Understanding the Equity-premium Puzzle and the Correlation Puzzle

Rui Albuquerque, Martin Eichenbaum and Sergio Rebelo

May 2012

 \leftarrow

 Ω

Albuquerque, Eichenbaum and Rebelo () and the material control of the material material of the May 2012 1 / 58

- The covariance and correlation between stock returns and measurable fundamentals, especially consumption, is weak at the 1, 5, 10 and 15 year horizons.
- This fact underlies virtually all modern asset-pricing puzzles.
	- The equity premium puzzle, Hansen-Singleton-style rejection of asset pricing models, Shillerís excess volatility of stock prices, etc.
- Hansen and Cochrane (1992) and Cochrane and Campbell (1999) call this phenomenon the "correlation puzzle."

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- Classic asset pricing models load all uncertainty onto the supply-side of the economy.
	- Stochastic process for the endowment in Lucas-tree models.
	- Stochastic process for productivity in production economies.
- These models abstract from shocks to the demand for assets.
- It's not surprising that one-shock models can't simultaneously account for the equity premium puzzle and the correlation puzzle.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- What's the other shock?
- We explore the possibility that it's a shock to the demand for assets.

- We model the shock to the demand for assets in the simplest possible way: time-preference shocks.
- Macro literature on zero lower bound suggests these shocks are a useful way to model changes in household savings behavior.
	- e.g. Eggertsson and Woodford (2003).
- These shocks also capture effects of changes in the demographics of stock market participants or other institutional changes that affect savings behavior.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Key results

- The model accounts for the equity premium and the correlation puzzle (taking statistical uncertainty into account).
	- It also accounts for the level and volatility of the risk free rate.
- The model's estimated risk aversion coefficient is very low (close to one).
- Our findings are consistent with Lucas' conjecture about fruitful avenues to resolve the equity premium puzzle.

"It would be good to have the equity premium resolved, but I think we need to look beyond high estimates of risk aversion to d o it."

Robert Lucas, Jr., "Macroeconomic Priorities," American Economic Review, 2003.

- Model with Epstein-Zin preferences and no time-preference shocks
	- Very large estimated risk-aversion coefficient, no equity premium and cannot account for correlation puzzle.
- **CRRA preferences and time-preference shocks.**
	- Canít account for the equity premium or the correlation puzzle.
- Bansal, Kiku and Yaron (2011)
	- Can account for the equity premium puzzle with a risk aversion coefficient of 10.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Canít account for the correlation puzzle.

- On the one hand, we introduce a new source of shocks into the model.
- On the other hand, our model is simpler than many alternatives.
- We assume that consumption and dividends are a random walk with a homoskedastic error term.
- We donít need:
	- Habit formation, long-run risk, time-varying endowment volatility, model ambiguity.
	- Any of these features could be added.
- Straightforward to modify DSGE models to allow for these shocks.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- **•** For time-preference shocks to improve the model's performance, it's critical that agents have Epstein-Zin preferences.
- Introducing time-preference shocks in a model with CRRA preferences is counterproductive.
- In the CRRA case, the equity premium is a *decreasing* function of the variance of time-preference shocks.

- We use data for 17 OECD countries and 7 non-OECD countries, covering the period 1871-2006.
- Correlations between stock returns and consumption, as well as correlations between stock returns and output are low at all time horizons.
- The correlation between stock returns and dividend growth is substantially higher for horizons greater than 10 years, but it's similar to that of consumption at shorter horizons.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- Sample: 1871-2006.
- Nakamura, Steinsson, Barro, and Ursúa (2011) for stock returns.
- Barro and Ursúa (2008) for consumption expenditures and real per capita GDP.

メロト メ御 ドメ 老 トメ 老 トッ 差し

 -990

- Shiller for real S&P500 earnings and dividends.
- We use realized real stock returns and risk free rate.

United States, 1871-2006 Correlation between real stock market returns and the growth rate of fundamentals

Standard errors are indicated in parenthesis.

Correlation between real stock market returns and growth rate of fundamentals G7 and non G7 countries

Standard errors are indicated in parenthesis.

U.S. stock returns and consumption growth

 $2Q$ ◆ ロ ▶ → 伊 \mathbf{p} É \rightarrow ÷

U.S. stock returns and output growth

つくい ◆ ロ ▶ → 伊 \mathbf{p} 一本語 ŧ É

U.S. stock returns and dividend growth

つくい ◆ ロ ▶ → 伊 \mathbf{p} 一本語 ŧ É

U.S. stock returns and earnings growth

 $2Q$ ◆ ロ ▶ → 伊 \mathbf{p} ŧ É - 41 - 11

• Epstein-Zin preferences

Life-time utility is a CES of utility today and the certainty equivalent of future utility, U_{t+1}^* .

$$
U_t = \max_{C_t} \left[\lambda_t C_t^{1-1/\psi} + \delta \left(U_{t+1}^* \right)^{1-1/\psi} \right]^{1/(1-1/\psi)}
$$

K ロ ▶ (K@) ▶ (K@) X (@) / [@]

 Ω

- $\mathbf{\hat{a}}$ λ_t determines how agents trade off current versus future utility, isomorphic to a time-preference shock.
- *ψ* is the elasticity of intertemporal substitution.

$$
U_t = \max_{C_t} \left[\lambda_t C_t^{1-1/\psi} + \delta \left(U_{t+1}^* \right)^{1-1/\psi} \right]^{1/(1-1/\psi)}
$$

• The certainty equivalent of future utility is the sure value of $t + 1$ lifetime utility, U^*_{t+1} such that:

$$
\left(U_{t+1}^*\right)^{1-\gamma} = E_t\left(U_{t+1}^{1-\gamma}\right)
$$

$$
U_{t+1}^* = \left[E_t\left(U_{t+1}^{1-\gamma}\right)\right]^{1/(1-\gamma)}
$$

(ロ) (御) (唐) (唐) (唐) 2000

• γ is the coefficient of relative risk aversion.

Special case: CRRA

$$
U_t = \max_{C_t} \left[\lambda_t C_t^{1-1/\psi} + \delta (U_{t+1}^*)^{1-1/\psi} \right]^{1-1/\psi}
$$

• When $\gamma = 1/\psi$, preferences reduce to CRRA with a time-varying rate of time preference.

$$
V_t = \sum_{i=0}^{\infty} \delta^i \lambda_{t+i} C_{t+i}^{1-\gamma},
$$

(ロ) (御) (君) (君) (君) 君 のぬの

where $V_t = U_t^{1-\gamma}$.

Case considered by Garber and King (1983) and Campbell (1986).

Consumption follows a random walk

$$
\begin{array}{rcl}\n\log(C_{t+1}) & = & \log(C_t) + \mu + \eta_{t+1}^c \\
\eta_{t+1}^c & \sim & N(0, \sigma_c^2)\n\end{array}
$$

• Process for dividends:

$$
\log(D_{t+1}) = \log(D_t) + \mu + \pi \eta_{t+1}^c + \eta_{t+1}^d
$$

$$
\eta_{t+1}^d \sim N(0, \sigma_d^2)
$$

• Time-preference shock:

$$
\log (\lambda_{t+1}/\lambda_t) = \rho \log (\lambda_t/\lambda_{t-1}) + \varepsilon_{t+1}
$$

$$
\varepsilon_{t+1} \sim N(0, \sigma_{\varepsilon}^2)
$$

- **•** It's convenient to assume that agents know λ_{t+1} at time t.
- What matters for agents' decisions is the growth rate of λ_t , which we assume is highly persistent but stationary (ρ is very close to one).
- The idea is to capture, in a parsimonious way, persistent changes in agents' attitudes towards savings.
- Returns to the stock market are defined as returns to claim on dividend process:
	- Standard assumption in asset-pricing literature (Abel (1999)).
- Realized gross stock-market return:

$$
R_{t+1}^d = \frac{P_{t+1} + D_{t+1}}{P_t}.
$$

DeÖne:

$$
r_{d,t+1} = \log(R_{t+1}^d),
$$

$$
z_{dt} = \log(P_t/D_t).
$$

(ロ) (御) (唐) (唐) (唐) 2000

Realized gross return to a claim on the endowment process:

$$
R_{t+1}^c = \frac{P_{t+1}^c + C_{t+1}}{P_t^c}.
$$

• Define:

$$
r_{c,t+1} = \log(R_{t+1}^c),
$$

\n
$$
z_{ct} = \log(P_t^c/C_t).
$$

Using a log-linear Taylor expansion:

$$
r_{d,t+1} = \kappa_{d0} + \kappa_{d1} z_{dt+1} - z_{dt} + \Delta d_{t+1},
$$

$$
r_{c,t+1} = \kappa_{c0} + \kappa_{c1} z_{ct+1} - z_{ct} + \Delta c_{t+1},
$$

$$
\kappa_{d0} = \log[1 + \exp(z_d)] - \kappa_{1d}z_d,
$$

\n
$$
\kappa_{c0} = \log[1 + \exp(z_c)] - \kappa_{1c}z_c,
$$

$$
\kappa_{d1} = \frac{\exp(z_d)}{1 + \exp(z_d)}, \quad \kappa_{c1} = \frac{\exp(z_c)}{1 + \exp(z_c)}.
$$

• z_d and z_c are the values of z_{dt} and z_{ct} in the non-stochastic steady state.

(ロ) (御) (君) (君) (君) 君 のぬの

• The log-SDF is:

$$
m_{t+1} = \theta \log (\delta) + \theta \log (\lambda_{t+1}/\lambda_t) - \frac{\theta}{\psi} \Delta c_{t+1} + (\theta - 1) r_{c,t+1},
$$

$$
\theta = \frac{1 - \gamma}{1 - 1/\psi}.
$$

• $r_{c,t+1}$ is the log return to a claim on the endowment,

$$
r_{c,t+1} = \log(R_{t+1}) = \frac{P_{t+1} + C_{t+1}}{P_t}
$$

Euler equation:

$$
E_t\left[\exp\left(m_{t+1}+r_{d,t+1}\right)\right]=1
$$

Solving the model

Use Euler equation:

$$
E_t\left[\exp\left(m_{t+1}+r_{d,t+1}\right)\right]=1
$$

• Replace m_{t+1} and $r_{d,t+1}$ using equations:

$$
m_{t+1} = \theta \log (\delta) + \theta \log (\lambda_{t+1}/\lambda_t) - \frac{\theta}{\psi} \Delta c_{t+1} + (\theta - 1) r_{c,t+1},
$$

$$
r_{d,t+1} = \kappa_{d0} + \kappa_{d1} z_{dt+1} - z_{dt} + \Delta d_{t+1}.
$$

• Replace $r_{c,t+1}$ with:

$$
r_{c,t+1} = \kappa_{c0} + \kappa_{c1} z_{ct+1} - z_{ct} + \Delta c_{t+1}.
$$

Solving the model

Guess and verify that the equilibrium solution for z_{dt} and z_{ct} take the form:

$$
z_{dt} = A_{d0} + A_{d1} \log (\lambda_{t+1}/\lambda_t),
$$

\n
$$
z_{ct} = A_{c0} + A_{c1} \log (\lambda_{t+1}/\lambda_t).
$$

- Since consumption is a martingale, price dividend ratios are constant absent movements in $\lambda_t.$
- In calculating conditional expectations use properties of lognormal distribution.
- Use method of indeterminate coefficients to compute A_{d0} , A_{d1} , A_{c0} , and A_{c1} .

The risk-free rate

$$
r_{t+1}^f = -\log(\delta) - \log(\lambda_{t+1}/\lambda_t) + \mu/\psi - (1-\theta) \kappa_{c1}^2 A_{c1}^2 \sigma_{\epsilon}^2 / 2
$$

$$
+ \left[\frac{(1-\theta)}{\theta} (1-\gamma)^2 - \gamma^2 \right] \sigma_c^2 / 2,
$$

$$
\theta = \frac{1-\gamma}{1-1/\psi}.
$$

 $\theta = 1$ when preferences are CRRA.

- The risk-free rate is a decreasing function of $log (\lambda_{t+1}/\lambda_t)$.
	- If agents value the future more, relative to the present, they want to save more. Since aggregate savings cannot increase, the risk-free rate has to fall.

$$
r_{t+1}^f = -\log(\delta) - \log(\lambda_{t+1}/\lambda_t) + \mu/\psi - (1-\theta) \kappa_{c1}^2 A_{c1}^2 \sigma_{\varepsilon}^2 / 2 + \left[\frac{(1-\theta)}{\theta} (1-\gamma)^2 - \gamma^2 \right] \sigma_c^2 / 2.
$$

$$
E_t(r_{d,t+1}) - r_t^f = \pi \sigma_c^2 (2\gamma - \pi)/2 - \sigma_d^2/2 +
$$

$$
\kappa_{d1} A_{d1} [2 (1 - \theta) A_{c1} \kappa_{c1} - \kappa_{d1} A_{d1}] \sigma_c^2/2.
$$

It's cumbersome to do comparative statics exercises because $κ_{c1}$ and κ_{d1} are functions of the parameters of the model.

• Suppose that $\theta = 1$:

$$
r_{t+1}^f = -\log(\delta) - \log(\lambda_{t+1}/\lambda_t) + \mu/\psi - \gamma^2 \sigma_c^2/2.
$$

$$
E_t(r_{d,t+1}) - r_t^f = \pi \sigma_c^2 (2\gamma - \pi)/2 - \sigma_d^2/2 - \kappa_{d1}^2 A_{d1}^2 \sigma_c^2/2.
$$

(ロ) (御) (君) (君) (君) 君 のぬの

• Interestingly, the equity premium in this special case depends *negatively* on σ_{ε}^2 .

Equity premium: CRRA case

- To get some intuition consider the case where the stock market is a claim to consumption $(\pi = 1, \sigma_d^2 = 0)$.
- Replacing expectations of future price-consumption ratio we obtain:

$$
\frac{P_t}{C_t} = \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+1}) \left[E_t \left(\frac{P_{t+1}}{C_{t+1}} \right) + 1 \right]
$$

$$
\alpha = \delta \exp \left[(1 - \gamma) \mu + (1 - \gamma)^2 \sigma_c^2 / 2 \right]
$$

- \bullet ε_{t+1} is known at time t.
- Recursing on P_t / C_t :

$$
\frac{P_t}{C_t} = \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+1}) E_t \left[\frac{1 + \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+2})}{1 + \alpha^2 \exp(\sigma_{\varepsilon} \varepsilon_{t+2}) \exp(\sigma_{\varepsilon} \varepsilon_{t+3}) + \dots} \right]
$$

K ロ K K @ K K K 할 K K 할 X (할 X) … 할

 η

$$
\frac{P_t}{C_t} = \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+1}) E_t \left[1 + \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+2}) + \alpha^2 \exp(\sigma_{\varepsilon} \varepsilon_{t+2}) \exp(\sigma_{\varepsilon} \varepsilon_{t+3}) + \dots \right]
$$

• Computing expectations:

$$
\frac{P_t}{C_t} = \alpha \exp(\sigma_{\varepsilon} \varepsilon_{t+1}) \left[1 + \alpha \exp(\sigma_{\varepsilon}^2/2) + \alpha^2 \left[\exp(\sigma_{\varepsilon}^2/2) \right]^2 + ... \right]
$$

- Assume that $\alpha \exp(\sigma_{\varepsilon}^2/2)$ $<$ 1 so price is finite.
- The price-consumption ratio is an increasing function of σ_{ε}^2 .
	- This variance enters because the mean of a lognormal variable is increasing in the variance.

★ ロン → 御 > → (唐 > → (唐 > → 唐

 $2Q$

Equity premium: CRRA case

• The unconditional expected return is:

$$
ER_{t+1}^{c} = \exp(\mu + \sigma_c^2/2) [1 + E (C_t/P_t)].
$$

$$
E(C_t/P_t) = \frac{1 - \delta \exp \left[\left(1 - \gamma\right) \mu + \left(1 - \gamma\right)^2 \sigma_c^2 / 2 \right] \left[\exp\left(\sigma_c^2 / 2\right) \right]^2}{\delta \exp \left[\left(1 - \gamma\right) \mu + \left(1 - \gamma\right)^2 \sigma_c^2 / 2 \right]}
$$

 ER_{t+1}^c is a decreasing function of σ_{ε}^2 .

• Including time-preference shocks in a model with CRRA utility lowers the equity premium!

Equity premium: Epstein-Zin

$$
E_t (r_{d,t+1}) - r_t^f = \pi \sigma_c^2 (2\gamma - \pi)/2 - \sigma_d^2/2
$$

+ $\kappa_{d1} A_{d1} [2 (1 - \theta) A_{c1} \kappa_{c1} - \kappa_{d1} A_{d1}] \sigma_{\varepsilon}^2/2.$

• Recall that:

$$
r_{d,t+1} = \kappa_{d0} + \kappa_{d1} z_{dt+1} - z_{dt} + \Delta d_{t+1} \kappa_{d1} = \frac{\exp(z_d)}{1 + \exp(z_d)}
$$

$$
r_{c,t+1} = \kappa_{c0} + \kappa_{c1} z_{ct+1} - z_{ct} + \Delta c_{t+1}, \quad \kappa_{c1} = \frac{\exp(z_c)}{1 + \exp(z_c)}
$$

- Necessary condition for time-preference shocks to help explain equity premium: $\theta < 1$ ($\gamma > 1/\varphi$).
- This condition is more likely to be satisfied for higher risk aversion, higher IES.

(ロ) (御) (君) (君) (君) 君 のぬの

- We estimate the model using GMM.
- We find the parameter vector $\hat{\Phi}$ that minimizes the distance between the empirical, Ψ_D , and model population moments, $\Psi(\hat{\Phi})$,

$$
L(\hat{\Phi}) = \min_{\Phi} \left[\Psi(\Phi) - \Psi_D \right]' \Omega_D^{-1} \left[\Psi(\Phi) - \Psi_D \right].
$$

(ロ) (御) (唐) (唐) (唐) 2000

 Ω_D is an estimate of the variance-covariance matrix of the empirical moments.

Estimated parameters

- Agents make decisions on a monthly basis. We compute moments at an annual frequency.
- \bullet The parameter vector, Φ , includes the 9 parameters:
	- **•** γ : coefficient of relative risk aversion;
	- *ψ*: elasticity of intertemporal substitution;
	- *δ*: rate of time preference;
	- \bullet μ : drift in random walk for the log of consumption and dividends;
	- σ_c : volatility of innovation to consumption growth;
	- *π*: parameter that controls correlation between consumption and dividend shocks;
	- $\sigma_{\boldsymbol{d}}$: volatility of dividend shocks;
	- *ρ*: persistence of time-preference shocks;
	- *σλ*: volatility of innovation to time-preference shocks.

• The vector Ψ_D includes the following 14 moments:

- Consumption growth: mean and standard deviation;
- Dividend growth: mean, standard deviation, and 1st order serial correlation;
- Correlation between growth rate of dividends and growth rate of consumption;
- Real stock returns: mean and standard deviation;
- Risk free rate: mean and standard deviation;
- Correlation between stock returns and consumption growth (1 and 10 years);

(ロ) (御) (唐) (唐) (唐) 2000

Correlation between stock returns and dividend growth (1 and 10 years).

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

 \overline{a}

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

Annual correlations between fundamentals and real stock returns

- Since corr $(\Delta d_t, R_t^d)$ and corr $(\Delta c_t, R_t^d)$ are estimated with more precision than average rates of returns, the estimation criterion gives them more weight.
- **If** we drop the correlations from the criterion, the parameters move to a region where the equity premium is larger.

(ロ) (御) (唐) (唐) (唐) 2000

• The value of $\theta = (1 - \gamma)/(1 - 1/\psi)$ goes from -0.45 to -1.23 , which is why the equity premium implied by the model rises.

Model comparison

Without time-preference shocks, the estimation criterion settles on a very high risk aversion coefficient ($\gamma = 18$).

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

- Even then, the model cannot generate an equity premium.
- It also cannot account for the correlation puzzle
	- $\text{corr}(\Delta d_t, R_t^d) = 1$, $\text{corr}(\Delta c_t, R_t^d) = 0.40$.

Model comparison

Model comparison

- When *ψ* < 1, good news about the future drives down stock prices.
- Suppose agents learn that they will receive a higher future dividend from the tree.
- On the one hand, the tree is worth more, so agents want to buy stock shares (substitution effect).
- On the other hand, agents want to consume more today, so they want to sell stock shares (income effect).

(ロ) (御) (唐) (唐) (唐) 2000

- When $\psi < 1$, income effect dominates and agents try to sell stock shares. But they can't in the aggregate.
- So, the price of the tree must fall and expected returns rise, thus inducing the representative agent to hold the tree.

K ロ ▶ 《 리 》 《 코 》 《 코 》 《 코 》 《 코 》 ◇ 9.0

- Imposing $\psi > 1$ has a modest impact on our results.
	- The equity premium rises.
	- But, corr $(\Delta d_t, R_t^d)$ and corr $(\Delta c_t, R_t^d)$ also rise.

Model comparison

A century of time-preference shocks, (a sample path)

つくい **K ロ ▶ | K 伊 ▶ | K ヨ** ≣

Bansal, Kiku and Yaron (2011)

- Originally, they emphasized importance of long run risk.
- More recently they emphasized the importance of movements in volatility.

$$
U_t = \max_{C_t} \left[\lambda_t C_t^{1-1/\psi} + \delta \left(U_{t+1}^* \right)^{1-1/\psi} \right]^{1/(1-1/\psi)}
$$

$$
U_{t+1}^* = \left[E_t \left(U_{t+1}^{1-\gamma} \right) \right]^{1/(1-\gamma)}
$$

$$
g_t = \mu + x_{t-1} + \sigma_{t-1} \eta_t,
$$

\n
$$
x_t = \rho_x x_{t-1} + \phi_e \sigma_{t-1} e_t,
$$

\n
$$
\sigma_t^2 = \sigma^2 (1 - \nu) + \nu \sigma_{t-1}^2 + \sigma_w^2 w_t.
$$

BKY parameters

We re-estimated our model for the period 1930-2006 for comparability with BKY

(ロ) (個) (目) (目) (目) 目 のQC

- The BKY model does a very good job at accounting for the equity premium and the average risk free rate.
- Problem: correlations between stock market returns and fundamentals (consumption or dividend growth) are close to one.

(ロ) (御) (唐) (唐) (唐) 2000

- We propose a simple model that accounts for the level and volatility of the equity premium and of the risk free rate.
- The model is broadly consistent with the correlations between stock market returns and fundamentals, consumption and dividend growth.
- Key features of the model
	- Consumption and dividends follow a random walk;
	- **Epstein-Zin utility;**
	- Stochastic rate of time preference.
- The model accounts for the equity premium with low levels of risk aversion.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙