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1 Introduction

Inflation expectations are a crucial component in some of the most well known economic

models. For example, the ex-ante formulation of the Fisher relation (Fisher 1930) relates

interest rates directly to expectations about future inflation. Moreover, inflation expec-

tations play a major role in distinct recitations of the Phillips curve (Friedman 1968,

Phelps 1968, Clarida, Gaĺı and Gertler 1999, Gordon 2009). Schwab (1982) describes

how inflation expectations may affect the demand for housing through the anticipated

impact of future inflation on mortgage payment schemes. Other examples of decision or

negotiation outcomes affected by inflation forecasts are consumption smoothing (Rein-

hard and Végh 1994, Hördahl 2008), firms’ investment and price setting (Levi and Makin

1979, Taylor 2000) or the determination of wages (Akerlof, Dickens and Perry 2000). De-

viations of expectations from realised inflation are usually costly for the decision taker.

Therefore, the more crucial the role of inflation expectations is, the more meaningful it

is to explicitly consider the uncertainty about future inflation as an additional determi-

nant of the decision process. The question about the importance of inflation uncertainty

(abbreviated as IU hencefourth) effects has been examined in a sizeable empirical litera-

ture. Empirical studies, however, face the problem that IU cannot be directly observed.

Several methods have been proposed to measure this latent quantity. The contribution

of this study is a comparative assessment of some widely employed methods to mea-

sure IU. In addition, we highlight the role of IU in the current sovereign debt crisis by

investigating how IU influences government bond yields.

The two most prominent families of IU approximations are time series based ap-

proaches like conditionally autoregressive heteroscedastic (GARCH, Engle 1982, Boller-

slev 1986) processes and its descendants, and dispersion measures of forecast surveys
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(Lahiri and Sheng 2010). The former draw explanatory content from historical obser-

vations. The latter emphasise the heterogeneity of opinions about future inflation. A

widely used representative of the latter approach is the standard deviation of expert fore-

casts. Either of the two approaches relies on distinct sources of information. They also

process information in different ways (Batchelor and Dua 1996, Mankiw and Reis 2004).

Therefore, time series and survey-based methods might provide diverging estimates of

IU in many situations. Lahiri and Liu (2005) find that such distinct IU indications devi-

ate most during turbulent times, e.g. in the case of the US after the first oil price shock.

This implies that the problem of which IU measure to choose is particularly difficult in

circumstances of highest relevance.

In the related literature, the problem to choose from a set of potential IU measures

has been recognised since several years. At least three distinct avenues to single out an

empirical IU measure have emerged. Firstly, compliance with an economic definition of

uncertainty may be a necessary condition of a meaningful IU approximation. For exam-

ple, Giordani and Söderlind (2003) or Rich and Tracy (2003) point out that GARCH

models does not express IU from an ex-ante point of view. Therefore they argue that

measures based on forecast surveys are preferable to GARCH-based measures. Other

objections to the GARCH model class are made on the grounds that these specifica-

tions are merely derived to fit stylised facts like volatility clustering in inflation data.

Goodness-of-fit, however, may not be a sufficient criterion to evaluate IU measures, espe-

cially if the aim is to formulate an economic interpretation of IU (Peng and Yang 2008).

A second way to select IU measures is to rely on statistical arguments. For example,

Lahiri and Liu (2005) show that widely used dispersion measures such as the standard

deviation of expert forecasts can be biased measures of IU. Third, one may rank alter-

native IU metrics according to the strength of their relation to a certain benchmark.
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Bomberger (1996) employs a GARCH specification as the benchmark and compares the

implied IU approximations to those obtained from the disagreement of expert forecasts.

In a similar way, Chua, Kim and Suardi (2011) assess several distinct expressions of IU

by means of their relation to a survey dispersion measure.

In this study, we propose an alternative way to examine the suitability of distinct

IU measures. In Levi and Makin (1979) or Blejer and Eden (1979), the Fisher equation

is augmented by IU terms. They document that estimates of the influence of inflation

expectations on interest rates are more in line with theoretical predictions if IU terms

are incorporated in the relation. We draw upon an augmented Fisher equation to rank

IU measures according to their marginal predictive content. Forecasting proceeds in

the framework of a Bayesian model averaging (BMA) approach. In this way, distinct

model specification choices are linearly combined by means of exact posterior probability

weights. Such methods have been documented to yield higher forecast performance than

model selection or other forecast combination approaches (Koop and Potter 2003, Wright

2009). Moreover, we investigate the scope of IU measures to predict yields on long term

government bonds for a large cross section of 18 developed economies. We focus on these

securities because of their prominent role in the current debate on the sustainability of

sovereign debt. Moreover, the risk to incur losses due to inflation is largest for debt

obligations with long maturities. Missale and Blanchard (1994) argue that short-term

debt obligations might be regarded as broadly equivalent to inflation-indexed bonds.

In large parts of the related literature, the concept of IU refers to the risk of welfare

losses from surprises in future inflation. Therefore, it appears sensible to compare IU

measures by means of ex-ante forecasting. Barnea, Dotan and Lakonishok (1979) or

Friedman (1977) assert that IU influences anticipated returns on both financial or tangi-

ble assets. For example, Brenner and Landskroner (1983) describe how IU affects bond
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returns in the form of an inflation risk premium. In general, investment and savings

decisions require the consideration of intertemporal tradeoffs with regard to streams of

nominal income. Hence, the ex-ante predictive content of IU measures might be impor-

tant for consumers, investors and also for the conduct of monetary policy. Moreover,

due to the adverse nature of the theoretical explanations for the impact of IU, it is not

clear if excess IU increases or reduces interest rates (Lahiri et al. 1988). Therefore, in

addition to the forecast evaluation, we examine the direction of the IU effect on interest

rates.

To summarise some results, we find that dynamic and dispersion measures differ

significantly from each other in terms of their explanatory content for ex-ante interest

rates. In terms of predictive content, both groups of IU measures compare favourably

to benchmark IU measures as employed in the related literature. One candidate IU

measure from the group of disparity statistics outperforms all other IU quantifications.

Namely, the average over individual models’ uncertainties contributes most to predictive

accuracy. During the recent period of turmoil until the year 2011, the dynamics of IU

as expressed by the dispersion statistics differ markedly from those of the dynamic IU

metrics. It is also found that the distinction of forecast content is most clear-cut during

turbulent times. Regarding the interpretation of the relation between IU and interest

rates, we find that the IU impact can be described as an inflation risk premium.

In Section 2, alternative ways to express IU are introduced. Section 3 recalls dis-

tinct channels by which IU may influence interest rates. Subsequently, the forecasting

methodology to select the most sensible IU measure from the set of candidates is in-

troduced. Section 4 describes the data set and some particularities of the modelling

framework. Forecasting results are discussed in Section 5, along with an interpreta-

tion of the impact of IU on interest rates from an economic point of view. Section 6
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summarises and concludes.

2 Measuring IU

There is no unique way to define or measure IU. Hence, as a first step in empirical

investigations, it has to be decided which IU measure shall be used. For the comparative

evaluation of distinct IU metrics, we consider specifications which mimic commonly used

dynamic and disparity approaches. To obtain measures of disparity, we replace forecast

survey data by model based predictions. In this way it is guaranteed that distinct IU

measures are conditional on sample information with equal timing. This is typically

not the case when both survey data and aggregate time series are used to determine

distinct expressions of IU. Surveyed experts might have access to more timely or private

information while time series measures are confined to publicly available data (Rich and

Tracy 2003). Moreover, replacing expert data by model forecasts makes our analysis

less dependent on the availability of survey data. Thus, it is possible to consider a

larger cross section of economies for robustness analysis. Finally, the models we propose

do not require large samples of historical observations. A focus on recent data might

account for potential changes in inflation regimes (Evans andWachtel 1993). As has been

noted by Lahiri and Liu (2005), the incorporation of regime shifts in the framework of

estimated GARCHmodels is difficult because the timing of eventual changes is unknown.

In the following, eight distinct measures of IU are discussed. We firstly consider time

series based methods, which measure ex-ante IU by drawing upon historical sample

information. As an alternative to these dynamic methods, 4 further approaches are

based on the dispersion of individual forecasts.

Two of the uncertainty measures introduced below are based on a specification widely
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used for inflation forecasting, the linear autoregressive (AR) model. The success of

AR models or random walk schemes in predicting inflation is documented in several

empirical studies, including Canova (2007), Stock and Watson (2007, 2008) or Hartmann

and Herwartz (2012). Given the widely documented predictive success of random walk

specifications and allowing for the possibility of local trends in the inflation series, the

AR scheme is formulated as

πt+ℓ = α0 + α1t+ α2πt + ǫt+ℓ, t = τ −B + 1, ..., τ, (1)

where ǫt+ℓ
iid
∼ (0, σ2

ǫ ), ℓ ∈ {1, 2, 3, 4}, is the forecast horizon, and B denotes the length of

a (rolling) estimation sample window1. Out-of-sample forecasts implied by (1) are de-

noted π̂τ+ℓ|τ , where τ = T0− ℓ, ..., T − ℓ is the rolling forecast origin. The time instances

T0 and T delimit the evaluation sample which is employed in the comparative evaluation

of IU measures. In the following, we discuss distinct IU measures, some of which are also

discussed in Hartmann and Herwartz (2012). We begin with an introduction of time

series methods, then proceed to IU quantifications based on a cross section of inflation

expectations.

1. Dynamic specifications

1.1 Predictive standard deviation

At forecast origin τ , the estimated predictive error standard deviation obtained from (1)

is

σ̂τ+ℓ|τ = σ̃ǫ

√

(1 + z′
τ (Z

′
τZτ )−1zτ ), (2)

1Extracting inflation expectations form higher-order AR specifications obtains qualitatively equiva-
lent results which are available from the authors upon request.
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where Zτ is the autoregressive design matrix and zτ are the most recent observations

employed to obtain out-of-sample forecasts. The statistic in (2) is composed of time-

local expressions of the variance of inflation surprises σ̃ǫ and estimation uncertainty

σ̃ǫ

√

z′
τ (Z

′
τZτ )−1zτ .

1.2 Exponential smoothing

Among the most prominent ways to measure IU are GARCH processes. To obtain

ex-ante formulations of IU, however, this class of models is not uniformly recommend-

able (Hwang and Pereira 2006). As nonlinear specifications, estimated GARCH models

are likely to suffer from inefficiencies if samples of moderate size are considered. We

suggest an alternative which is designed to balance both the arrival of news and iner-

tia in second-order inflation dynamics. Being related to the RiskMetrics exponential

smoothing approach (Zangari 1996), this IU measure reads as

h
(λ)
τ+1|τ =

√

λ(∆πτ )2 + (1− λ)(∆π)2. (3)

In (3), ∆πt = πt − πt−1, and (∆π)2 = (1/(B − 1))
∑τ−1

t=τ−B+1 (∆πt)
2 , where smoothing

over past observations is restricted to express IU only by means of the most currently

observed data2. The tradeoff between news response and past information is addressed

by choosing λ ∈ {0.1, 0.2} (Christoffersen and Diebold 2000). The prescription of pa-

rameter values for λ facilitates the quantification of the level of IU at the current end of

sample information. We select λ = 0.1, 0.2 since such magnitudes are typically obtained

as parameter estimates from GARCH models when quarterly inflation data is considered

(Bollerslev 1986).

2Distinct forecasts based on alternative choices of the estimation window B obtain qualitatively
equivalent results, which are available from the authors upon request.
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1.3 Unanticipated volatility

The statistics in (2) and (3) are obtained as ex-ante quantifications of IU. An alternative

IU indicator might be obtained as the realised prediction error

âτ+ℓ = |π̂τ+ℓ|τ − πτ+ℓ|, (4)

from the AR model in (1). This measure expresses the common view that the ex-post

track record of inflation forecasting success (or loss) may serve as an indicator of cur-

rently perceived inflation risk (Giordani and Söderlind 2003).

2. Measuring IU by means of expectation heterogeneity

A common way of measuring uncertainty is to exploit the variation across individual

expectations. We model the dispersion of opinions by considering forecasts from J = 5

alternative linear forecasting specifications. Constituting models are the AR specifi-

cation in (1) and four autoregressive distributed lag schemes which arise when lagged

inflation in (1) is complemented with further predictors. A detailed description of these

specifications along with further references is given in the Appendix.

2.1 Disagreement of expectations

Based on five rival predictions of inflation, the disagreement measure obtains as

ŝτ+ℓ|τ =

√

√

√

√

1

J − 1

J
∑

j=1

(π̂j,τ+ℓ|τ − πτ+ℓ|τ)2, (5)

with πτ+ℓ|τ = (1/J)
∑J

j=1 π̂j,τ+ℓ|τ . Variants of an analogous measure based on expert
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opinions are employed in numerous studies like e.g. Cukierman and Wachtel (1979) or

Batchelor and Dua (1996). This measure has been critisised by Zarnowitz and Lambros

(1987) to be biased in at least two situations. First, if the constituting forecasts are

uncertain to a large extent but individuals mostly agree, the measure in (5) may provide

a rather modest indication of IU. Conversely, there might be situations when individuals

are very certain about the evolution of future inflation but their anticipations largely

disagree. In both cases, IU as quantified by ŝτ+ℓ|τ may not be interpretable in a straight-

forward way.

2.2 Average uncertainty

In addition to (5), Zarnowitz and Lambros (1987) propose to average individual

predictive standard deviations. Adapted to the forecasting models that we consider,

this measure obtains as

σ̄τ+ℓ|τ =
1

J

J
∑

j=1

σ̂j,τ+ℓ|τ , (6)

with σ̂j,τ+ℓ|τ denoting predictive standard deviations obtained according to (2) for the

AR scheme in (1) and the inflation forecast models listed in the Appendix. Although

it is based on distinct time-series models, we regard σ̄τ+ℓ|τ as a dispersion IU measure

like ŝτ+ℓ|τ . We classify IU metrics in this way because both entail characteristics which

only arise as a matter of pooling. For example, σ̄τ+ℓ|τ is less likely to obtain ’eccen-

tric’ (Zarnowitz and Lambros 1987) quantifications of IU than the individual dynamic

IU statistics on which the combination is based. As Zarnowitz and Lambros (1987)

note, σ̄τ+ℓ|τ may be interpreted as a combination of IU forecasts. Forecast combinations

have been found to provide superior predictions of various macroeconomic processes
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(Bates and Granger 1969, Timmerman 2006). In the theoretical literature, no optimal-

ity conditions for combinations of interval forecasts are provided (Wallis 2005). Forecast

combination strategies for predictions of conditional second moments have been evalu-

ated by Becker and Clements (2008) or by Patton and Sheppard (2009), who investigate

volatility forecasts for the S&P500 index and IBM stock returns, respectively. In both

cases, averages of single model based volatility forecasts as in (6) cannot be outperformed

by any competing prediction scheme.

2.3 Augmenting the disagreement measure

As noted by Lahiri and Liu (2005), estimates of IU like σ̂τ+ℓ|τ in (2) might be charac-

terised by individual biases. They suggest a combination of (5) and (6), given by3

ςτ+ℓ|τ = 0.5(ŝτ+ℓ|τ + σ̄τ+ℓ|τ ). (7)

In cases when individual biases in σ̂j,τ+ℓ|τ are not symmetrically distributed around

σ̄τ+ℓ|τ , the resulting bias in (6) might be balanced by the disagreement term ŝτ+ℓ|τ in

(7). For situations when surveyed experts report individual forecasts of density functions,

Lahiri and Liu (2005) or Wallis (2005) point out the equivalence of this measure to the

variance of combined forecast density functions (cf. Diebold et al. 1999, Giordani and

Söderlind 2005).

Finally, Lahiri and Sheng (2010) propose a combination of disagreement measures

and IU quantifications from GARCH models as a further ex-ante approximation of IU.

3In Lahiri and Liu (2005), the scaling factor of 0.5 is not applied. We specify ςτ+ℓ|τ in this way to
align our analysis with the literature on forecast combinations, where the sum of combination weights
is typically constrained to unity.
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We determine a similar combination measure as

ζτ+ℓ|τ = 0.5(ŝτ+ℓ|τ + h
(0.1)
τ+1|τ ), (8)

where the exponential smoothing measure h
(0.1)
τ+1|τ is regarded as a substitute to GARCH

quantifications.

3 Evaluation of empirical IU measures

In this section, the methodology to evaluate alternative ex-ante IU measures is described.

We start by recalling theoretical assertions on how IU might be economically relevant.

In several studies, it is suggested that IU matters for both macroeconomic policy and

individual investment decisions. Based on such theoretical arguments, we extend the

Fisher equation by incorporating candidate IU measures one after the other. Then, the

predictive performance of the respective model reformulations yields a ranking of IU

measures based on their predictive content.

3.1 Theoretical hypotheses on the impact of IU

Numerous theoretical contributions like Barnea et al. (1979) or Grauer and Litzenberger

(1980) discuss the influence of IU on interest rates. However, distinct theories predict

opposite signs of the impact of IU on interest rates. Blejer and Eden (1979), for example,

argue that IU should have a negative effect on interest rates as a result of a diminishing

demand for loanable funds. This might occur, for example, if firms delay previously

intended investment projects due to the uncertainty about real payoffs. Conversely,

Barnea et al. (1979) or Brenner and Landskroner (1983) describe how a positive influence

12



of IU may arise in the form of an inflation risk premium. Recent empirical studies, where

the presence of inflation risk premia is documented for distinct interest rates include

Buraschi and Jiltsov (2005) or Gürkaynak et al. (2010).

3.2 The modelling framework

In the following, we describe the empirical models employed to assess the strength and

the direction of the IU impact on interest rates. We determine ℓ-periods-ahead predic-

tions regarding interest rates, denoted R̂τ+ℓ|τ , by means of an autoregressive distributed

lag (ADL) model. The ADL scheme reads as

Rτ+ℓ = γ10 + γ11τ +
P
∑

p=1

γ12,pπτ−p+1 +
P
∑

p=1

γ13,pRτ−p+1 +
P
∑

p=1

γ14,pIU τ−p+ℓ+1|τ + eτ+ℓ

(9)

with τ = T0−ℓ, ..., T−ℓ, the term IU τ+ℓ|τ representing a particular inflation uncertainty

measure and eτ+ℓ
iid
∼ (0, σ2

e). The formulation in (9) corresponds to the ’augmented Fisher

relation’ in Blejer and Eden (1979) or Levi and Makin (1979). Based on this model,

the value of distinct IU measures is assessed by means of their potential to improve

predictions of Rτ+ℓ. Particularly, the overall impact of IU on Rτ+ℓ, γ̄(IU) =
∑P

p=1 γ14,p,

indicates if it might be interpreted as a risk premium or as an impediment to aggregate

investment.

4 Data and implementation details

In this Section, the comparative evaluation of distinct IU measures is described and

respective results are discussed. We firstly introduce the data set and discuss statistical
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properties of distinct IU measures. Next, certain particularities of the forecasting design

are described. The outcomes of the forecasting study are summarised and interpreted

subsequently.

4.1 Data set

The data set comprises quarterly observations for 18 developed economies, namely Aus-

tria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK and the US for the time

period 1988Q1 to 2011Q1, with T0 referring to the initial observation. A focus on more

recent time periods helps to avoid the incorporation of observations from structurally

distinct regimes. The target variable Rτ+ℓ represents annual constant maturity yields on

government bonds with a contract length of about 10 years issued in quarter τ+ℓ. Data

on consumer prices, denoted CPIτ , are used to express inflation as annualised quarterly

price changes, i.e. πt = ln(CPIτ/CPIτ−4). Further series in the data set are industrial

production, oil prices and a monetary aggregate. All series are seasonally adjusted and

drawn from Datastream. The use of annual yield data avoids difficulties associated with

the matching of anticipation horizons inherent in the series Rτ+ℓ and IUτ+ℓ|τ which are

encountered if yields to distinct maturities are considered (Batchelor and Dua 1996). In

this data set, both Rτ+ℓ and the inflation rate πτ+ℓ on which IU series are based refer

to annual rates.

4.2 Descriptive analysis of IU measures

Before turning to the assessment of IU measures’ predictive ability, some features of

the alternative IU statistics like their relative magnitudes or mutual correlations are dis-
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cussed in the following. The Box-and-Whisker plots in figure 1 show the magnitudes and

variation of distinct IU approximations for the 18 sample economies. The plots depict

the median of IUτ+ℓ|τ over the period between 1988Q1 and 2011Q1. The magnitudes of

distinct IU quantifications are also compared in studies like Batchelor and Dua (1996) or

Bomberger (1996). Batchelor and Dua (1996) find that the size of the standard deviation

of individual forecasts exceeds the aggregate over individual forecasters’ uncertainties. In

their study, the former IU statistic is equivalent to the disagreement measure in (5) and

the latter is obtained in a similar way to (6). Lahiri and Sheng (2010) document that the

disagreement of individual predictions is typically larger than the average over idiosyn-

cratic uncertainties. However, this ordering is reversed during certain time periods. In

contrast, Zarnowitz and Lambros (1987) and Lahiri et al. (1988) find that the average

of individual uncertainty estimates is typically larger than the disagreement statistic.

This might be regarded as an indication of potential biases in the disagreement statistic.

Zarnowitz and Lambros (1987) concede that such findings might be partly the result of a

rather small sample size. The relative magnitudes of ŝτ+ℓ|τ and σ̄τ+ℓ|τ are, for our data,

in line with the findings of Bomberger (1996), Batchelor and Dua (1996) and Lahiri and

Sheng (2010). The disagreement statistics indicate, on average over economies, a higher

level of IU than the average over individual uncertainties as expressed by σ̄τ+ℓ|τ . The

distinction between dynamic and disparity measures is also clearly reflected in their re-

spective average magnitudes. All dispersion measures indicate considerably higher levels

of IU than the dynamic IU measures. The median of all dynamic IU quantifications is

scaled up by a factor of 5 to facilitate comparisons in one graph. The relation between

the magnitude of time-series based IU measures and the disagreement statistics stands

in contrast to findings of Bomberger (1996). In the study of Bomberger (1996), the level

of IU as measured by means of ARCH specifications typically exceeds the magnitude
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of the disagreement of inflation forecasts collected in the NBER-ASA Quarterly Eco-

nomic Outlook Survey data set. The level of all IU quantifications increases with the

forecast horizon ℓ. The h
(λ)
τ+1|τ measures are only determined for ℓ = 1, and are of smaller

magnitude than the other IU measures obtained for higher horizons. In addition to the

comparison of relative magnitudes of IU measures based on dynamic and disagreement

measures, Bomberger (1996) and Batchelor and Dua (1993) document that the latter

approaches yield higher variation in anticipated IU. The variation of our IU measures

reinstates these findings. This can be seen from the cross-sectional variation depicted in

the Box-and-Whisker plots. The dispersion measures of IU, notably the disagreement

metric, are characterised by higher variability across economies than the dynamic IU

statistics.
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Figure 1: Box-and-Whisker plots for th median IU over 1988Q1 to 2011Q1, in
18 economies. The numbers on the abscissa refer to the following IU measures:
1.) σ̂τ+ℓ|τ , 2.) h

(0.1)
τ+1|τ , 3.) h

(0.2)
τ+1|τ , 4.) âτ , 5.) ŝτ+ℓ|τ , 6.) σ̄τ+ℓ|τ , 7.) ςτ+ℓ|τ , 8.) ζτ+ℓ|τ .

The number of distinct IU approximations discussed in the related literature is an

indication of how difficult it can be to select a suitable IU measure. This ambiguity

can be best addressed by means of comparing a set of IU metrics which provide, to

some extent, idiosyncratic information. Hence, we report correlations of IU measures

to ascertain the degree to which alternative IU approximations deliver overlapping or

mutually exclusive information. Respective correlation coefficients are reported in table

1. The a priori classification of IU measures into dynamic and dispersion metrics is em-
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pirically confirmed by the correlation numbers. The relation between dynamic measures

on the one hand and dispersion statistics on the other hand does not appear to be very

strong. Correlations are particularly high between the dispersion measures ŝτ+ℓ|τ , ςτ+ℓ|τ

and ζτ+ℓ|τ . The relations between time series based measures σ̂τ+ℓ|τ , h
(λ)
τ+1|τ and âτ are

smaller but still markedly positive.

Table 1: Mutual correlations of IU measures for ℓ = 1

σ̂τ+ℓ|τ h
(0.1)
τ+1|τ h

(0.2)
τ+1|τ âτ ŝτ+ℓ|τ σ̄τ+ℓ|τ ςτ+ℓ|τ

h
(0.1)
τ+1|τ 0.70 · · · · · ·

h
(0.2)
τ+1|τ 0.69 0.98 · · · · ·

âτ 0.44 0.45 0.56 · · · ·
ŝτ+ℓ|τ 0.39 0.13 0.12 0.11 · · ·
σ̄τ+ℓ|τ 0.45 0.19 0.18 0.09 0.72 · ·
ςτ+ℓ|τ 0.45 0.16 0.15 0.11 0.97 0.85 ·
ζτ+ℓ|τ 0.43 0.18 0.18 0.14 0.99 0.72 0.97

Cell entries represent average correlation coefficients across 18 economies.

In addition, we compare the model based IU metrics and two well known reference IU

measures which are frequently employed in the related literature. As a first benchmark,

we obtain IU estimates based on estimated GARCH(1,1) models (Bollerslev 1986). Sim-

ilar to the h
(λ)
τ+1|τ measures, the GARCH estimates are only obtained for ℓ = 1. For most

of the 18 economies we find rather high and positive correlations between IU measures

and GARCH. In particular, the dynamic measures σ̂τ+ℓ|τ and h
(λ)
τ+1|τ seem to be strongly

related to the GARCH measure.
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σ̂τ+1|τ h
(0.1)
τ+1|τ h

(0.2)
τ+1|τ âτ ŝτ+1|τ σ̄τ+1|τ ςτ+1|τ ζτ+1|τ

Austria -0.01 -0.20 -0.19 0.01 0.45 0.58 0.50 0.45
Belgium 0.07 -0.11 -0.09 0.01 0.20 0.26 0.23 0.18
Canada -0.37 -0.17 -0.17 -0.18 0.17 0.34 0.21 0.16
Denmark 0.17 0.08 0.09 0.13 0.08 0.03 0.06 0.08
Finland 0.42 0.33 0.34 0.16 -0.14 0.17 -0.01 -0.11
France -0.41 -0.18 -0.18 -0.29 -0.21 0.02 -0.16 -0.22
Germany 0.39 -0.09 -0.09 0.00 0.75 0.83 0.80 0.75
Ireland 0.42 0.11 0.10 0.02 0.26 0.04 0.21 0.26
Italy 0.74 0.28 0.31 0.48 0.31 0.38 0.36 0.31
Japan 0.49 -0.07 -0.08 0.00 0.68 0.65 0.69 0.68
Netherlands 0.57 0.26 0.27 0.11 0.30 0.43 0.36 0.31
Norway 0.15 0.35 0.36 0.23 0.46 0.50 0.48 0.46
Portugal 0.78 0.46 0.45 0.14 0.34 0.83 0.72 0.42
Spain -0.72 -0.49 -0.46 -0.10 0.03 -0.06 0.01 0.01
Sweden 0.14 0.02 0.02 0.01 0.53 0.53 0.54 0.53
Switzerland -0.01 -0.21 -0.21 -0.08 0.39 0.44 0.41 0.37
UK 0.45 0.04 0.03 0.01 0.59 0.68 0.62 0.59
US -0.10 -0.24 -0.24 -0.15 0.08 0.34 0.15 0.05

The table reports correlations between distinct IU measures introduced in (2) to (8) for
ℓ = 1 and IU as implied by a GARCH(1,1) model for the time between 1988Q1 and
2011Q1. For each economy, the highest correlation between uτ+4|τ and one of the model
based IU statistics appears in boldface. Respective results for ℓ > 1 are qualitatively
similar and available from the authors on request.

Furthermore, we examine how closely model based approaches are linked to survey

based IU quantifications. The corresponding benchmark IU estimate is based on the

inflation expectation survey provided by the Center for European Economic Research

(ZEW) for the time period between 1992Q1 until 2011Q1. This data set reports per-

centages out of 350 respondents who expect inflation either to rise or to remain at most

equal during the year after each wave of the survey. We denote by P̂ the percentage of

respondents who expect a rising inflation rate. Then, the standard deviation of P̂ which

is given by

uτ+4|τ =

√

P̂(1− P̂)

350
(10)
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is considered as a survey-based measure of IU. In Table 2, cell entries denote correlation

coefficients between uτ+4|τ and the IU measures (2) to (8).

σ̂τ+ℓ|τ h
(0.1)
τ+1|τ h

(0.2)
τ+1|τ âτ ŝτ+ℓ|τ σ̄τ+ℓ|τ ςτ+ℓ|τ ζτ+ℓ|τ

ℓ = 1
Germany 0.09 0.39 0.40 0.26 -0.28 -0.20 -0.30 -0.26
France 0.17 0.06 0.10 0.21 0.35 0.37 0.37 0.37
Italy -0.23 -0.24 -0.20 0.08 0.11 0.14 0.12 0.09
Japan 0.17 0.11 0.15 0.20 0.13 0.20 0.15 0.13
UK 0.04 0.18 0.22 0.29 -0.13 0.20 0.06 -0.12
US 0.12 0.21 0.24 0.32 -0.01 -0.00 -0.01 0.03
ℓ = 2
Germany -0.11 0.36 0.38 0.18 -0.33 -0.36 -0.44 -0.31
France 0.08 -0.02 -0.00 -0.02 0.35 0.33 0.36 0.35
Italy -0.12 -0.31 -0.29 0.08 0.23 0.23 0.24 0.23
Japan 0.15 0.02 0.07 0.12 0.31 0.32 0.32 0.31
UK -0.01 0.05 0.09 0.07 0.02 0.17 0.09 0.02
US -0.02 0.12 0.15 0.08 -0.12 -0.08 -0.12 -0.10
ℓ = 3
Germany -0.23 0.34 0.34 0.07 -0.35 -0.48 -0.52 -0.34
France 0.18 -0.07 -0.06 0.08 0.43 0.23 0.41 0.42
Italy -0.01 -0.37 -0.36 0.21 0.12 0.19 0.14 0.12
Japan 0.13 -0.06 -0.03 0.03 0.37 0.30 0.37 0.37

UK -0.04 -0.08 -0.03 -0.10 0.07 0.08 0.07 0.06
US -0.05 0.07 0.08 -0.02 -0.13 -0.13 -0.14 -0.12
ℓ = 4
Germany -0.30 0.34 0.35 -0.06 -0.31 -0.52 -0.52 -0.29
France 0.31 -0.09 -0.09 0.29 0.36 0.14 0.29 0.36
Italy -0.02 -0.41 -0.41 0.26 0.00 0.12 0.02 -0.01
Japan 0.12 -0.04 -0.02 -0.00 0.29 0.15 0.28 0.29

UK -0.03 -0.21 -0.17 -0.11 -0.01 0.03 0.00 -0.01
US -0.06 0.04 0.04 -0.14 -0.17 -0.15 -0.18 -0.16

The table reports correlations between distinct IU measures introduced in (2) to (8) for
ℓ = 1 and IU as implied by a disagreement of experts surveyed by the ZEW. For each
economy, the highest correlation between uτ+4|τ and one of the model based IU statistics
appears in boldface.

The table entries indicate that in most economies, model- and survey based expres-

sions of IU are positively associated. In the case of Germany and the US, however,

20



correlations between the model based and survey measures are predominantly negative.

The dynamic and the dispersion based IU statistics seem to provide rather distinct sorts

of information. Respective linkages to the benchmark do not show a strong common

pattern. The correlations of distinct disparity measures with the survey based IU are

largely similar in magnitude. The same holds for the dynamic IU metrics σ̂τ+ℓ|τ and

h
(λ)
τ+1|τ . The âτ statistic, however, exhibits a correlation pattern which is rather distinct

from the other IU measures. A slightly stronger association is found between the survey

measure and the model based dispersion statistics. Hence we find some evidence that

the dispersion measures are related to the benchmark approaches of IU measurement in

a more pronounced way than the dynamic IU metrics. Lahiri and Sheng (2010) or Chua,

Kim and Suardi (2011) report correlation statistics for the US, where long samples of

survey expectation data are available. They document high correlations between IU

quantifications based on survey data and those determined e.g. from GARCH models,

which range from small negative up to magnitudes of to 0.9, depending on the sample

period and the anticipation horizon. Similarly, Zarnowitz and Lambros (1987) report

correlations between survey-based representations of (5) and (6), which are varying be-

tween -0.29 and 0.74 for distinct forecast horizons.

Furthermore, we complement the correlation analysis by providing a graphical im-

pression about the evolution of distinct IU approximations during the sample period.

Distinct IU series are plotted as the median across economies. For all IU measures, a

large reduction of the average level of IU is indicated before the beginning of the fi-

nancial crisis in its most severe form in 2008. This development parallels the reduction

and stabilisation of international inflation dynamics known as the Great Moderation

(Giannone and Surico 2006, Benati 2008). During the crisis period, however, the signal

delivered by dynamic IU metrics markedly differs from the one provided by the disparity
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statistics. The uprise of IU after 2008 as indicated by the dynamic IU measures exceeds

the initially high level of IU indicated before the year 1990. The IU quantifications based

on disparity statistics, however, remain at the average level prior to 2008. This is also

reflected in the trajectory of the benchmark IU measure uτ+4|τ which is based on the

ZEW survey data. The statistic uτ+4|τ shows a temporary uprise in IU during the years

2008 and 2009, however, the overall level of IU as indicated by this measure has been

relatively high before the financial crisis. This underscores the assertion of Lahiri and

Liu (2005) that it might be especially difficult to determine the appropriate IU measure

during turbulent times. The findings from this preliminary data analysis suggest that

the problem of selecting an IU measure might amount to the choice between a dynamic

and a dispersion statistic. Differences among the candidate measures from one of these

groups appear to be less pronounced. In the following discussion, the merits of distinct

IU measures are evaluated by means of out-of-sample forecasting.
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Figure 2: The plots show the median across economies of IU estimates based on distinct models, for
a forecast horizon of ℓ = 1. The IU measure uτ+4|τ is based on survey data on inflation expectations
provided by the ZEW. Trajectories for ℓ > 1 are qualitatively equivalent and available from the authors
upon request.



4.3 The forecasting design

Based on the ex-ante formulation in (9), we measure the ability of modelling strategies

dependent on the IU measure in question to forecast interest rates. Forecasting perfor-

mance is assessed in the framework of pseudo out-of-sample cross validation. Similar

to cross-validation (CV) techniques, each observation Rτ+ℓ from the considered period

τ = T0 − ℓ, ..., T − ℓ is predicted ℓ-steps ahead by means of a respective leave-one-out

estimate. The computation of ℓ-steps-ahead predictions is straightforward due to the

linear relation between Rτ+ℓ and the explanatory variables which are conditional on

information up to period τ . This way of forecasting amounts to the so-called direct

multistep prediction method (Chevillon 2005). With a maximum lag order of P = 4,

distinct predictor selection procedures regarding the predetermined variables πτ , Rτ and

IUτ+ℓ|τ gives rise to a total of M = 212 distinct specifications of (9). One way to address

the uncertainty about the best forecasting model for interest rates is to select a most

suitable candidate out of the multitude of distinct model specifications. Alternatively,

the literature on forecast combinations suggests that the incorporation of inferior mod-

els is often beneficial in terms of predictive accuracy (Timmermann 2006). A sizeable

literature has documented that linear combinations of forecasts outperform predictions

based on the selection of one particular model (Avramov 2002, Cremers 2002). Re-

lying on the scope of forecast combinations to improve forecast accuracy, we consider

all M subset models of the augmented Fisher relation and subsequently combine the

corresponding forecasts by means of BMA. The following exposition of a feasible BMA

procedure which relies on exact posterior probabilities follows Wasserman (2000). The
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combined predictions obtain as

R̂τ+ℓ|τ =
M
∑

m=1

w∗
mR̂

(m)
τ+ℓ|τ , (11)

with

w∗
m =

wm
∑

mwm

and wm =

∫

Lm(γ
(m))pm(γ

(m))dγ(m). (12)

In (12), Lm(γ
(m)) and pm(γ

(m)) represent the likelihood and the a-priori distribution

regarding the parameters γ
(m) from m = 1, ...,M reformulations of (9), respectively.

Based on the log-likelihood function l(γ(m)) = lnL(γ(m)), exact posterior probabilities

wm in (12) can be approximated as

ln ŵm = l(γ̂(m))−
nm

2
ln(T − T0), (13)

where γ̂(m) denotes the (Q)ML estimator of γ(m) and nm stands for the number of right

hand side variables in model m. A feasible rule to compute forecast combination weights

is to replace wm in (12) by exp
(

l(γ̂(m))− nm

2
ln(T − T0)

)

. For horizons ℓ > 1, the

weights w∗
m in (12) might not be strictly suitable because of potential serial correlation in

the forecast errors, and thus, misspecification of the likelihood function (Wright 2009).

For this reason, we provide forecasting results for combined ℓ-step-ahead predictions

which are drawn from likelihood estimates determined under ℓ = 1 in addition to the

ones obtained for ℓ > 1. This alternative approach reveals the extent to which our

findings are affected by potentially biased weights for higher forecast horizons.
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4.4 Forecasting strategies and performance measurement

In (9), alternative IU measures are employed interchangeably as conditioning variables,

which yields a set of distinct forecasts. From the set of disparity statistics, the IU

measures (6) to (8) are determined as averages of other IU statistics. The construction of

these IU metrics is motivated in section 2 and in the studies of Wallis (2005) or Lahiri and

Sheng (2010). Additionally, we consider several IU measures which are determined as the

maximum, the minimum and the median of the IU metrics (2) to (8). Moreover, evidence

regarding the comparison between dynamic and dispersion IU measures is provided by

incorporating the average over the time-series IU metrics on the one hand and the

disparity IU measures on the other hand. These statistics are denoted as (TS) and (DS),

respectively. Finally, the predictive content of dynamic and dispersion IU measures

is compared with the GARCH(1,1) and the uτ+4|τ benchmark measures introduced in

section 4.2 for anticipation horizons ℓ = 1 and ℓ = 4, respectively. This provides insight

on the relative performance of the model based IU measures to widely used of quantifying

IU. In case of uτ+4|τ , the comparison is limited to a cross section of six economies as

listed in section 4.2 and the time period between 1992Q2 and 2011Q1. A ranking of

IU measures is constructed by means of mutual comparisons of absolute forecast errors

(AE) as given by

|e•i,τ+ℓ|τ | = |R̂•
i,τ+ℓ|τ −Rτ+ℓ| (14)

for economies i = 1, ..., 18, where ’•’ indicates that forecasts are obtained for distinct IU

measures, • ∈ {σ̂τ+ℓ|τ , h
(λ)
τ+1|τ ,

âτ , ŝτ+ℓ|τ , σ̄τ+ℓ|τ , ςτ+ℓ|τ , ζτ+ℓ|τ ,max(IU),min(IU),median(IU), (TS), (DS)}. The percent-

age of cases when an IU measure obtains predictions which are among the q best is then
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expressed as

TOPq• = (1/((T − T0 + 1)× 18))
T−ℓ
∑

τ=T0−ℓ

18
∑

i=1

I(|e•i,τ+ℓ| ≤ |e
(q)
i,τ+ℓ|), (15)

where I(·) stands for the indicator function and |e
(q)
i,τ+ℓ| denotes the q-th smallest absolute

prediction error (Stock and Watson 1999).

It seems unlikely that the predictive content provided by individual IU measures

remains largely equivalent for distinct times or economies. For example, Lahiri and Liu

(2005) find that distinct IU approximations for US data differ by the largest degree

during periods like the oil crisis or shortly after changes in the conduct of monetary

policy. Under such circumstances, economic decisions might be most strongly affected

by the uncertainty about future inflation. To evaluate the relative predictive content of

IU measures under distinct scenarios, the TOPq•-criterion in (15) is firstly considered

conditional on whether predicted observations are drawn from either calm or turbulent

subperiods of the evaluation sample. The examination of median IU trajectories in

section 4.2 shows that distinct IU measures differ considerably in their indication of

IU during the turbulent years after 2008. Hence we distinguish between turbulent and

calm periods by means of the standard deviation over the IU metrics in (2) to (8) at

each forecasting step τ = T0 − ℓ, ..., T − ℓ, denoted as SDτ+ℓ|τ . Conditional forecast

rankings are determined by computing the average TOPq• measure separately for all

sample observations above and below the median of SDτ+ℓ|τ , respectively. Moreover,

we distinguish performance rankings between earlier and later periods of the estimation

sample by splitting the available time instances into two periods of equal length. The

former period starts in 1988Q1 and ends in 1998Q3, the latter comprises observations

until 2011Q1. This may reveal if certain IU statistics may have become more relevant
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for interest rate forecasting in the course of the two recent decades.

Furthermore, the usefulness of distinct IU measures might depend on historical ex-

periences of distinct economies with respect to inflation rates. For example, prolonged

periods of high inflation rates are frequently conjectured to affect the degree of inflation

aversion of monetary authorities like in the case of the German Bundesbank (Clarida

and Gertler 1997). Moreover, IU is likely strongly associated with the inflation level.

This relation has been theoretically described by Friedman (1977) and Ball (1992) and

empirically documented, e.g. in a recent study of Hartmann and Herwartz (2012).

Hence, the formulation of recommendations for investors or monetary authorities based

on indications about IU might depend on the economy-specific average level of inflation

experienced over a longer time period. Therefore, we examine the relative merits of

distinct IU measures for predicting interest rates separately in nine high-inflation and

nine low-inflation economies. Finally, the overall contribution to predictive accuracy

from the set of IU metrics is evaluated by comparing predictive performance provided

by the respective reformulations of the Fisher equation to a specification which does not

incorporate an IU term.

5 Empirical findings

This section summarises and interprets the results of the forecast comparison study.

Subsequently, we discuss the role of IU for the determination of interest rates.

5.1 Related literature

The literature on forecasting interest rates and other macroeconomic variables docu-

ments that uncertainty measures similar to the IU metrics considered in our investigation
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can be useful predictors in many situations. Li and Zhao (2004) provide evidence for a

significant impact of GARCH-implied uncertainty terms on density forecasts of 1-month

US T-bill rates in an out-of-sample study. Höhrdahl et al. (2006) compare the out-of-

sample forecast accuracy of a term structure model which incorporates distinct inflation

risk terms to ad-hoc models for interest rate forecasting. They find that term structure

models including macroeconomic variables outperform simpler models like the random

walk in terms of predictive performance. Park (2005) documents that the disagreement

among experts’ earnings forecasts has predictive content for stock returns. Moreover,

Kurz and Motolese (2011) find that the disagreement of market analysts’ predictions

is positively associated with the time variation in the risk premia of stock returns. In

contrast, Elliot and Ito (1999) find that the disagreement as measured by the variance

across expert forecasts of the Yen/Dollar exchange rate is not significantly related to

corresponding profits from several trading rules.

5.2 Forecasting interest rates

In Table 4, the outcomes of the forecasting study based on the TOPq• criterion are

summarised. In the left and the right part of the table, respectively, the frequencies in

which forecasting models based on particular IU measures show either the best perfor-

mance (q = 1) or are among the three most accurate (q = 3) models are reported. In

both cases, the disparity measure σ̄τ+ℓ|τ is the msot informative predictor. This ranking

is particularly clear-cut for anticipation horizons ℓ > 1. Other IU statistics from the

dispersion class contribute less to the forecasting accuracy of the augmented Fisher re-

lation. From the set of time-series statistics, the measure σ̂τ+ℓ|τ is relatively frequently

among the best IU metrics. Summary measures of IU like, for example, the median over
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all IU metrics or the mean of the dynamic IU statistics also take up high ranks in some

cases, e.g. for ℓ = 1. However, they are less successful than σ̄τ+ℓ|τ . The top ranking

frequencies of TS show that forecast precision can be improved in several cases if we

combine the informative content of individual dynamics IU statistics. This does not

apply to a similar extent for the dispersion measures. Thus, choosing a candidate from

the group of time-series IU metrics appears to be more difficult than selection among

the disparity statistics.

Table 4: TOPq•

q = 1 q = 3
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

σ̂τ+ℓ|τ 8.91 11.63 11.63 12.21 21.45 24.16 25.32 25.19

h
(0.1)
τ+1|τ 8.27 7.04 6.40 6.72 23.32 22.03 21.77 21.77

h
(0.2)
τ+1|τ 4.13 4.26 3.17 3.23 23.26 21.77 17.57 18.09

âτ 12.02 7.49 7.82 9.37 26.94 23.06 22.93 23.13
ŝτ+ℓ|τ 8.98 7.82 7.62 7.49 21.51 20.09 20.54 20.74
σ̄τ+ℓ|τ 11.69 15.89 16.73 17.25 22.35 27.65 28.62 27.97
ςτ+ℓ|τ 2.45 3.17 5.56 4.26 15.96 18.15 20.80 21.90
ζτ+ℓ|τ 5.10 4.01 7.36 7.95 19.44 20.22 22.22 20.93
max(IU) 4.72 4.07 5.68 3.88 15.70 16.86 20.80 20.09
min(IU) 5.36 7.75 7.30 5.17 19.51 21.83 20.16 17.12
median(IU) 8.53 9.88 8.59 8.72 20.74 23.00 22.48 23.39
TS 9.30 5.88 5.49 5.68 28.81 24.22 21.38 20.99
DS 1.10 2.58 2.20 3.36 19.06 18.28 18.99 21.12
◦ 9.63 9.37 6.72 5.88 22.16 19.51 18.22 19.32

Cell entries represent the frequencies in which distinct IU measures lead to forecasts
which are best (q = 1 case) or among the 3 most accurate (q = 3). The row labelled as
’◦’ reports respective ranking frequencies for a forecasting model without an IU term.

Table 5 reports how frequently distinct IU measures lead to forecasts which outper-

form the Fisher equation without IU terms (as indicated by ’◦’). The left panel shows

that it is generally beneficial to predict interest rates by incorporating an IU term, since

frequencies are in basically all cases above 50%. In the right panel, the benchmark
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absolute errors are downward scaled by a factor of c = 0.8 to enable more clear-cut

distinctions among the IU measures. This reveals that the σ̄τ+ℓ|τ IU measure is the best

performing candidate IU statistic also in this respect. The comparisons of dynamic and

dispersion IU measures to the respective frequencies of benchmark IU approximations

GARCH and the survey-based standard deviation uτ+4|τ from (10) are shown in table 6.

The results demonstrate that both groups of IU metrics compare favourably to their re-

spective benchmark in terms of the frequency to outperform the Fisher equation without

IU terms. Though the GARCH(1,1) measure provides relatively high percentages for

ℓ = 1, the overall indication is that the model based IU metrics are suitable to forecast

interest rates also when compared with prominent measures from the related literature.

Table 5: Percentage of cases where |e•τ+ℓ|τ | < c× |e
(◦)
τ+ℓ|τ |

c = 1 c = 0.8
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

σ̂τ+ℓ|τ 51.03 53.29 55.49 54.84 22.22 29.07 30.75 31.20

h
(0.1)
τ+1|τ 51.87 54.20 52.71 52.00 18.09 21.25 21.25 19.77

h
(0.2)
τ+1|τ 51.74 53.94 52.84 51.74 15.50 17.64 17.70 15.31

âτ 49.55 51.16 52.78 52.78 26.94 29.13 28.94 28.10
ŝτ+ℓ|τ 51.42 53.55 54.97 54.97 26.49 31.65 35.79 34.82
σ̄τ+ℓ|τ 49.68 53.04 53.29 55.10 22.87 34.04 35.34 36.82
ςτ+ℓ|τ 50.19 53.10 56.07 55.56 25.32 31.65 35.47 35.92
ζτ+ℓ|τ 50.45 52.71 54.91 54.72 27.45 33.01 37.34 35.21
max(IU) 50.45 53.10 56.20 55.62 25.26 32.11 35.47 35.59
min(IU) 49.94 53.62 52.97 50.97 18.80 22.42 22.80 22.87
median(IU) 51.55 55.88 52.26 55.62 21.45 30.62 30.30 34.30
TS 51.16 51.36 52.39 53.23 26.94 28.42 28.55 27.78
DS 50.65 53.23 56.14 55.62 25.97 31.91 35.85 35.79

The symbol ’◦’ represents forecast errors obtained for the model (9) which does not

include an IU term. In the right part of the table, |e
(◦)
τ+ℓ|τ | is scaled downwards to obtain

more pronounced distinctions among alternative IU measures.
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Table 6: Percentages of |e•τ+ℓ|τ | < c× |e
(◦)
τ+ℓ|τ |, with benchmark measures

σ̂τ+1|τ h
(0.1)
τ+1|τ h

(0.2)
τ+1|τ âτ ŝτ+1|τ σ̄τ+1|τ ςτ+1|τ ζτ+1|τ GARCH(1,1)

c = 1 51.03 51.87 51.74 49.55 51.42 49.68 50.19 50.45 51.42
c = 0.8 22.22 18.09 15.50 26.94 26.49 22.87 25.32 27.45 29.01

σ̂τ+4|τ h
(0.1)
τ+1|τ h

(0.2)
τ+1|τ âτ ŝτ+4|τ σ̄τ+4|τ ςτ+4|τ ζτ+4|τ uτ+4|τ

c = 1 54.84 52.00 51.74 52.78 54.97 55.10 55.56 54.72 48.94
c = 0.8 31.20 19.77 15.31 28.10 34.82 36.82 35.92 35.21 17.72

The table reports frequencies where the Fisher equation with distinct IU terms. and
GARCH(1,1), outperforms the relation without IU terms. The upper part of the table
reports percentages for ℓ = 1 for the comparison of results to those obtained by means
of a GARCH(1,1) model. The lower part of the table shows outperformance frequencies
for ℓ = 4 and with IU as quantified by uτ+4|τ . Predictions based on the IU measures
max(IU), min(IU), median(IU), mean(TS) and mean(DS) and without IU terms are
omitted from the table to economise on space. Respective numbers are reported in table
5.

Subsample-specific rankings are reported in table 7. To economise on space, we

report only comparisons between the 3 most successful candidate IU measures in this

table. In general, the lead of σ̄τ+ℓ|τ over other IU measures is strongest for higher forecast

horizons. In particular, a high predictive contribution of this IU measure is found during

turbulent periods, when selecting an IU statistic might be especially important. The

results for calm periods, however, do only show that the σ̄τ+ℓ|τ IU measure outperforms

its rivals in a slightly less pronounced way. The split of the sample into early and recent

observations further reinstates the findings regarding the robust performance of σ̄τ+ℓ|τ .

We find that predictive content of this metric is more pronounced for the latter period,

that is, the importance of σ̄τ+ℓ|τ has been increasing during the recent two decades.

While the performance numbers of σ̄τ+ℓ|τ are not overly different from those of σ̂τ+ℓ|τ

until 1998, the distinction becomes rather strong during subsequent years until 2011.

Furthermore, from the forecast comparisons for low- and high inflation economies, it is
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apparent that the ranking of IU measures is more clear-cut for economies with higher

average inflation rates. This might be due to the well-documented positive association

between the level and the uncertainty of inflation. The explicit consideration of uncertain

periods appears to be a suitable means to obtain most pronounced distinctions among

measures of IU. This is in line with the findings of Lahiri and Liu (2005). Our results

suggest that the σ̄τ+ℓ|τ IU measure is particularly useful during such situations, when

the measurement of IU might be of highest relevance for economics decision takers.

Table 7: TOP1•, results for subsamples

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
Turbulent periods Calm periods

σ̂τ+ℓ|τ 33.46 33.46 30.62 29.07 27.78 31.40 30.75 31.52
âτ 30.23 24.94 24.68 25.45 37.98 29.72 30.10 28.42
σ̄τ+ℓ|τ 36.30 41.60 44.70 45.48 34.24 38.89 39.15 40.05

Sample period 1988Q1-1998Q3 Sample period 1998Q4-2011Q1
σ̂τ+ℓ|τ 27.91 32.30 32.69 33.33 33.33 32.56 28.68 27.26
âτ 38.63 29.33 27.13 25.84 29.59 25.32 27.65 28.04
σ̄τ+ℓ|τ 33.46 38.37 40.18 40.83 37.08 42.12 43.67 44.70

High inflation economies Low inflation economies
σ̂τ+ℓ|τ 25.97 29.46 28.81 29.72 35.27 35.40 32.56 30.88
âτ 34.50 26.23 27.13 23.90 33.72 28.42 27.65 29.97
σ̄τ+ℓ|τ 39.53 44.32 44.06 46.38 31.01 36.18 39.79 39.15

Turbulent and calm periods are distinguished according to whether the standard devi-
ation over the IU metrics in (2) to (8) exceeds its median value. Similarly, the cross
section of 18 economies is split into 2 groups labelled ’High-’ and ’Low inflation’ accord-
ing to their average inflation rate over the sample period. For further descriptions see
table 4.

The high performance of the dispersion IU statistic σ̄τ+ℓ|τ still holds if the weights

for the BMA scheme are only obtained for ℓ = 1, though the advantage over other IU

measures is reduced to a certain extent. This is documented in table 8 and, furthermore,

in table 9 for the subsamples as discussed above. The IU metrics σ̂τ+ℓ|τ and âτ provide
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higher predictive content than σ̄τ+ℓ|τ in some cases, but neither of them outperforms the

latter uniformly over distinct horizons. Moreover, conditional predictive performance

comparisons, particularly for turbulent periods, reveal the reliably good performance of

σ̄τ+ℓ|τ also for the alternative BMA weighting scheme. Hence it appears that the risk

from potential biases in BMA weights to affect the qualitative conclusions of the forecast

comparison among IU measures is rather limited.

Table 8: TOPq•: BMA based on ℓ = 1-weights

q = 1 q = 3
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

σ̂τ+ℓ|τ 8.91 12.14 10.85 12.34 21.45 26.42 23.06 22.67

h
(0.1)
τ+1|τ 8.27 8.85 9.11 8.20 23.32 22.80 23.71 23.26

h
(0.2)
τ+1|τ 4.13 3.62 3.23 3.17 23.26 23.64 20.67 20.41

âτ 12.02 8.53 8.66 7.75 26.94 25.39 23.32 22.35
ŝτ+ℓ|τ 8.98 8.01 7.88 7.82 21.51 19.57 21.19 19.25
σ̄τ+ℓ|τ 11.69 10.72 10.34 10.79 22.35 21.71 22.42 24.29
ςτ+ℓ|τ 2.45 3.94 5.36 5.23 15.96 17.57 19.32 22.74
ζτ+ℓ|τ 5.10 3.68 6.14 6.40 19.44 18.48 19.32 17.44
max(IU) 4.72 5.17 4.78 5.88 15.70 16.34 19.19 20.48
min(IU) 5.36 6.01 5.94 5.81 19.51 19.38 18.28 17.05
median(IU) 8.53 9.63 8.91 12.14 20.74 21.58 23.51 24.61
TS 9.30 8.98 9.04 5.94 28.81 27.45 25.45 22.87
DS 1.10 2.20 3.10 2.20 19.06 20.67 21.64 23.19
◦ 9.63 8.79 6.91 7.11 22.16 19.25 19.38 19.70

The results in this table are obtained for the alternative BMA weighting scheme where
combination weights in (12) are throughout taken from the likelihood of (9) given ℓ = 1.
For further descriptions see table 4.
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Table 9: TOP1•: BMA based on ℓ = 1-weights, results for subsamples

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
Turbulent periods Calm periods

σ̂τ+ℓ|τ 33.46 35.27 35.40 35.01 27.78 31.65 26.87 25.45
âτ 30.23 27.65 26.61 24.81 37.98 31.91 34.11 31.52
σ̄τ+ℓ|τ 36.30 37.08 37.98 40.18 34.24 36.43 39.02 43.02

Sample period 1988Q1-1998Q3 Sample period 1998Q4-2011Q1
σ̂τ+ℓ|τ 27.91 33.59 32.43 32.56 33.33 33.33 29.84 27.91
âτ 38.63 32.04 29.97 25.84 29.59 27.52 30.75 30.49
σ̄τ+ℓ|τ 33.46 34.37 37.60 41.60 37.08 39.15 39.41 41.60

High inflation economies Low inflation economies
σ̂τ+ℓ|τ 25.97 28.42 28.42 28.94 35.27 38.50 33.85 31.52
âτ 34.50 30.49 27.91 26.61 33.72 29.07 32.82 29.72
σ̄τ+ℓ|τ 39.53 41.09 43.67 44.44 31.01 32.43 33.33 38.76

For further descriptions see tables 4 and 7.

5.3 The effect of IU on interest rates

Theoretical explanations of the IU influence assert that both the demand for loanable

funds from investors and the supply of savings tend to be discouraged by higher IU

(Lahiri et al. 1988). This means that, ceteris paribus, the sign of the respective IU

impact on interest rates will be negative if the former effect dominates and positive in the

contrary case. Hence, our estimates provide evidence on which influence is the prevailing

one. To highlight the evolution of the relation over time, we provide a graphical display

of the IU effect. Denoting estimated overall IU effects at prediction steps τ = T0, ..., T

in economies i = 1, ..., 18 as ¯̂γ
(IU)
iτ , we partition the sequence of estimates into equally

sized subwindows Wk, comprising 5 quarters each4. Window-specific average coefficient

estimates are obtained as

¯̄γ
(IU)
ik = (1/5)

∑

τ∈Wk

¯̂γ
(IU)
iτ . (16)

4The sample period covers 86 observations in total, hence we let the first subperiod comprise 6
quarters.
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Figures 3 to 5 show economy-specific trajectories of ¯̄γ
(IU)
ik for k = 1, ..., 17, covering

the sample period between 1988Q1 and 2011Q1. In the forecasting study, the average

ranking of distinct IU measures across time instances and economies is considered as an

indication of their respective predictive content. For a discussion of the IU effect during

a certain subperiod k, the weights of each subset model specification m = 1, ...,M of

(9) based on the corresponding likelihood provide a means to determine their relative

importance. Therefore, we consider confidence bands around the time paths of IU effects

which are based on the variation in estimates of ¯̄γ
(IU)
ik over m = 1, ...,M . We find that

for all economies, the estimated impact of IU on sovereign bond yields is positive. This

suggests the interpretation of ¯̄γ
(IU)
ik as an inflation risk premium is the most meaningful

way to explain the influence of IU on interest rates. These results do only in parts agree

with the findings of Berument et al. (2007). They document that IU as measured by a

GARCH model and short-term interest rates from the G7 and emerging economies are

in most cases significantly related. However, Berument et al. (2007) find that the IU

effect varies in sign across economies. Duffee (2012) also reports negative estimates of

inflation risk premia in US Treasury bonds of varying maturity. The results of Duffee

(2012) are obtained in the framework of term structure models with multiple factors,

one of which is the inflation rate. Moreover, the plots in the figures 3 to 5 show that for

several economies, the price of inflation risk appears to have increased during the most

recent years.
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Figure 3: Accumulated inflation uncertainty effects γ̄
(IU)
ik for distinct economies and the

forecasting horizon ℓ = 1. Dashed lines are approximate ±2 standard error confidence
bands indicating likelihood-weighted subset model variation with respect to distinct
specifications of the Fisher equation in (9). Results for ℓ > 1 are qualitatively similar
and available from the authors upon request.
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Figure 4: For a description see figure 3.
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6 Summary and concluding remarks

This study is a comparative evaluation of several alternative measures of inflation uncer-

tainty. The assessment is carried out by means of forecasting government bond interest

rates, employing alternative inflation uncertainty measures as predictor variables. We

predict interest rates for 18 mature economies at anticipation horizons of one month up

to one year. In the related literature, two categories of inflation uncertainty quantifica-

tion are distinguished. The first group are time-series measures, the other one is based

on the heterogeneity of individual inflation forecasts. The forecast competition shows

that the average over individual uncertainties as a representative of the dispersion family

is the most viable predictor variable for interest rates. We further note that all uncer-

tainty measures uniformly indicate a decrease in inflation uncertainty during the years

of the so-called Great Moderation. However, the two groups of uncertainty metrics differ

markedly in their indication of inflation uncertainty during the recent crisis period after

the year 2008. While time-series measures indicate a considerable uprise of inflation risk

after 2008, the dispersion measures remain at their average level of the pre-crisis years.

Moreover, our estimates of the relation between inflation uncertainty and interest rates

is uniformly positive across economies. This suggests the interpretation of the IU effect

as a risk premium as the most likely explanation. Although the IU level as indicated by

the most informative IU measure does not rise significantly during recent years, investors

seem to demand for a higher inflation risk premium than during the previous years of

the Great Moderation in several economies.
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7 Appendix

7.1 Further inflation forecasting schemes

Extending the baseline AR in (1) with a lagged output gap term, ỹt = yt− ȳt, yields the

backward looking Phillips curve following e.g. Stock and Watson (2007), i.e.

πt+ℓ = α10 + α11t+ α12πt−1 + α13ỹt−1 + ǫt+ℓ, t = τ − B + 1, ..., τ. (17)

In (17), estimates of the long run trend on which ỹt is based are computed recursively

within the estimation window by means of the Hodrick-Prescott filter with smoothing

parameter 129600 (Ravn and Uhlig 2002). To examine the predictive content of mone-

tary variables, Stock and Watson (2008) predict inflation changes with the money aug-

mented Phillips curve, initially proposed by Gerlach (2004). Similarly, the growth rate

of core money, denoted mt, is typically interpreted as a proxy for inflation expectations.

Consequently, this specification reads as

πt+ℓ = α20 + α21t+ α22πt−1 + α23ỹt−1 + α24m̄t−1 + ǫt+ℓ. (18)

Neumann and Greiber (2004) propose to augment (18) with an indicator of energy prices

obtaining

πt+ℓ = α30 + α31t+ α32πt−1 + α33ỹt−1 + α34m̄t−1 + α35∆
2oilt−1 + ǫt+ℓ. (19)

In (19), ∆2oilt denotes second differences of the log oil price in terms of domestic cur-

rency. Note that (19) implicitly comprises log foreign exchange rate changes as predictors
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of inflation. An alternative model in the spirit of Cogley (2002) incorporates the devi-

ation of inflation from its long run trend, denoted π̃t = πt − π̄t. This model is given

by

πt+ℓ = α40 + α41π̃t−1 + ǫt+ℓ. (20)

This specification expresses the view that that in states deviating markedly from the

long run inflation trend, additional adjustment dynamics might impact on πt+ℓ.
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