The Fiscal Multiplier Morass: A Bayesian Perspective by Eric Leeper, Nora Traum, and Todd Walker

Comments by

Henning Bohn

University of California Santa Barbara

Conference on
Fiscal and Monetary Policy Challenges in the Short and Long Run
Hamburg, 19-20 May 2010

The Fiscal Multiplier Morass: A Bayesian Perspective

- **Objective**: Paper studies how model assumptions may constrain empirical inferences. Focus on fiscal multipliers.
 - Main model: New-Keynesian open economy with rule-of-thumb agents.
 - Four more restrictive alternatives: No openness, no rule-of-thumb, no nominal rigidities, no real frictions => Basic RBC.
 - Computational exercise: Start with Bayesian priors on the parameters. Translate them into priors about fiscal multipliers. No data.
- **Main findings**: Multipliers smallest in basic RBC greatest in New-Keynesian closed economy. (Documented in Tables 3 and 7.)
- Quibble: Draft received last week different topic than advertised.

Where is the Morass?

- Paper focuses on models: Different models different multipliers.
- Greater sources of confusion:
- 1. Fiscal policy has many degrees of freedom too many policy options:

 Types of spending, forms of taxation, ways in which current policy
 may influence expectations about future policy.
 - => Many multipliers conditional on any given model.
 - => Difficult to understand what policy experiment is at issue.
 - Assumptions here: Experiment = Shock to G. Bayesian priors over fiscal rules that specify how fiscal shocks propagate.
- 2. What is the choice problem? Shocks are exogenous—no choice.
 - Unclear how multipliers relate to optimal policy choices.

If "Fiscal Multiplier" is the answer:

What is the question?

- 1. Naïve perspective: Policy makers are asking about multipliers to determine the impact of discretionary fiscal policy "interventions." *Caution: Lucas Critique!*
- 2. Cynical citizen's view: Politics = series of random shocks. Fiscal multipliers are about resulting effects (harmful fluctuations?)
- 3. Sympathetic view: Policy makers ask about multipliers because they seek advice how to react to *non-policy* disturbances (e.g. a financial crisis).
 - => Question is how to find optimal policy responses to real shocks.
- Conjecture: if fiscal policy is formalized in terms of reaction functions, fiscal multipliers *may* help to determine the optimal response coefficients to shocks.

Simple Example

- Model of the economy: $Y_t = \beta \cdot G_t + \varepsilon_t^Y$. Exogenous ε_t^Y , $\sigma_Y^2 = \text{var}(\varepsilon_t^Y)$.
- Policy reaction function: $G_t = -\gamma \cdot \varepsilon_t^Y + \varepsilon_t^G$ Choice of response γ .

Shock ε_t^G = discretionary policy; determines $\sigma_G^2 = \text{var}(\varepsilon_t^G)$.

Note that $\beta = \frac{dY_t}{d\varepsilon_t^o} = \frac{\Delta Y_t}{\Delta G_t}\Big|_{\Delta \varepsilon^o}$ is the government spending multiplier.

- 1. Suppose fluctuations in Y are undesirable: $U \approx -E[Y_t^2] = \sigma_Y^2 (1 \beta \gamma)^2 + \sigma_G^2 \beta^2$ => Optimal policy is $\gamma^* = \frac{1}{\beta}$, and $\sigma_G^* = 0$, so $\varepsilon_G^* \equiv 0$.
 - Fiscal multiplier provides intuition: If $\beta >> 0$, small γ suffices to stabilize Y.
- 2. Suppose agents also care about stable G: $U \approx -E[Y_t^2 + \alpha G_t^2]$. Then $\gamma^* = \frac{\beta}{\beta^2 + \alpha}$ (Inverse-U shaped with maximum at $\beta = \sqrt{\alpha}$); and $\sigma_G^* = 0$.
 - Intuition: $\beta > 0$ justifies $\gamma > 0$ even if G is destabilized. But link is not simple!
- Robust conclusion: Policy shocks are undesirable.

So multiplier effects of policy shocks are an odd way to think about policy.

Propagation of Shocks & Choice of Policies

- Paper considers dynamic fiscal policy rules.
 - Bayesian priors over policy a major departure from the literature
 - => Coefficients in policy rules are random variables.
- Raises questions, e.g.: How permanent is the fiscal shock? How accommodating is monetary policy?
 - => Fiscal multipliers here are in effect "mixing" the effects of many different "policy experiments".
 - Matters for impact effects via expectations. Matters for present value multipliers.
 - Obscures role of monetary accommodation. (E.g.: Is Prob(Taylor principle)<1?)
- Economic interpretation is unclear:
 - Are policy makers themselves uncertain about future fiscal/monetary policy?
 - Constructive suggestion: Do Bayesian analysis for economic parameters conditional on deterministic parameters for policy.

Why exactly do we care about present value multipliers? A Simple Dynamic Example

- Model of the economy: $Y_t = \beta_0 G_t \beta_1 G_{t-1} + \varepsilon_t^Y$, Given $\beta_0, \beta_1 > 0$.
- Policy reaction function: $G_t = -\sum_{i \ge 0} \gamma_i \varepsilon_{t-i}^Y + \varepsilon_t^G$. Choices $\{\gamma_i\}_{i \ge 0}$.
 - Impact multiplier: $\frac{\Delta Y_t}{\Delta G_t}\Big|_{\Delta \mathcal{E}_t^G} = \beta_0$
 - PV-multiplier for 2 periods: $\frac{\Delta Y_t + R^{-1} \Delta Y_{t+1}}{\Delta G_t + R^{-1} \Delta G_{t+1}}\Big|_{\Delta \mathcal{E}_t^G} = \beta_0 R^{-1} \beta_1$. Same for all $k \ge 2$.
- Optimal policy to stabilize Y is $\gamma_0^* = \frac{1}{\beta_0}$, $\gamma_i^* = \frac{\beta_1}{\beta_0} \gamma_{i-1}^*$.
 - Optimal instantaneous response again related to the impact multiplier ($\gamma_0^* = \frac{1}{\beta_0}$)
 - Negative lagged effect means output would fall if stimulus is withdrawn quickly.

• No clear role for the present value multiplier

- Bounded policy responses, if $\beta_1 < \beta_0 \Leftrightarrow$ Positive PV multiplier with R=1.
- May argue that (PV of "cost" of stimulus) ~ 1/(multiplier); but so what?

Analogy to Monetary Policy

- Standard economic approach to monetary policy:
 - Focus on coefficients in policy rules (e.g., in Taylor rule).
 - Tradeoffs are about fluctuations (variances, given agreement on level).
 - Monetary policy shocks are undesirable (merely create noise).
 - Prefer systematic, rule-bound policy over discretion.
- Same principles applied to fiscal policy suggests:

Search for optimal responses to non-policy shocks is more promising than worrying about multiplier effects of discretionary interventions.

Bayesian Perspective: Priors over what?

- Paper allows priors over just about all variables: Why not over models?
 - For example: Discrete prior distribution p(A_j) over A_j
 - Restricted models would have positive probability of being "correct".
- Scope for sensitivity analysis: How much confidence in a restricted model is needed to be confident about its implications?
 - Example (from Table 3):

$$P(\Delta Y/\Delta G > 1 | Basic RBC) = 0.0$$
; $P(\Delta Y/\Delta G > 1 | NK non-saver) = 88\%$
If $P(Basic RBC) = P(NK non-saver) = 50\% => P(\Delta Y/\Delta G > 1) = 44\%$

• Note: Priors over policies also seem to matter:

$$P(\Delta Y/\Delta G > 1|"PMAF") = 100\%$$

Bayesian Priors and Nested Models

- General model #5: New Keynesian open economy.
 - Model #4: restricts import and export parameters = 0
 - Model #3: restricts share of non-savers = 0
 - Model #2: restricts price and wage stickiness parameters = 0
 - Model #1: restricts parameters for real frictions = 0
- Note: Restricted models = General model with "strong" priors.
 - => All comparative results must due to different priors.
 - Given Model-5 priors, Models 1-4 are false with probability ONE.
 - In Table 3, most of the 90% intervals for priors over parameter *exclude* the values imposed by Models 1-4.
 - In what sense are the restrictive model *nested alternatives*? The priors appear to be mutually exclusive with Prob=1.

Final Comments

- Is there an agenda?
 - Page 14: The preceding RBC models were unable to produce ... long run positive values, implying a New Keynesian-style model is <u>necessary</u> to produce long run multipliers that <u>encourage discretionary expansionary policy</u>. (Similar quotes elsewhere; my underlining)
- How informative are the data?
 - Sufficient to overturn strong priors over models?
 - Open question here: inferences without data.
- Overall: Bayesian priors are an interesting way to characterize relevant properties of economic models.