functions. In terms
of relative error, the optimist performs best. Yet, what we have
done here is common practice in academia and businesses, in
that point forecasts are evaluated by means of these scoring
functions.

1.3 Discussion

The source of these disconcerting results is aptly explained
in a recent article by Engelberg, Manski, and Williams (2009,
p- 30):

Table 2. Use of scoring functions in the 2008 volumes of leading peer-reviewed journals in forecasting (Group I), statistics (Group II),
econometrics (Group III) and meteorology (Group IV). Column 2 shows the total number of articles published in 2008 under Web of Science
document type article, note or review. Column 3 shows the number of forecasting articles (FP), that is, the number of articles with a table or
figure that summarizes predictive performance in the form of the mean score (1) or a monotone transformation thereof. Columns 4 through 7
show the number of articles employing the squared error (SE), absolute error (AE), absolute percentage error (APE), or miscellaneous (MSC)
other scoring functions. The sum of columns 4 through 7 may exceed the number in column 3, because of the simultaneous use of multiple
scoring functions in some articles. Articles that apply error measures to evaluate estimation methods, rather than forecasting methods,
have not been considered in this study

Total FP SE AE APE MSC

Group I: Forecasting

International Journal of Forecasting 41 32 21 10 8 4

Journal of Forecasting 39 25 23 13 5 3
Group II: Statistics

The Annals of Applied Statistics 62 8 6 3 1 0

The Annals of Statistics 100 5 3 2 0 0

Journal of the American Statistical Association 129 10 9 1 0 0

Journal of the Royal Statistical Society, Ser. B 49 5 4 1 0 0
Group III: Econometrics

Journal of Business & Economic Statistics 26 9 8 2 1 0

Journal of Econometrics 118 5 5 0 0 0
Group IV: Meteorology

Bulletin of the American Meteorological Society 73 1 1 0 0 0

Monthly Weather Review 300 63 58 8 2 0

Quarterly Journal of the Royal Meteorological Society 148 19 19 0 0 0

Weather and Forecasting 79 26 20 11 0 1
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Table 3. Use of scoring functions in the evaluation of point forecasts in businesses and organizations.
Columns 2 through 4 show the percentage of survey respondents using the squared error (SE), absolute
error (AE) and absolute percentage error (APE), with the source of the survey listed in column 1

Source SE AE APE
Carbone and Armstrong (1982, table 1) 27% 19% 9%
Mentzner and Kahn (1995, table VIII) 10% 25% 52%
McCarthy et al. (2006, table VIIT) 6% 20% 45%
Fildes and Goodwin (2007, table 5) 9% 36% 44%

“Our concern is prediction of real-valued outcomes such as firm profit, GDP,
growth, or temperature. In these cases, the users of point predictions some-
times presume that forecasters report the means of their subjective probability
distributions; that is, their best point predictions under square loss. However,
forecasters are not specifically asked to report subjective means. Nor are they
asked to report subjective medians or modes, which are best predictors under
other loss functions. Instead, they are simply asked to ‘predict’ the outcome
or to provide their ‘best prediction,” without definition of the word ‘best.” In
the absence of explicit guidance, forecasters may report different distributional
features as their point predictions. Some may report subjective means, others
subjective medians or modes, and still others, applying asymmetric loss func-
tions, may report various quantiles of their subjective probability distributions.”

Similarly, Murphy and Daan (1985, p. 391) noted that

“It will be assumed here that the forecasters receive a ‘directive’ concerning
the procedure to be followed [...] and that it is desirable to choose an eval-
uation measure that is consistent with this concept. An example may help to
illustrate this concept. Consider a continuous [. .. ] predictand, and suppose that
the directive states ‘forecast the expected (or mean) value of the variable.” In
this situation, the mean square error measure would be an appropriate scoring
rule, since it is minimized by forecasting the mean of the (judgemental) proba-
bility distribution. Measures that correspond with a directive in this sense will
be referred to as consistent scoring rules (for that directive).”

Despite these well-argued perspectives, there has been lit-
tle recognition that the common practice of requesting “some”
point forecast, and then evaluating the forecasters by using
“some” (set of) scoring function(s), is not a meaningful en-
deavor. In this article, we develop the perspectives of Murphy
and Daan (1985) and Engelberg, Manski, and Williams (2009)
and argue that effective point forecasting depends on “guid-
ance” or “directives,” which can be given in one of two com-
plementary ways, namely, by disclosing the scoring function

ex ante to the forecaster, or by requesting a specific functional

of the forecaster’s predictive distribution, such as the mean or
a quantile.

As to the first option, the a priori disclosure of the scoring
function allows the forecaster to tailor the point predictor to the
scoring function at hand. In particular, this permits our statisti-
cian forecaster to mutate into Mr. Bayes, who issues the optimal
point forecast, namely the Bayes rule,

x=argminEpS(x, ¥), 3)
X

where the random variable Y is distributed according to the
forecaster’s subjective or objective predictive distribution, F.
For example, if the scoring function S is the squared error, the
optimal point forecast is the mean of the predictive distribution.
In the case of the absolute error, the Bayes rule is any median
of the predictive distribution. The class

B
sﬁ<x,y>=‘1—(§) ‘ (B #0) )

of scoring functions nests both the absolute percentage error
(B = —1) and the relative error (8 = 1) scoring functions. If
the predictive distribution F has density f on the positive half-
axis and a finite fractional moment of order $, the optimal point
forecast under the loss or scoring function (4) is the median of
a random variable whose density is proportional to y?f(y). We
call this the B-median of the probability distribution F" and write
med® (F). The traditional median arises in the limit as 8 — 0.

Table 5 summarizes our discussion, by showing the opti-
mal point forecast, or Bayes rule, under the scoring functions

o -
o
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Figure 1. A realized series of volatile daily asset prices under the data-generating process (2), shown by circles, along with the one-day-ahead
point forecasts by the statistician (blue curve), the optimist (orange line at top) and the pessimist (red line at bottom). The online version of this

figure is in color.
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Table 4. The mean error measure (1) for the three point forecasters in
the simulation study, using the squared error (SE), absolute error
(AE), absolute percentage error (APE) and relative error (RE)
scoring functions
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Table 6. Continuation of Table 4, showing the corresponding mean
scores for the new competitor, Mr. Bayes, who issues the Bayes rule,
as described in Table 5. In the case of the APE, Mr. Bayes issues
the point forecast £ = € = 10710

Forecaster SE AE APE RE SE AE APE RE
Statistician 5.07 0.97 2.58 x 10° 0.97 Mr. Bayes 5.07 0.86 1.00 0.75
Optimist 22.73 4.35 13.96 x 10° 0.87
Pessimist 7.61 0.96 0.14 x 10° 19.24

in Table I, both in full generality and in the special case of
the true predictive distribution under the data generating pro-
cess (2). Table 6 shows the mean score (1) for the new com-
petitor Mr. Bayes in the simulation study, who issues the op-
timal point forecast. As expected, Mr. Bayes outperforms his
colleagues.

An alternative to disclosing the scoring function is to request
a specific functional of the forecaster’s predictive distribution,
such as the mean or a quantile, and to apply any scoring func-
tion that is consistent with the functional, roughly in the follow-
ing sense. Let the interval I be the potential range of the out-
comes, such as [ = R for a real-valued quantity, or I = (0, c0)
for a strictly positive quantity, and let the probability distribu-
tion F be concentrated on I. Then a scoring function is any map-
ping S: I x I — [0, 00). A functional is a potentially set-valued
mapping F +— T(F) C I. A scoring function S is consistent for
the functional T if

Er[S(z, V)] =Er[S(x, V)]

for all F, all t € T(F) and all x € . It is strictly consistent if
it is consistent and equality of the expectations implies that
x € T(F). Following Osband (1985) and Lambert, Pennock, and
Shoham (2008), a functional is elicitable if there exists a scor-
ing function that is strictly consistent for it.

1.4 Plan of the Article

The remainder of the article is organized as follows. Sec-
tion 2 develops the notions of consistency and elicitability in
a comprehensive way, including discussions of weighted scor-
ing functions and of a construction which we call Osband’s

Table 5. Bayes rules under the scoring functions in Table 1 as a
functional of the forecaster’s predictive distribution, F. The functional
med® (F) is defined in the text. The final column specializes to the
true predictive distribution under the data-generating process (2) in
the simulation study. The entry for the absolute percentage error
(APE) is to be understood as follows. The predictive distribution F'
has infinite fractional moment of order —1, and thus med—D (F)
does not exist. However, the smaller the (strictly positive) point
forecast, the smaller the expected APE. Thus, a prudent forecaster
will issue some very small € > 0 as point predictor

Point forecast

Scoring function Bayes rule in simulation study
SE X = mean(F) 0,2

AE % = median(F) 0.45507

APE $=med =D (F) P

RE 3 =medD (F) 2.36607

principle. Section 3 turns to examples. The mean functional,
ratios of expectations, quantiles and expectiles are elicitable.
Subject to weak regularity conditions, a scoring function for
areal-valued predictand is consistent for the mean functional if
and only if it is a Bregman function, that is, of the form

SC,y) =) — ) — ¢ (D) — ),

where ¢ is a convex function with subgradient ¢’ (Savage
1971). More general and novel results apply to ratios of ex-
pectations and expectiles. A scoring function is consistent for
the a-quantile if and only if it is generalized piecewise linear
(GPL) of order « € (0, 1), that is, of the form

S(,y) = 1x=y) —a)(gkx) —g),

where 1(-) denotes an indicator function and g is nondecreas-
ing (Thomson 1979; Saerens 2000). However, not all function-
als are elicitable. Notably, the conditional value-at-risk (CVaR)
functional is not elicitable, despite its popularity as a risk mea-
sure in financial applications. In these core sections, Theo-
rems 2, 5, 8, 10, and 11 are new results, with proofs supplied
in Appendix A. Section 4 then turns to point forecasts of multi-
variate quantities.

The article closes with a discussion in Section 5, which
makes a plea for change in the practice of point forecasting.
I contend that in issuing and evaluating point forecasts, it is es-
sential that either the scoring function be specified ex ante, or
an elicitable target functional be named, such as an expectation
or a quantile, and scoring functions be used that are consistent
for the target functional.

2. A DECISION-THEORETIC APPROACH TO
THE EVALUATION OF POINT FORECASTS

We now develop a theoretical framework for the evaluation of
point forecasts. Towards this end, we review the more general,
classical decision-theoretic setting whose basic ingredients are
as follows:

(a) An observation domain, O, which comprises the poten-
tial outcomes of a future observation.

(b) A class F of probability measures on the observation do-
main O (equipped with a suitable o -algebra), which con-
stitutes a family of probability distributions for the future
observation.

(c) An action domain, A, which comprises the potential ac-
tions of a decision maker.

(d) A loss function L: A x O — [0, 00), where L(a, 0) rep-
resents the loss incurred when the decision maker takes
the action a € A and the observation o € O materializes.
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Given a probability distribution F € F for the future observa-
tion, the Bayes rule is any decision a € A such that

a=argminEpL(a, Y), 5)
a

where Y is a random variable with distribution F. Thus, if the
decision maker’s assessment of the uncertain future is repre-
sented by the probability measure F, and she wishes to mini-
mize the expected loss, her optimal decision is the Bayes rule,
a. In general, Bayes acts need not exist nor be unique, but in
most cases of practical interest Bayes rules exist, and frequently
they are unique (Ferguson 1967).

2.1 Decision-Theoretic Setting

Point forecasting falls into the general decision-theoretic set-
ting, if we follow Granger and Machina (2006) and assume that
the observation domain and the action domain coincide. In what
follows we assume, for simplicity, that this common domain,

D=0=ACR?

is a subset of the Euclidean space R? and equipped with the
corresponding Borel o-algebra. Furthermore, we refer to the
loss function as a scoring function. With these adaptations, the
basic components of our decision-theoretic framework are as
follows:

(a) A prediction-observation (PO) domain, D = D x D,
which is the Cartesian product of the domain D € R¢
with itself.

(b) A family F of potential probability distributions for the
future observation Y that takes values in D.

(¢) A scoring function S:D =D x D — [0, 00), where
S(x, y) represents the loss or penalty when the point fore-
cast x € D is issued and the observation y € D material-
izes.

In this setting, the optimal point forecast under the probability
distribution F € F for the future observation, Y, is the Bayes
rule (5), which can now be written as

X =arg mXinEFS(x, Y). (6)

We will mostly work in dimension d = 1, in which any con-
nected domain D is simply an interval, I. The cases of prime
interest then are the real line, I = R, and the nonnegative or
positive halfaxis, I = [0, co) or I = (0, 00).

Table 7 summarizes assumptions which some of our sub-
sequent results impose on scoring functions on intervals. The
nonnegativity condition (SO) is standard and not restrictive.
Generally, a loss function can be multiplied by a strictly pos-
itive constant, and any function that depends on y only can be

Table 7. Assumptions on a scoring function S on a PO domain
D =1x1, where I € R is an interval, x € I denotes the point forecast
and y € I the realizing observation. A tacit technical assumption is
that for each x € I, the function S(x, -) is measurable

(S0) S(x,y) > 0 with equality if x =y
(S1) S(x, y) is continuous in x
(S2) The partial derivative 9,S(x, y) exists and is continuous

in x whenever x # y
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added, without changing the nature of the optimal point fore-
cast (Granger and Machina 2006). Furthermore, the optimiza-
tion problem in (6) is posed in terms of the point predictor, x. In
this light, it is natural that assumptions (S1) and (S2) concern
continuity and differentiability with respect to the first argu-
ment, the point forecast x.

Efron (1991) and Patton (2011) argue that homogeneity or
scale invariance is a desirable property of a scoring function.
We adopt this notion and call a scoring function S on a general
PO domain D = D x D homogeneous of order b if

S(cx, cy) = lc[PS(x, y) forallx,yeDandceR

which are such that cx € D and cy € D. Evidently, the underly-
ing quest is that for equivariance in the decision problem. The
scoring function S on the PO domain D = D x D is equivariant
with respect to some class H of injections 2:D — D if

argmin EF[S(x, h(Y))] = h(arg min E[S(x, Y)])

for all 4 € H and all probability distributions F that are con-
centrated on D. For instance, if S is homogeneous on D = R4
or D = (0, 00)¢ then it is equivariant with respect to the multi-
plicative group of the linear transformations {x — cx:c > 0}. If
the scoring function is of the prediction error form on D = R,
then it is equivariant with respect to the translation group {x —
x+b:beR9}.

While our decision-theoretic setting is standard and follows
those of Osband (1985) and Lambert, Pennock, and Shoham
(2008), and the subsequent development owes much to these
pioneering works, there are distinctions in technique. For exam-
ple, Osband (1985) assumes a bounded domain D, while Lam-
bert, Pennock, and Shoham (2008) consider D to be a finite set.
The work of Granger and Pesaran (2000a, 2000b), which argues
in favor of closer links between decision theory and forecast
evaluation, focuses on probability forecasts for a dichotomous
event.

2.2 Consistency

In the decision-theoretic framework, we think of the afore-
mentioned “distributional feature” or “directive” for the fore-
caster as a statistical functional. Formally, a statistical func-
tional, or simply a functional, is a potentially set-valued map-
ping from a class of probability distributions, F, to a Euclidean
space (Horowitz and Manski 2006; Huber and Ronchetti 2009;
Wellner 2009). In the current context of point forecasting, we
require that the functional

T:F — P(D), Fr—— T(F)CD,

maps each distribution F € F to a subset T(F) of the domain
D C RY, that is, an element of the power set P (D). Frequently,
we take F to be the class of all probability measures on D, or
the class of the probability measures with compact support in D.
Often but not always T(F) is single valued, with the set-valued
quantile functionals being a major exception.

To facilitate the presentation, the following definitions and
results suppress the dependence of the scoring function S, the
functional T and the class F on the domain D.
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Definition 1. The scoring function S is consistent for the
functional T relative to the class F if

ErS(tY) =ErSX,Y) (7

for all probability distributions F € F, all t € T(F) and all
x € D. It is strictly consistent if it is consistent and equality
in (7) implies that x € T(F).

As noted, the term consistent was coined by Murphy and
Daan (1985, p. 391), who stressed that it is critically important
to define consistency for a fixed, given functional, as opposed
to a generic notion of consistency, which was, correctly, refuted
by Jolliffe (2008). For example, the squared error scoring func-
tion, S(x,y) = (x — y)z, is consistent, but not strictly consistent,
for the mean functional relative to the class of the probability
measures on the real line with finite first moment. It is strictly
consistent relative to the class of the probability measures with
finite second moment.

In a parametric context, Lehmann (1951) and Noorbaloochi
and Meeden (1983) refer to a related property as decision-
theoretic unbiasedness. The following result notes that consis-
tency is the dual of the optimal point forecast property, just
as decision-theoretic unbiasedness is the dual of being Bayes
(Noorbaloochi and Meeden 1983). It thus connects the prob-
lems of finding optimal point forecasts, and of evaluating point
predictions.

Theorem 1. The scoring function S is consistent for the func-
tional T relative to the class F if and only if, given any F € F,
any x € T(F) is an optimal point forecast under S.

Stated differently, the class of the scoring functions that are
consistent for a certain functional is identical to the class of the
loss functions under which the functional is an optimal point
forecast. Despite its simplicity, and the proof being immediate
from the defining properties, this duality does not appear to be
widely appreciated.

Our next result shows that the class of the consistent scoring
functions is a convex cone, and thus suggests the existence of
Choquet representations (Phelps 1966).

Theorem 2. Let A be a o-finite measure on a measurable
space (€2, A). Suppose that for all w € €2, the scoring function
S, satisfies (SO) and is consistent for the functional T relative
to the class F. Then the scoring function

S(x.y) = / Su (X, Y)A(dw)

is consistent for T relative to F.

At this point, it will be useful to distinguish the notions
of a proper scoring rule (Winkler 1996; Gneiting and Raftery
2007) and a consistent scoring function. I believe that this dis-
tinction is useful, even though the extant literature has failed to
make it. For example, in referring to proper scoring rules for
quantile forecasts, Cervera and Mufioz (1996), Gneiting and
Raftery (2007), Hilden (2008), and Jose and Winkler (2009)
discuss scoring functions that are consistent for a quantile.

Within our decision-theoretic framework, a proper scoring
rule is a function R: F x D — R such that

EFR(F,Y) =ErR(G,Y) ®)
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for all probability distributions F, G € F, where we assume that
the expectations are well defined. Note that R is defined on the
Cartesian product of the class F and the domain D. The loss or
penalty R(F, y) arises when a probabilistic forecaster issues the
predictive distribution ' while y € D materializes. The expec-
tation inequality (8) then implies that the forecaster minimizes
the expected loss by following her true beliefs. Thus, the use
of proper scoring rules encourages sincerity and candor among
probabilistic forecasters.

In contrast, a scoring function S acts on the PO domain, D =
D x D, that is, the Cartesian product of D with itself. This is
a much simpler domain than that for a scoring rule. However,
any consistent scoring function induces a proper scoring rule in
a straightforward and natural construction, as follows.

Theorem 3. Suppose that the scoring function S is consistent
for the functional T relative to the class F. For each F € F, let
tr € T(F). Then the function

R:F xD— [0, 00), (F,y) — R(F,y) =S(tr,y),

is a proper scoring rule.

A more general decision-theoretic approach to the construc-
tion of proper scoring rules is described by Dawid (2007, p. 78)
and Gneiting and Raftery (2007, p. 361). Indeed, as Pesaran
and Skouras (2002) note, decision-theoretic approaches provide
a unifying framework for the evaluation of both probabilistic
and point forecasts.

2.3 Elicitability

We turn to the notion of elicitability, which is a critically im-
portant concept in the evaluation of point forecasts. While the
general notion dates back to the pioneering work of Osband
(1985), the term elicitable was coined only recently by Lam-
bert, Pennock, and Shoham (2008).

Definition 2. The functional T is elicitable relative to the
class F if there exists a scoring function S that is strictly con-
sistent for T relative to F.

Evidently, if T is elicitable relative to the class F, then it is
elicitable relative to any subclass Fo € F. The following result
then is a version of Osband’s (1985, p. 9) revelation principle.

Theorem 4 (Osband). Suppose that the class F is concen-
trated on the domain D, and let g : D — D be a one-to-one
mapping. Then the following holds:

(a) If T is elicitable, then T, = g o T is elicitable.
(b) If S is consistent for T, then the scoring function

S¢(x,y) =S(g"'(®),y)

is consistent for Ty.
(c) If S is strictly consistent for T, then Sy is strictly consis-
tent for T,.

The next theorem concerns weighted scoring functions,
where the weight function depends on the realizing observa-
tion, y, only.
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Theorem 5. Let the functional T be defined on a class F of
probability distributions which admit a density, f, with respect
to some dominating measure on the domain D. Consider a mea-
surable weight function

w:D — [0, 00).

Let 7™ C F denote the subclass of the probability distri-
butions in F which are such that w(y)f(y) has finite integral
over D, and the probability measure F*") with density propor-
tional to w(y)f (y) belongs to F. Define the functional

TV F® P,  Fr— TYFE) =TFE™), (9)
on this subclass ™). Then the following holds:

(a) If T is elicitable, then T™ is elicitable.
(b) If S is consistent for T relative to F, then

S (x,y) = w(y)S(x,y)

is consistent for T™ relative to F™).
(c) If S is strictly consistent for T relative to F, then S jg
strictly consistent for T relative to F™).

(10)

In other words, a weighted scoring function is consistent for
the functional T""), which acts on the predictive distribution in
a peculiar way, in that it applies the original functional, T, to the
probability measure whose density is proportional to the prod-
uct of the weight function and the original density. Propositions
20 and 21 of French and Rios Insua (2000, pp. 149 and 151)
concern the special cases in which S is the squared error and
the absolute error scoring function, respectively.

Theorem 5 is a very general result with a wealth of applica-
tions, both in forecast evaluation and in the derivation of opti-
mal point forecasts. In particular, the functional (9) is the op-
timal point forecast under the weighted scoring function (10),
which allows us to unify and extend scattered prior results. For
example, the scoring function Sg of equation (4),

B
(2
Sp(x,y) = ‘1 <x>

is of the form (10) with the original scoring function S(x, y) =
|x# — y~P| and the weight function w(y) = y# on the posi-
tive halfaxis, D = (0, 0o). The scoring function S is consistent
for the median functional. Thus, as noted in the introduction,
the scoring function Sg is consistent for the S-median func-
tional, med(ﬂ)(F ), that is, the median of a probability distri-
bution whose density is proportional to y?f(y), where f is the
density of F. If § = —1, we recover the absolute percentage
error, S_1(x,y) = |(x —y)/y|. The case § = 1 corresponds to
the relative error, S(x,y) = |[(x — y)/x|, which Patton (2011)

’
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refers to as the MAE-prop function. Table 1 of Patton (2011)
shows Monte Carlo based approximate values for optimal point
forecasts under this scoring function. Theorem 5 permits us to
give exact results; these are summarized in Table 8 and differ
notably from the approximations. For details see Appendix B.

Another interesting case arises when the original scoring
function S is the squared error, S(x, y) = (x — y)2, which is con-
sistent for the mean or expectation functional. If T is the mean
functional, the functional T™ of equation (9) becomes

TOV(F) = T(F™) = Epon (2] = 0¥ OT gy

Er[w(Y)]

Park and Stefanski (1998) studied optimal point forecasts in the
special case in which D = (0, 0o) is the positive half-axis and
w(y) = 1/y%, so that S™ (x, y) = (x — y)?/y? is the squared per-
centage error. By Equation (11), the scoring function S™) is
consistent for the functional T™) (F) = Ep[Y~!]/Er[Y~2]. By
Theorem 1, this latter quantity is the optimal point forecast un-
der the squared percentage error scoring function, which is the
result derived by Park and Stefanski (1998).

Situations in which the weight function depends on the point
forecast, x, rather than the realization, y, need to be handled
on a case-by-case basis. For example, routine calculus shows
that the squared relative error scoring function, S(x, y) = (x —
y)2/x?, is consistent for the functional

_ Ep[Y?]
~ Ep[Y]”

Incidentally, as a special case of (11), the observation-weighted
scoring function S(x,y) = y(x — y)2 is also consistent for the
functional (12). Later on in Equation (23) we characterize the
class of the scoring functions that are consistent for this func-
tional.

While Theorems 4 and 5 suggest that general classes of func-
tionals are elicitable, not all functionals are such. The following
result, which is a variant of proposition 2.5 of Osband (1985)
and lemma 1 of Lambert, Pennock, and Shoham (2008), states
a necessary condition.

T(F) (12)

Theorem 6 (Osband). If a functional is elicitable then its
level sets are convex in the following sense: If Fp € F, F1 € F
and p € (0, 1) are such that F}, = (1 — p)Fo + pF| € F, then
te T(Fo) and t € T(F1) imply t € T(F),).

For example, the sum of two distinct quantiles generally does
not have convex level sets and thus is not an elicitable func-
tional. Interesting open questions include those for a converse
of Theorem 6 and, more generally, for a characterization of elic-
itability.

Table 8. The optimal point forecast or Bayes rule (6) when the scoring function is relative error, S(x, y) = |(x — y)/x|, and the future quantity Y
can be represented as ¥ = 72, where Z has a t-distribution with mean 0, variance 1 and v > 2 degrees of freedom. In the limiting case as
y — 00, we take Z to be standard normal. If Z has variance o2 the entries need to be multiplied by this factor. As opposed to the
approximations in table 1 of Patton (2011), which stem from numerical and Monte Carlo methods and are reproduced below,
our results derive from Theorem 5 and are exact. For details see Appendix B

v=4 v==6 v=2_8 v=10 Vv — 00
Exact optimal point forecast 3.4048 2.8216 2.6573 2.5801 2.3660
Patton’s approximation 3.0962 2.7300 2.6067 2.5500 2.3600
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2.4 Osband’s Principle

If a scoring function S exists that is consistent for the func-
tional T, a natural question is whether it might be unique, up
to the inessential transformations described by Granger and
Machina (2006). The following approach, which originates in
the pioneering work of Osband (1985), provides a practical way
of describing and characterizing the class of the scoring func-
tions that are consistent for a given functional. Frequently, the
resulting characterizations link to monotonicity and convexity.

Suppose that the functional T is defined for a class of proba-
bility measures on the domain D which includes the two-point
distributions. Assume that there exists an identification function
V:D x D — R such that

Er[V(x,Y)]=0 — xeT(F) (13)

and V(x,y) # 0 unless x =y. If a consistent scoring function
is available, which is smooth in its first argument, we can take
V(x,y) to be the corresponding partial derivative or gradient.
For example, if T is the mean or expectation functional on an
interval D =1 C R, we can pick V(x,y) =x — y, which derives
from the squared error scoring function, S(x, y) = (x — y)z. Ta-
ble 9 provides further examples.
The function

e(¢) =pS(c,a) + (1 —p)S(e, b)

represents the expected score when we issue the point forecast
¢ for a random vector Y such that Y = a with probability p
and Y = b with probability 1 — p. Since S is consistent for the
functional T, the identification function property (13) implies
that €(c¢) has a minimum at ¢ = X, where

pV(x,a) + (1 — p)V(x,b) = 0.

(14)

15)

If S is smooth in its first argument, we can combine (14) and
(15) to result in

xS(x,a)/V(x,a) = 0xS(x,b)/V(x,b), (16)

where 0xS(x, y) denotes a partial derivative or gradient with re-
spect to the first argument. If this latter equality holds for all
pairwise distinct a, b and x € D, the function 0xS(x,y)/V(X,y)
is independent of y € D and we can write

*&S(x,y) =h(x)V(X,y)

for x,y € D and some function #:D — D. Frequently, we can
integrate (17) to obtain the general form of a scoring rule that is
consistent for the functional T.

In recognition of Osband’s (1985) fundamental yet unpub-
lished work, we refer to this general approach as Osband’s
principle. The examples in the subsequent section give vari-
ous instances in which the principle can be successfully put to
work. For a general technical result, see theorem 2.1 of Osband
(1985).

7)

Table 9. Possible choices for the identification function V with the
property (13) in the case in which D =1 C R is an interval

Functional Identification function
Mean Vi, y)=x—y

Ratio Ep[r(Y)]/Er[s(Y)] Vx,y) =xs(y) — r(y)
«-Quantile Vx,y)=1(x>y) —«

7-Expectile Vix,y)=2[1(x>y) —t|(x—y)
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3. EXAMPLES

We now give examples in the case of a univariate predic-
tand, in which any connected domain D =1 C R is an interval.
Some of the results are classical, such as the characterizations
for expectations (Savage 1971) and quantiles (Thomson 1979),
and some are novel, including those for ratios of expectations,
expectiles and conditional value-at-risk. In most examples, the
technical arguments rely on the properties of convex functions
and subgradients, for which we refer to Rockafellar (1970).

3.1 Expectations

It is well known that the squared error scoring function,
S, y)=(x— y)z, is strictly consistent for the mean functional
relative to the class of the probability distributions on R whose
second moment is finite. Thus, means or expectations are elic-
itable. Before turning to more general settings in subsequent
sections, we review a classical result of Savage (1971) which
identifies the class of scoring functions that are consistent for
the mean functional as that of Bregman functions. Closely re-
lated results have been obtained by Reichelstein and Osband
(1984), Saerens (2000), Banerjee, Guo, and Wang (2005) and
Patton (2011).

Theorem 7 (Savage). Let F be the class of probability mea-
sures on the interval I € R with finite first moment. Then the
following holds:

(a) The mean functional is elicitable relative to the class F.

(b) Suppose that the scoring function S satisfies assumptions
(80), (S1), and (S2) on the PO domain D =1 x I. Then S
is consistent for the mean functional relative to the class
of the compactly supported probability measures on I if,
and only if, it is of the form

S, =91 =) ='Wy —x,  (18)

where ¢ is a convex function with subgradient ¢’ on I.

(c) If ¢ is strictly convex, the scoring function (18) is strictly
consistent for the mean functional relative to the class of
the probability measures F on I for which both EfY and
Er¢(Y) exist and are finite.

Banerjee, Guo, and Wang (2005) refer to a function of the
form (18) as a Bregman function. For example, if I = R and
¢ (x) = |x|%, where a > 1 to ensure strict convexity, the Breg-
man representation yields the scoring function

Sa(x,y) = Iy|* — 1x|* — asign(0) x| (v — x), (19)

which is homogeneous of order a and nests the squared er-
ror that arises when a = 2. Savage (1971) showed that, up to
a multiplicative constant, the squared error is the unique Breg-
man function of the prediction error form, as well as the unique
symmetric Bregman function. Patton (2011) introduced a rich
and flexible family of homogeneous Bregman functions on the
PO domain D = (0, 00) x (0, 00), namely

1 b b
b(b—l)(y *)
1 b_l .
——x""'(y—x) ifbeR\{0,1}
Sy(x. y) = b—1 (20)
X X
y .
ylog;—y+x ifb=1.
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Figure 2. The mean score (1) under the Patton scoring function (20)
for Mr. Bayes (green), who uses the Bayes rule, the optimist (orange)
and the pessimist (red) in the simulation study of Section 1.2. The
online version of this figure is in color.

Up to a multiplicative constant, these are the only homogeneous
Bregman functions on this PO domain. The squared error scor-
ing function emerges when b = 2 and the QLIKE function (Pat-
ton 2011) when b = 0. If b = a > 1 the Patton function (20) co-
incides with the corresponding restriction of the power function
(19), up to a multiplicative constant.

Finally, it is worth noting that proper scoring rules for prob-
ability forecasts of a dichotomous event are also of the Breg-
man form, because the probability of a binary event equals
the expectation of the corresponding indicator variable. Com-
pare Savage (1971), DeGroot and Fienberg (1983), Schervish
(1989), Winkler (1996), Buja, Stuetzle, and Shen (2005), and
Gneiting and Raftery (2007), among others.

Figure 2 returns to the initial simulation study of Section 1.2
and shows the mean score (1) under the Patton scoring function
(20) for Mr. Bayes, the optimist and the pessimist. The optimal
point forecast under a Bregman scoring function is the mean
of the predictive distribution, so that the statistician forecaster
fuses with Mr. Bayes.

3.2 Ratios of Expectations

We now consider statistical functionals which can be rep-
resented as ratios of expectations, and arise naturally in the
context of weighted scoring functions, as exemplified in Sec-
tion 2.3. The mean functional emerges in the special case in
which r(y) =y and s(y) = 1.

Theorem 8. Let1 C R be an interval, and suppose that r: 1 —
Rands: I — (0, co) are measurable functions. Then the follow-
ing holds:

(a) The functional

 Eflr(0)]

T = & ]

(2D
is elicitable relative to the class of the probability mea-
sures on I for which Eg[r(Y)], Er[s(Y)] and Eg[Ys(Y)]
exist and are finite.
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(b) If S is of the form
S(x,y) =s (@) —d(x) — ') (r(y) — x5(y))
+¢' M) —ys),

where ¢ is a convex function with subgradient ¢’, then
it is consistent for the functional (21) relative to the
class of the probability measures F on I for which
Er[r(M)], Erls(V)], EFlr(Y)¢' ()], Erls(Y)¢(Y)], and
Ep[Ys(Y)¢'(Y)] exist and are finite. If ¢ is strictly con-
vex, then S is strictly consistent.

(c) Suppose that the scoring function S satisfies assumptions
(S80), (S1), and (S2) on the PO domain D =1 x L. If s is
continuous and 7(y) = ys(y) for y € I, then S is consistent
for the functional (21) relative to the class of the com-
pactly supported probability measures on I if, and only
if, it is of the form (22), where ¢ is a convex function
with subgradient ¢'.

In the case in which s(y) = w(y) and r(y) = yw(y) for
a strictly positive, continuous weight function w, the ratio (21)
coincides with the functional (11). If I = (0, co) and w(y) =y,
the special case T(F) = IEF[Y2]/EF[Y] of Equation (12) arises.
In Section 2.3 we saw that both the squared relative error
scoring function, S(x,y) = (x — y)z/xz, and the observation-
weighted scoring function S(x,y) = y(x — y)2 are consistent for
this functional. By part (c) of Theorem 8§, the general form of
a scoring function that is consistent for the functional (12) is

SC,Y) =y () — o) =y — 09’ (x), (23)

where ¢ is convex with subgradient ¢’. The above scoring func-
tions emerge when ¢ (y) = 1/y and ¢ (y) = y?, respectively.

(22)

3.3 Quantiles and Expectiles

An a-quantile (0 < @ < 1) of the cumulative distribution
function F is any number x for which limyy, F(y) < a < F(x).
In finance, quantiles are often referred to as value-at-risk (VaR;
Duffie and Pan 1997). The literature on the evaluation of quan-
tile forecasts generally recommends the use of the asymmetric
piecewise linear scoring function,

Sa(x,y) =(1x=2y) —a)(x—y)

B { alx —yl,

(I —a)lx—yl,
which is strictly consistent for the «-quantile relative to the
class of the probability measures with finite first moment
(Raiffa and Schlaifer 1961, p. 196; Ferguson 1967, p. 51). This
well-known property lies at the heart of quantile regression
(Koenker and Bassett 1978).

As regards the characterization of the scoring functions that
are consistent for a quantile, results of Thomson (1979) and
Saerens (2000) can be summarized as follows. For a discus-

sion of their equivalence and historical comments, see Gneiting
(2011).

Theorem 9 (Thomson, Saerens). Let F be the class of the
probability measures on the interval I € R, and let o € (0, 1).
Then the following holds:

X=Yy
Xz,

(24)

(a) The «-quantile functional is elicitable relative to the
class F.
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(b) Suppose that the scoring function S satisfies assumptions
(S0), (S1), and (S2) on the PO domain D =1 x I. Then S
is consistent for the «-quantile relative to the class of the
compactly supported probability measures on I if, and
only if, it is of the form

S, y)=0x>y) —a)(gx) —g),

where g is a nondecreasing function on I.

(c) If g is strictly increasing, the scoring function (25) is
strictly consistent for the «-quantile relative to the class
of the probability measures F on I for which Erg(Y) ex-
ists and is finite.

(25)

Gneiting (2008b) refers to a function of the form (25) as gen-
eralized piecewise linear (GPL) of order « € (0, 1), because it
is piecewise linear after applying a nondecreasing transforma-
tion. Any GPL function is equivariant with respect to the class
of the nondecreasing transformations, just as the quantile func-
tional is equivariant under monotone mappings (Koenker 2005,
p- 39). If I = (0, 0o0) and g(x) =xP/|b| for b € R\ {0}, and tak-
ing the corresponding limit as b — 0, we obtain the family

S(X,b(x» )’)

@2y —a)— (=) ifbeR\ {0}
- 151 (26)

(1(xzy)—a)1og;f ifbh=0,

of the GPL power scoring functions, which are homogeneous of
order b. The asymmetric piecewise linear function (24) arises
when b = 1, and the MAE-LOG and MAE-SD functions de-
scribed by Patton (2011) emerge when o = %, and b =0 and
b= % respectively. The loss functions proposed by Lopez
(1999) and Caporin (2008) for evaluating VaR forecasts are
not of the GPL form. Thus, Theorem 9 provides a theoretical
explanation of the empirical finding that these loss or scoring
functions “in many cases are not able to properly distinguish
between the true data generating process and alternative VaR
models” (Caporin 2008, p. 80). Figure 3 returns to the simula-
tion study in Section 1.2 and shows the mean score (1) under
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the GPL power function (26), where o = %, for Mr. Bayes,
the statistician, the optimist and the pessimist. Once again,
Mr. Bayes dominates his competitors.

Newey and Powell (1987) introduced the t-expectile func-
tional (0 < 7 < 1) of a probability measure F' with finite mean
as the unique solution x = ., to the equation

T/ (y—X)dF(y)=(1—f)/ (x —y)dF(y).

If the second moment of F is finite, the t-expectile equals the
Bayes rule or optimal point forecast (6) under the asymmetric
piecewise quadratic scoring function,

S:(x,y) = L(x>y) — |(x —y)?,

similar to the «-quantile being the Bayes rule under the asym-
metric piecewise linear function (24). Not surprisingly, expec-
tiles have properties that resemble those of quantiles.

The following original result characterizes the class of the
scoring functions that are consistent for expectiles. It is interest-
ing to observe the ways in which the corresponding class (28)
combines key characteristics of the Bregman and GPL families.

27

Theorem 10. Let F be the class of the probability measures
on the interval I C R with finite first moment, and let 7 € (0, 1).
Then the following holds:

(a) The t-expectile functional is elicitable relative to the
class F.

(b) Suppose that the scoring function S satisfies assumptions
(S0), (S1), and (S2) on the PO domain D =1 x 1. Then
S is consistent for the t-expectile relative to the class
of the compactly supported probability measures on I if,
and only if, it is of the form

S, y)=[1x=y) —1|
X (@) —¢() — ¢’ )y — ),

where ¢ is a convex function with subgradient ¢’ on L.

(c) If ¢ is strictly convex, the scoring function (28) is strictly
consistent for the t-expectile relative to the class of the
probability measures F on I for which both EfY and
Er¢ (Y) exist and are finite.

(28)

—— Bayes Rule
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—— Pessimist
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Figure 3. The mean score (1) under the GPL power scoring function (26) with o = 1 for Mr. Bayes (green), who uses the Bayes rule, the
statistician (blue), the optimist (orange) and the pessimist (red) in the simulation study of Section 1.2. The online version of this figure is in

color.
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3.4 Conditional Value-at-Risk

The «-conditional value-at-risk functional (CVaR,, 0 < o <
1) equals the expectation of a random variable with distribu-
tion F conditional on it taking values in its upper (1 — «)-tail
(Rockafellar and Uryasev 2000, 2002). An often convenient,
equivalent definition is

1 1
CVaR, (F) = T o / qp(F)dp,

where gg denotes the f-quantile (Acerbi 2002). The CVaR
functional is a popular risk measure in quantitative finance. Its
varied, elegant and appealing properties include coherency in
the sense of Artzner et al. (1999), who consider functionals de-
fined in terms of random variables, rather than the correspond-
ing probability measures. However, it is not elicitable.

Theorem 11. The CVaR, functional is not elicitable relative
to any class F of probability distributions on the interval I C R
that contains the measures with finite support, or the finite mix-
tures of the absolutely continuous distributions with compact
support.

This negative result may challenge the use of the CVaR func-
tional as a predictive measure of risk, and may provide a partial
explanation for the lack of literature on the evaluation of CVaR
forecasts, as opposed to quantile or VaR forecasts, for which
we refer to Berkowitz and O’Brien (2002), Giacomini and Ko-
munjer (2005), and Bao, Lee, and Saltoglu (2006), among oth-
ers. Christoffersen (2003) suggests a way of evaluating CVaR
forecasts that depends on external covariates and allows for
tests, but not for a direct comparison and ranking of the predic-
tive performance of competing forecasting methods. As The-
orem 11 shows, scoring functions that are consistent for the
CVaR functional are not available, whence it remains unclear
how such comparisons could be done. For further discussion,
see Osband (2011, p. 246).

3.5 Mode

Let F be a class of probability measures on the real line,
each of which has a well-defined, unique mode. It is sometimes
stated informally that the mode is an optimal point forecast un-
der the zero-one scoring function,

Sc(x,y) =1(x =yl > ©),

where ¢ > 0. A rigorous statement is that the optimal point fore-
cast or Bayes rule (6) under the scoring function S, is the mid-
point
x= argmax(F(x +¢) — lim F(y))
x yhx—c

of the modal interval of length 2¢ of the probability measure
F € F (Ferguson 1967, p. 51). Example 7.20 of Lehmann and
Casella (1998) explores this argument in more detail.

Expressed differently, the zero-one scoring function S, is
consistent for the midpoint functional, which we denote by T,.
If c is sufficiently small, then T.(F) is well defined and single-
valued for all F € F. We can then define the mode functional
on F as the limit

To(F) =limT(F),
cl0
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with the corresponding limit of the (suitably scaled) scoring
function S, being a Dirac delta function. Essentially identi-
cal arguments have been used by Bernardo and Smith (2000,
p- 257) and French and Rios Insua (2000, pp. 151-152).

Stronger results become available if one puts conditions on
both the scoring function S and the family F of probability dis-
tributions. Theorem 2 of Granger (1969) is a result of this type.
Consider the PO domain D =R x R. If the scoring function S
is an even function of the prediction error that attains a min-
imum at the origin, and each F' € F admits a Lebesgue den-
sity, f, which is symmetric, continuous and unimodal, so that
mean, median and mode coincide, then S is consistent for this
common functional. Theorem 1 of Granger (1969) and theo-
rem 7.15 of Lehmann and Casella (1998) trade the continuity
and unimodality conditions on f for an additional assumption
of convexity on the scoring function.

Henderson, Jones, and Stare (2001, p. 3087) posit that in sur-
vival analysis a loss function of the form

X

0, P SY= kx
1, otherwise

Sp(x,y) =

= 1(]logx — logy| > logk)

is reasonable, with a choice of k = 2 often being adequate, argu-
ing that “most people for example would accept that a lifetime
prediction of, say, 2 months, was reasonably accurate if death
occurs between about 1 and 4 months.” The optimal point fore-
cast or Bayes rule under Sz is the midpoint functional Tiog)
applied to the predictive distribution of the logarithm of the life-
time, rather than the lifetime itself.

4. MULTIVARIATE PREDICTANDS

While thus far we have restricted attention to point forecasts
of a univariate quantity, the general case of a multivariate pre-
dictand that takes values in a domain D C R is of considerable
interest. Applications include those of Gneiting et al. (2008)
and Hering and Genton (2010) to predictions of wind vectors,
or that of Laurent, Rombouts, and Violante (2009) to forecasts
of multivariate volatility, to name but a few. We turn to the
decision-theoretic setting of Section 2.1 and assume, for sim-
plicity, that the point forecast, the observation and the target
functional take values in D = R?.

We first discuss the mean functional. Assuming that S(x, y) >
0 with equality if x =y, Savage (1971), Osband and Reichel-
stein (1985), and Banerjee, Guo, and Wang (2005) showed that
a scoring function under which the (component-wise) expecta-
tion of the predictive distribution is an optimal point forecast,
is of the Bregman form

Sx,y) =¢(®y) —ox) — (Vo(x),y —X), (29)

where ¢ :R? — R is convex with gradient V¢p: R¢ — R? and
(-, -) denotes a scalar product, subject to smoothness conditions.
Expressed differently, a sufficiently smooth scoring function is
consistent for the mean functional if and only if it is of the form
(29). When ¢ (x) = ||x||? is the squared Euclidean norm, we
obtain the squared error scoring function, and similarly its ram-
ifications, such as the weighted squared error and the pseudo
Mahalanobis error (Bernardo and Smith 2000, p. 257; Laurent,
Rombouts, and Violante 2009).
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It is of interest to note that rigorous versions of the Bregman
characterization depend on restrictive smoothness conditions.
Osband and Reichelstein (1985) assume that the scoring func-
tion is continuously differentiable with respect to its first argu-
ment, the point forecast; Banerjee, Guo, and Wang (2005) as-
sume the existence of continuous second partial derivatives with
respect to the observation. A challenging, nontrivial problem is
to unify and strengthen these results, both in univariate and mul-
tivariate settings, and relative to the notion of k-elicitability of
integer order k > 2, as defined and studied by Lambert, Pen-
nock, and Shoham (2008). For example, while the univariate
variance functional is not elicitable, it is two-elicitable, because
varp(X) = Ep[X?] — (EF[X])?, and both Ex[X] and Ef[X?] are
elicitable.

Laurent, Rombouts, and Violante (2009) consider point fore-
casts of multivariate stochastic volatility, where the predictand
is a symmetric and positive definite matrix in R?*9. If the ma-
trix is vectorized, the above results for the mean functional
apply, thereby leading to the Bregman representation (29) for
the respective consistent scoring functions, which is hidden
in proposition 3 of Laurent, Rombouts, and Violante (2009).
Corollary 1 of Laurent, Rombouts, and Violante (2009) supplies
a version that applies directly to point forecasts, say Xy € R7*9,
of a matrix-valued, symmetric and positive definite quantity,
say Xy € R?*9, without any need to resort to vectorization.
Specifically, any scoring function of the form

S(Xx, Xy) = ¢ (Zy) — ¢ (Xx) — r(Vod (Zx)(Zy — Xx))  (30)

is consistent for the (component-wise) mean functional, where
¢ is convex and smooth, and V¢ denotes a symmetric matrix
of first partial derivatives, with the off-diagonal elements mul-
tiplied by a factor of one half.

Dawid and Sebastiani (1999) and Pukelsheim (2006) give
various examples of convex functions ¢ whose domain is the
convex cone of the symmetric and positive definite elements of
R9*4, with the matrix norm

1 1/s
¢(X) = (— tr(Zs)>
q

for integers s > 1 being one such instance. The matrix norm
is nonnegative, nondecreasing in the Loewner order, continu-
ous, convex, standardized and homogeneous of order one. With
simple adaptations, the construction extends to any real or ex-
tended real-valued exponent s and to general, not necessar-
ily positive definite symmetric matrices (Pukelsheim 2006, pp.
141 and 151). In the limit as s — 0 in (31) the log determi-
nant ¢ (X) = logdet(X) emerges. When used in the Bregman
representation (30), the log determinant function gives rise to
a well known homogeneous scoring function for point predic-
tions of a positive definite symmetrically matrix-valued quan-
tity in R7*9, namely,

S(Ty, Ty) = tr(T,1%y) — logdet(T,13y) — g,

3D

(32)

which was introduced by James and Stein (1961, section 5).

In the case of quantiles, the passage from the univariate func-
tional to multivariate analogues is much less straightforward.
Notions of quantiles for multivariate distributions based on loss
or scoring functions have been studied by Abdous and Theodor-
escu (1992), Chaudhuri (1996), Koltchinskii (1997), Serfling
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(2002), and Hallin, Paindaveine, and Siman (2010), among oth-
ers. In particular, it is customary to define the median of a prob-
ability distribution F on R? as

X= argmxinEF(HX = Y[ =YD,

where || - || denotes the Euclidean norm (Small 1990). If d =
1, this yields the traditional median on the real line, with the
final term eliminating the need for moment conditions on the
predictive distribution (Kemperman 1987). Of course, norms
and distances other than the Euclidean could be considered. In
this more general type of situation, Koenker (2006) proposed
that a functional based on minimizing the square of a distance
be called a Fréchet mean, and a functional based on minimizing
a distance a Fréchet median, just as in the traditional case of the
Euclidean distance.

5. DISCUSSION

Ideally, forecasts ought to be probabilistic, taking the form
of predictive distributions over future quantities and events
(Dawid 1984; Diebold, Gunther, and Tay 1998; Granger and
Pesaran 2000a, 2000b; Geweke and Whiteman 2006; Gneiting
2008a). If point forecasts are to be issued and evaluated, it is
essential that either the scoring function be specified ex ante,
or an elicitable target functional be named, such as the mean or
a quantile of the predictive distribution, and scoring functions
be used that are consistent for the target functional.

Our plea for the use of consistent scoring functions supple-
ments and qualifies, but does not contradict, extant recommen-
dations in the forecasting literature, such as those of West and
Harrison (1997), Armstrong (2001), Jolliffe and Stephenson
(2003), and Fildes and Goodwin (2007). For example, Fildes
and Goodwin (2007) propose forecasting principles for organi-
zations, the eleventh of which suggests that “multiple measures
of forecast accuracy” be employed. I agree, with the qualifica-
tion that the scoring functions to be used be consistent for the
target functional.

We have developed theory for the notions of consistency and
elicitability, and have characterized the classes of the loss or
scoring functions that result in expectations, ratios of expecta-
tions, quantiles or expectiles as optimal point forecasts. Some
of these results are classical, such as those for means and quan-
tiles (Savage 1971; Thomson 1979), while others are original,
including a negative result, in that scoring functions which are
consistent for the CVaR functional do not exist.

In the case of the mean functional, the consistent scoring
functions are the Bregman functions of the form (18). Among
these, a particularly attractive choice is the Patton family (20) of
homogeneous scoring functions, which nests the squared error
(SE) and QLIKE functions. In evaluating volatility forecasts,
Patton and Sheppard (2009) recommend the use of the latter
because of its superior power in Diebold and Mariano (1995)
and West (1996) tests of predictive ability, which depend on dif-
ferences between mean scores of the form (1) as test statistics.
Further work in this direction is desirable, both empirically and
theoretically. If quantile forecasts are to be assessed, the consis-
tent scoring functions are the GPL functions of the form (25),
with the homogeneous power functions in (26) being appealing
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examples. Interestingly, the scoring functions that are consis-
tent for expectiles combine key elements of the Bregman and
GPL families.

As regards the most commonly used scoring functions in
academia, businesses and organizations, the squared error scor-
ing function is consistent for the mean, and the absolute error
scoring function for the median. The absolute percentage er-
ror scoring function, which is commonly used by businesses
and organizations, and occasionally in academia, is consistent
for a nonstandard functional, namely, the median of order —1,
med(’l), which tends to support severe underforecasts, as com-
pared to the mean or median. It thus seems prudent that busi-
nesses and organizations consider the intended or unintended
consequences and reassess its suitability as a scoring function,
similarly to the practices described by Yelland, Kim, and Strat-
ulate (2010). In this context, the recent proposal of Chen et al.
(2010), who suggest the use of the sum of the absolute percent-
age error and the relative error as a readily interpretable, scale
free loss or scoring function, merits further study.

Pers et al. (2009) propose a game of prediction for a fair com-
parison between competing predictive models, which employs
proper scoring rules to assess full predictive distributions. As
Theorem 3 shows, consistent scoring functions can also be in-
terpreted as proper scoring rules. Hence, the protocol of Pers et
al. (2009) applies to the evaluation of point forecasting meth-
ods as well. Their focus is on the comparison of custom-built
predictive models for a specific purpose, as opposed to the M-
competitions in the forecasting literature (Makridakis and Hi-
bon 1979, 2000; Makridakis et al. 1982, 1993), which compare
the predictive performance of point forecasting methods across
multiple, unrelated time series. In this latter context, additional
considerations arise, such as the comparability of scores across
time series with realizations of differing magnitude and volatil-
ity, and commonly used evaluation methods remain controver-
sial (Armstrong and Collopy 1992; Fildes 1992; Ahlburg et
al. 1992; Hyndman and Koehler 2006; Athanasopoulos et al.
2011).

The notions of consistency and elicitability apply to point
forecast competitions, where participants ought to be advised ex
ante about the scoring function(s) to be employed, or, alterna-
tively, target functional(s) ought to be named. If multiple target
functionals are named, participants can enter possibly distinct
point forecasts for distinct functionals. Similarly, if multiple
scoring functions are to be used in the evaluation, and the scor-
ing functions are consistent for distinct functionals, participants
ought to be allowed to submit possibly distinct point forecasts.

Sometimes, skill scores of the form

_ 1< 1<
Sqin = (; i;sm,yi)) / (; ;sm,y») (33)

or linear transformations thereof, are considered, where S is
a fixed scoring function, xi, ..., x, refer to the point forecast
at hand, and ry, ..., r, to a simple reference technique, such
as a no-change or persistence forecast (Jolliffe and Stephenson
2003, sections 1.4.1 and 2.7). For instance, the mean absolute
scaled error (MASE) of Hyndman and Koehler (2006) is of the
form (33), where S is the absolute error scoring function, and
the reference forecast r; is a one-step-ahead persistence forecast
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in a time series setting. While it is difficult to design expecta-
tion optimizing strategies under skill scores (Murphy 1973), the
original score and the skill score incur the same ranking of the
forecasting methods, which suggests that the notions of consis-
tency and elicitability continue to apply, at least when the test
sample size n is large. To give an example, the MASE incurs the
same ranking as the mean absolute error (MAE), and thus sug-
gests medians as point forecasts. The choice of the reference
method requires care, to avoid spurious beliefs of predictabil-
ity, as illustrated by Gneiting and Thorarinsdottir (2010) in the
context of inflation forecasts.

Medians or trimmed or Winsorized means of individual
scores have also been used to assess predictive performance
(Armstrong 2001; Hyndman and Koehler 2006). This type of
performance measure ignores or downweighs individual catas-
trophic forecast failures, which may or may not be desirable in
practice, depending on the application at hand. There is no easy
way to translate our analysis to such a setting, and theoretical
approaches remain scarce, with the recent work of Yu (2009)
being an exception.

While thus far we have addressed forecasting or predic-
tion problems, similar issues arise when the goal is estima-
tion. Bayesian approaches lead naturally to posterior predic-
tive distributions, from which any desired functional can readily
be computed, and be used as a point estimate (Zellner 1986).
In contrast, it might be hard to reconcile non-Bayesian esti-
mation procedures with the decision-theoretic duality of loss
functions and functionals, particularly when penalization and
cross-validation interact. However, non-Bayesian approaches
may allow for Bayesian interpretations under suitable prior
specifications, thus alleviating these concerns. For example,
lasso estimates for regression parameters can be interpreted as
posterior mode estimates under independent Laplace priors, and
slight variations lead to Bayesian versions of related estimation
methods, such as ridge regression (Hoerl and Kennard 1970;
Park and Casella 2008).

Technically, our discussion connects to M-estimation (Hu-
ber 1964; Huber and Ronchetti 2009) and quasi-likelihood
(Wedderburn 1974; Dawid and Lauritzen 2006). A century ago
Keynes (1911, p. 325) derived the Bregman representation (18)
in characterizing the probability density functions for which
the “most probable value” is the arithmetic mean. For a con-
temporary perspective in terms of maximum likelihood and M-
estimation, see Klein and Grottke (2008). Komunjer (2005) ap-
plied the GPL class (25) in conditional quantile estimation, in
generalization of the traditional approach to quantile regres-
sion, which is based on the asymmetric piecewise linear scoring
function (Koenker and Bassett 1978). Similarly, Bregman func-
tions of the original form (18) and the asymmetric variant (28)
could be employed in generalizing symmetric and asymmet-
ric least squares regression, both with and without penalization
(Zhang, Jiang, and Chai 2010).

In applied settings, the distinction between prediction and es-
timation is frequently blurred. For example, Shipp and Cohen
(2009) report on U.S. Census Bureau plans for evaluating pop-
ulation estimates against the results of the 2010 Census. Five
measures of accuracy are to be used to assess the Census Bu-
reau estimates, including the root mean squared error (SE) and
the mean absolute percentage error (APE). Our results demon-
strate that Census Bureau scientists face an impossible task in
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designing procedures and point estimates aimed at minimizing
both measures simultaneously, because the SE and the APE are
consistent for distinct statistical functionals. In this light, it may
be desirable for administrative or political leadership to pro-
vide a directive or target functional to Census Bureau scientists,
much in the way that Murphy and Daan (1985) and Engelberg,
Manski, and Williams (2009) requested guidance for point fore-
casters, in the quotes that open and motivate this article.

Alternatively, and often preferably, our imperfect knowledge
of parameters or variables can be expressed in the form of prob-
ability distributions. In a general context that comprises both
prediction and estimation, Pratt, Raiffa, and Schlaifer (1995,
pp- 265 and 747) make this argument forcefully, thereby refer-
ring to optimal point forecasts or Bayes predictors as certainty
equivalents. While their reasoning is well founded in Bayesian
tradition, as noted, it applies in non-Bayesian settings as well.
In the assessment of point forecasts, the duality of loss or scor-
ing functions and functionals along with the corresponding no-
tions of consistency and elicitability provide guidance in the
choice of performance measures, alleviate much extant contro-
versy, and merit broad attention in academia, businesses and
organizations.

APPENDIX A: PROOFS

We omit the proofs of Theorems 1, 3, 4, and 6, which are well-
known results.

As regards Theorem 7, the statements in parts (b) and (c) are im-
mediate from the arguments in section 6.3 of Savage (1971) and form
special cases of the more general result in Theorem 8. To prove the ne-
cessity of the representation (18), Savage essentially applied Osband’s
principle with the identification function V(x, y) = x — y. Concerning
Theorem 9, see Gneiting (2008b) for concise yet full-fledged proofs
of parts (b) and (c), using Osband’s principle with the identification
function V(x,y) = 1(x > y) — «. To prove part (a), we may apply
part (c) with any strictly increasing, bounded function g:1 — I, with
g(x) =exp(—x)/(1 + exp(—x)) being one such example.

Proof of Theorem 2
Given F € F,lett € T(F) and x € D. Then

EpS(1,Y) =Ef [ / S (1, y)A(dw)]
= / [EFSe(t, y)1A(dw)

< / [EFSe(x, y)]A(dw) = EFS(, ),

where the interchange of the expectation and the integration is allow-
able, because each S, is a nonnegative scoring function.

Proof of Theorem 5
We first prove part (b). Let F € F™), t € T™)(F), and x € D. Then

]EFS(W) (t, Y) B EF[W(Y)S(ta Y)]

_ f S(t YW ) (dy)

—1
= [ / S(t,y)dF™) (y)] : [ / W(y)f(y)u(dy)]

—1
< [ f S(x, y) dF® (y)] ~ [ / W(y)f(y)ﬂ(dY)]

= Er[w(Y)S(x, Y)]
=Er[s™ x, V)],
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where u is a dominating measure. The critical inequality holds because
F ¢ 7O € F and t e TW (F) = T(FM). To prove parts (c) and
(a), we note that the inequality is strict if S is strictly consistent for S,
unless x € T(FW) = TW(F).

Proof of Theorem 8

We first prove part (b). To show the sufficiency of the repre-
sentation (22), let x € I and let F be a probability measure on I
for which Ep[r(Y)], Erls(Y)], Er[r(Y)¢' ()], Er[s(Y)¢(Y)], and
Er[Ys(Y)¢'(Y)] exist and are finite. Then

ErSY) —IEFS<M y)

Erls)]
B M _ Y M_
_IEF[S(Y)]{¢<EF[S(Y)]> ) ¢(x)<]Ep[s(Y)] x>}

is nonnegative, and is strictly positive if ¢ is strictly convex and x #
Erlr(N1/Erls()].

As regards part (c), it remains to show the necessity of the rep-
resentation (22). We apply Osband’s principle with the identification
function V(x, y) = xs(y) — r(y), as proposed by Osband (1985, p. 14).
Arguing in the same way as in Section 2.4, we see that

0 S(x, a)/(xs(a) — r(a)) = 9xS(x, b)/ (xs(b) — r(b))
for all pairwise distinct a, b and x € 1. Hence,

xS (x, y) = h(x)(xs(y) — r(y))

for x,y € I and some function /:1 — I. Partial integration yields the
representation (22), where

X N
d(x) = [ / h(u) duds
X0 7 X0

for some xq € L. Finally, ¢ is convex, because the scoring function S is
nonnegative, which implies the validity of the subgradient inequality.
To prove part (a), we consider the scoring function (22) with ¢ (y) =
y2 /(14 |y]), for which the expectations in part (b) exist and are finite
if, and only if, Ef[r(Y)], Ef[s(Y)], and Ef[Ys(Y)] exist and are finite.

(A.1)

Proof of Theorem 10

To show the sufficiency of the representation (28), let x € I where
X < jur, and let F be a probability measure with compact support
in I. A tedious but straightforward calculation shows that if S is of
the form (28) then

EpS(, Y) —ErS(uc.Y)

=(—-1)

(—00,x

)(‘f’(l/«r) — () — ' () (e — X)) dF(y)
+T/[ )(¢(y)—¢(x)—d)/(X)(y—X))dF(Y)
X, Ut

+T f (@ (o) — d(x) — ' () (e — x)) dF ()
[pr,00)

+(1—T)/[ )(¢(Mt)_¢()’)_¢/(x)(l/~t —¥) dF(y)
Xt
g 2 (ur)—p (M —¢' () (e —)=0

is nonnegative, and is strictly positive if ¢ is strictly convex. An analo-
gous argument applies when x > ;. This proves sufficiency in part (b)
as well as the claim in part (c).

To prove the necessity of the representation (28) in part (b), we
apply Osband’s principle with the identification function V(x,y) =
|1(x >y) — t|(x —y). Arguing in the usual way, we see that

S(x, y) = h(x)V(x,y)
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for x,y € I and some function /:1 — 1. Partial integration yields the
representation (28), where ¢ is defined as in (A.1) and is convex, be-
cause S is nonnegative.

To prove part (a), we apply part (c) with the convex function ¢ (y) =
y2/(1 + |y]), for which Ef¢ (Y) exists and is finite if, and only if, EfY
exists and is finite.

Proof of Theorem 11

Suppose first that F contains the measures with finite support. Let
a,b,c,delbesuchthata<b <c< %(b + d), which implies b < d,
and consider the probability measures

1
Fy =w3a+§(1 —a)(8p +8a), Fry=adc + (1 —a)dpray 2,

where §, denotes the point measure in x € R. If o > % then
CVaRg (F1) = CVaRy (Fp) = 5 (b +d), while CVaRg (§ (F + F2)) =
JT(b +c+2d) > %(b + d). Thus, the level sets of the functional are
not convex. By Theorem 6, the CVaR functional is not elicitable rela-
tive to the class F. Analogous examples emerges for o < %, or when
the point measures are replaced by appropriately focused and centered
absolutely continuous distributions with compact support.

APPENDIX B: OPTIMAL POINT FORECASTS UNDER
THE RELATIVE ERROR SCORING FUNCTION
(TABLE 8)

Here we address a problem posited by Patton (2011), in that we find
the optimal point forecast or Bayes rule

5c:argrr&inIEFS(x,y) under S(x,y) = |(x —y) /x|, (B.1)
where Y = Z2 and Z has a -distribution with mean 0, variance 1 and
v > 2 degrees of freedom. In the limiting case as v — 0o, we take Z
to be standard normal.

To find the optimal point forecast, we apply Theorem 1 and part (b)
of Theorem 5 with the original scoring function S(x, y) = |)c_1 — y_1 [,
the weight function w(y) =y and the domain D = (0, c0), so that
S (x, ¥) = |(x — y)/x|. By Theorem 9, the scoring function S is con-
sistent for the median functional. Therefore, by Theorem 5 the op-
timal point forecast under the weighted scoring function S™) s the
median of the probability distribution whose density is proportional
to yf(y), where f is the density of Y, or equivalently, proportional to
yl/zg(yl/z), where g is the density of Z.

Hence, if Z has a ¢-distribution with mean 0, variance 1 and v > 2
degrees of freedom, the optimal point forecast under the relative error
scoring function is the median of the probability distribution whose
density is proportional to

y1/2<1+ Y

—(v+1)/2
v — 2)

on the positive halfaxis. Using any computer algebra system, this me-
dian can readily be computed symbolically or numerically, to any de-
sired degree of accuracy. For example, if v =4 the optimal point fore-
cast (B.1) is

=3.4048....

Y=oy

Table 8 provides numerical values along with the approximations in

table 1 of Patton (2011), which were obtained by Monte Carlo meth-

ods, and thus are less accurate. If Z has variance o2, the entries in the

table continue to apply, if they are multiplied by this constant.
[Received March 2010. Revised April 2011.]
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