

Monetary Policy and the Uncovered Interest Rate Parity Puzzle

Dave Backus, Federico Gavazzoni, Chris Telmer and Stan Zin

USD/EUR Interest Rate Differential

Question

Rate Spread

Question

Findings

Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Why do countries with high-interest-rate *policies* have currencies that tend to appreciate?

□ When the Fed decides to tighten vis-a-vis the ECB, why does USD get anointed as the risky currency? QuestionRate SpreadQuestionFindingsOverviewModelBilson-Fama
RegressionMain ResultIntuitionCalibrationConclusionsExtra Slides

Domestic and foreign Taylor Rules:

 $i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$

$$i_t^* = \bar{\tau}^* + \tau_\pi^* \pi_t^* + \tau_x^* x_t^*$$

□ How are these policies reflected in exchange rates?

Does the answer have anything to do with currency risk?

Findings

Question Rate Spread

Question

 \triangleright Findings

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

 \Box A relatively tight *domestic* monetary policy, $\tau_{\pi} > \tau_{\pi}^*$, makes the *foreign* currency risk premium *larger*.

 $\hfill\square$ Empirical application based on U.S. - Australia

- Qualitative predications of model confirmed
- Quantitatively, risk premiums too small

\triangleright Overview

FX Risk

Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Background and Overview

Two Points

Question

Overview FX Risk Lucas Equation Method Basic Approach Taylor Rules Model Bilson-Fama Regression Main Result

Intuition

Calibration

Conclusions

Extra Slides

1. Currency risk = *difference* in volatility.

2. Overview of what we do:

 \Box Take Lucas (1982).

 \Box Replace money with Taylor rules

Currency Risk in Log-Normal Models

Question

Overview

FX Risk

Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

High volatility implies low currency risk:

$$E_t(s_{t+1} - f_t) = (Var_t m_{t+1} - Var_t m_{t+1}^*)/2$$

where,

 $\square m =$ nominal MRS of U.S. representative agent

 $\hfill\square\ensuremath{\ensuremath{\mathbb{MRS}}\xspace}\ensuremath{\ensuremath{\mathbb{MRS}}\xspace}\ensuremath{\ensuremath{\mathbb{RS}}\xspace}\ensuremath{\ensurema$

 $\Box s_t = \log \text{ spot rate (price of EUR)}$

 $\Box f_t = \log$ forward rate

 $\Box E_t(s_{t+1} - f_t) =$ expected excess return on EUR

(continued)

Question

Overview

▷ FX Risk

Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Implications:

- □ Time-varying volatility is necessary
- □ For monetary policy to matter, it must either generate volatility or respond to it.

□ Our model: volatility arises from real shocks ... Taylor rule responds:

$$i_t = \bar{\tau} + \tau_\pi \pi_t (x_t, \sigma_t^2) + \tau_x x_t$$

Lucas Equation

Question

Overview

FX Risk

 \triangleright Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

 \Box Lucas (1982) equation:

$$\frac{S_{t+1}}{S_t} = \frac{\frac{u'(c_{t+1}^*)}{u'(c_t^*)} \frac{P_t^*}{P_{t+1}^*}}{\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}}}$$

Lucas Equation

Question

Overview

FX Risk

 \triangleright Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

 \Box Lucas (1982) equation:

$$\frac{S_{t+1}}{S_t} = \frac{\frac{u'(c_{t+1}^*)}{u'(c_t^*)} \frac{P_t^*}{P_{t+1}^*}}{\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}}}$$
$$= \frac{n_{t+1}^* e^{-\pi_{t+1}^*}}{n_{t+1} e^{-\pi_{t+1}}}$$

Lucas Equation

	Г
Question	L
o :	
Overview	
FX Risk	
Lucas Equation	
Method	
Basic Approach	
Taylor Rules	
Model	
Bilson-Fama	
Regression	
Main Result	
Intuition	
Calibration	
Conclusions	
Extra Slides	

\Box Lucas (1982) equation:

$$\frac{S_{t+1}}{S_t} = \frac{\frac{u'(c_{t+1}^*)}{u'(c_t^*)} \frac{P_t^*}{P_{t+1}^*}}{\frac{u'(c_{t+1})}{u'(c_t)} \frac{P_t}{P_{t+1}}}$$
$$= \frac{n_{t+1}^* e^{-\pi_{t+1}^*}}{n_{t+1} e^{-\pi_{t+1}}}$$
$$= \frac{m_{t+1}^*}{m_{t+1}}$$

Method

Question

Overview FX Risk

Lucas Equation

Method

Basic Approach

Taylor Rules

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Previous work on monetary policy and the UIP puzzle:
 Alvarez, Atkeson, and Kehoe (2007), Backus, Gregory, and Telmer (1993), Bekaert (1994), Burnside,
 Eichenbaum, Kleshchelski, and Rebelo (2006), Canova and Marrinan (1993), Dutton (1993), Grilli and Roubini (1992), Lucas (1982), Macklem (1991), Marshall (1992), McCallum (1994) and Schlagenhauf and Wrase (1995)

 \Box Most feature explicit models of *money*.

 \Box We replace money with Taylor rules

Overview

FX Risk

Lucas Equation

Method

▷ Basic Approach

Taylor Rules

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

□ Usual set-up (private sector behavior):

 $i_t = -\log E_t \, n_{t+1} e^{-\pi_{t+1}}$

☐ Monetary policy is a Taylor rule:

 $i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$

Endogenous inflation (Gallmeyer, Hollifield, Palomino, and Zin (2007))

$$\pi_t = -\frac{1}{\tau_\pi} \left(\bar{\tau} + \tau_x x_t + \log E_t \, n_{t+1} \, e^{-\pi_{t+1}} \right)$$

Do the same for foreign country, use Lucas equation to solve for exchange rate:

$$\frac{S_{t+1}}{S_t}(\tau,\tau^*) = \frac{n_{t+1}^* e^{-\pi_{t+1}^*(\tau)}}{n_{t+1} e^{-\pi_{t+1}(\tau^*)}}$$

Different Taylor Rules

 $\hfill\square$ Can evaluate different Taylor rules:

Question

Overview

FX Risk

Lucas Equation

Method

Basic Approach

▷ Taylor Rules

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

- Baseline, with/without shocks/asymmetries:

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t + z_t$$

$$i_t^* = \tau^* + \tau_\pi^* \pi_t^* + \tau_x^* x_t^* + z_t^*$$

- Asymmetric w.r.t. exchange rate:

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t + z_t$$

$$i_t^* = \tau^* + \tau_\pi^* \pi_t^* + \tau_x^* x_t^* + \tau_3^* \log(S_{t+1}/S_t) + z_t^*$$

- Interest rate smoothing (McCallum (1994)):

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t + \tau_4 i_{t-1} + z_t$$

$$i_t^* = \tau^* + \tau_\pi^* \pi_t^* + \tau_x^* x_t^* + \tau_4^* i_{t-1}^* + z_t^*$$

□ Important identification issues (Cochrane (2007))

Overview

▷ Model

Setting

Preferences

Consumption

Taylor Rule

Inflation Solution

Pricing Kernel

Foreign Economy

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Model

Setting

Question

Overview

Model

 \triangleright Setting

Preferences

Consumption

Taylor Rule

Inflation	So	lutior

Pricing Kernel

Foreign Economy

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

$$\frac{S_{t+1}}{S_t}(\tau) = \underbrace{\frac{U'(c_{t+1}^*)/U'(c_t^*)}{U'(c_{t+1})/U'(c_t)}}_{\text{Real FX Rate}} \frac{P_t}{P_{t+1}}(\tau)$$

□ Complete markets

□ Recursive preferences

Exogenous domestic and foreign consumption (c_t^*, c_t)

- No feedback from policy to allocations

 \Box Taylor rules (τ , τ^*)

Preferences

Question Overview

Model

Setting

Preferences

Consumption

Taylor Rule

Inflation Solution

Pricing Kernel

Foreign Economy

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

 \Box Recursive preferences for representative agent:

$$U_t = [(1 - \beta)c_t^{\rho} + \beta\mu_t (U_{t+1})^{\rho}]^{1/\rho}$$

$$\mu_t(U_{t+1}) \equiv E_t[U_{t+1}^\alpha]^{1/\alpha}$$

 \Box Real pricing kernel:

$$n_{t+1} = \beta \left(\frac{c_{t+1}}{c_t}\right)^{\rho-1} \left(\frac{U_{t+1}}{\mu_t(U_{t+1})}\right)^{\alpha-\rho}$$

□ Hansen, Heaton, and Li (2005) linearization

Consumption

Question

Overview

Model

Setting

Preferences

\triangleright Consumption

Taylor Rule

Inflation Solution

Pricing Kernel

Foreign Economy

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Consumption growth:

$$x_{t+1} = (1 - \varphi_x)\theta_x + \varphi_x x_t + \sqrt{u_t}\epsilon_{t+1}^x$$

Volatility:

$$u_{t+1} = (1 - \varphi_u)\theta_u + \varphi_u u_t + \sigma_u \epsilon_{t+1}^u$$

Taylor Rule

Question	
Overview	
Model Setting Preferences Consumption Taylor Rule Inflation Solution Pricing Kernel	$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$
Foreign Economy Bilson-Fama Regression Main Result Intuition	
Calibration	
Conclusions Extra Slides	

Solution: Domestic Inflation

Question Overview Model Setting Preferences Consumption Solution: \square Taylor Rule ▶ Inflation Solution Pricing Kernel Foreign Economy Bilson-Fama Regression Main Result \square Intuition Calibration 1 Conclusions Extra Slides

$$\pi_t = -\frac{1}{\tau_\pi} \Big(\bar{\tau} + \tau_x x_t + \log E_t \, n_{t+1} \, e^{-\pi_{t+1}} \Big)$$

$$\pi_t = a + a_x x_t + a_u u_t$$

Coefficients

$$a_x = \frac{(1-\rho)\varphi_x - \tau_x}{\tau_\pi - \varphi_x}$$

$$a_u = \frac{\frac{\alpha}{2}(\alpha - \rho)(\omega_x + 1)^2 - \frac{1}{2}\left((1-\alpha) - (\alpha - \rho)\omega_x + a_x\right)^2}{\tau_\pi - \varphi_u}$$

Pricing Kernel

Question

Overview

Model

Setting Preferences

Consumption

Taylor Rule

Inflation Solution

▷ Pricing Kernel

Foreign Economy

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

$$-\log m_{t+1} = \delta + \gamma_x x_t + \gamma_u u_t + \lambda_x \sqrt{u_t} \epsilon_{t+1}^x + \lambda_u \sigma_u \epsilon_{t+1}^u$$

where

$$\gamma_x = (1-\rho)\varphi_x + a_x\varphi_x \quad ; \quad \gamma_u = \frac{\alpha}{2}(\alpha-\rho)(\omega_x+1)^2 + a_u\varphi_u$$

$$\lambda_x = (1 - \alpha) - (\alpha - \rho)\omega_x + a_x \quad ; \quad \lambda_u = -(\alpha - \rho)\omega_u + a_u$$

Foreign Economy

Question

Overview Model Setting Preferences Consumption Taylor Rule Inflation Solution Pricing Kernel Foreign Economy

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

□ Add asterisks to everything above

- Cross-country consumption correlation important

 \Box Characterize foreign pricing kernel, m_{t+1}^*

□ Compute nominal depreciation rate rate:

$$\log (S_{t+1}/S_t) = \log m_{t+1}^* - \log m_{t+1}$$

Overview

Model

Bilson-Fama

 \triangleright Regression

Sample

Population

 \dots With Real FX

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Bilson-Fama Regression

Overview

Model

Bilson-Fama

Regression

Sample

Population

... With Real FX

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Regress nominal log depreciation rate on interest rate differential:

$$s_{t+1} - s_t = a + b(i_t - i_t^*) + \text{residuals}$$

 \Box Common finding: b < 0

 $\hfill\square$ Basis of carry-trade expected returns

Overview

Model

Bilson-Fama Regression

Sample

 \triangleright Population

... With Real FX

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Symmetric Taylor rules $(\tau_{\pi} = \tau_{\pi}^*, \tau_x = \tau_x^*)$ and $\varphi_x = 0$.

 \Box Absent real exchange rate variation $(n_{t+1} = n_{t+1}^* = n)$:

$$b = \frac{\varphi_u}{\tau_\pi}$$

Overview

Model

Bilson-Fama Regression

Sample

▷ Population

... With Real FX

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Symmetric Taylor rules $(\tau_{\pi} = \tau_{\pi}^*, \tau_x = \tau_x^*)$ and $\varphi_x = 0$.

 \Box Absent real exchange rate variation $(n_{t+1} = n_{t+1}^* = n)$:

$$b = \frac{\varphi_u}{\tau_\pi}$$

□ Asymmetric Taylor rules can't make b < 0. But more complex Taylor rules can:

$$i_t = \bar{\tau} + \tau_{\pi} \pi_t + \tau_x x_t + \tau_i i_{t-1} + \tau_s \log(S_{t+1}/S_t)$$

... With Real Exchange Rate Variation

Question	Turn on real exchange rate channel.
Overview Model Bilson-Fama Regression	$b = \frac{\gamma_u}{\gamma_u - \frac{1}{2}\lambda_x^2}$
Sample	where,
▷ With Real FX Main Result	$\gamma_u = \frac{\alpha}{2}(\alpha - \rho)(\omega_x + 1)^2 + a_u\varphi_u$
Intuition	$\lambda_x = (1 - \alpha) - (\alpha - \rho)\omega_x + a_x$
Calibration Conclusions Extra Slides	$a_u = \frac{\frac{\alpha}{2}(\alpha-\rho)(\omega_x+1)^2 - \frac{1}{2}\left((1-\alpha) - (\alpha-\rho)\omega_x + a_x\right)^2}{\tau_\pi - \varphi_u}$
	$a_x = \frac{(1-\rho)\varphi_x - \tau_x}{\tau_\pi - \varphi_x}$

 \Box Conditions for b < 0 include $\alpha < 0$ and $\rho > \alpha$. Point: real exchange rates play major role.

Overview

Model

Bilson-Fama Regression

▷ Main Result

Result

In Words

Intuition

Calibration

Conclusions

Extra Slides

Main Result

Result

Question

Overview

Model

Bilson-Fama Regression

Main Result

▷ Result

In Words

Intuition

Calibration

Conclusions

Extra Slides

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$$
$$i_t^* = \bar{\tau} + \tau_\pi^* \pi_t^* + \tau_x x_t^*$$

If everything is symmetric, except $\tau_{\pi} > \tau_{\pi}^*$, then 1. $E(i_t) < E(i_t^*)$ and $E(\pi_t) < E(\pi_t^*)$

2. If τ_x is large enough,

$$E(\operatorname{Var}_t m_{t+1}) > E(\operatorname{Var}_t m_{t+1}^*)$$

Positive expected return on *foreign* currency

3. Bilson-Fama regression coefficient smaller.

In Words

Question

Overview

Model

Bilson-Fama Regression

Main Result

Result

Intuition

Calibration

Conclusions

Extra Slides

Relative to a world with *symmetric* monetary policies, tighter domestic policy makes

Domestic interest rates and inflation unconditionally lower

Foreign currency denominated assets unconditionally riskier

The conditional foreign currency risk premium more variable

Overview

Model

Bilson-Fama

Regression

Main Result

\triangleright Intuition

Intuition

Punchline

Calibration

Conclusions

Extra Slides

Intuition

Intuition

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

 \triangleright Intuition

Punchline

Calibration

Conclusions

Extra Slides

Effect of τ_x

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$$

$$m_{t+1} = n_{t+1} - \pi_{t+1}$$

$$\Box Cov(\pi_{t+1}, x_{t+1}) < 0$$

"Inflation risk"

 \Box Var $(m_{t+1}) < Var(n_{t+1})$

- "Nominal risk less than real risk"

(continued)

Overview Model Bilson-Fama Regression

Question

Main Result

Intuition

 \triangleright Intuition

Punchline

Calibration

Conclusions

Extra Slides

Effect of τ_{π}

$$i_t = \bar{\tau} + \tau_\pi \pi_t + \tau_x x_t$$

$$m_{t+1} = n_{t+1} - \pi_{t+1}$$

Foreign FX Risk =
$$\frac{1}{2} (Var_t m_{t+1} - Var_t m_{t+1}^*)$$

 \Box Higher au_{π} ("tighter policy") *increases* $Var_t m_{t+1}$

□ Makes foreign currency riskier

Punchline

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Intuition

 \triangleright Punchline

Calibration

Conclusions

Extra Slides

□ A procyclical interest rate rule makes the nominal economy "less risky" than the real economy.

 \Box A stronger interest rate reaction to inflation <u>undoes</u> this.

 Domestic state prices become more variable and domestic residents view currency as risky *relative to* foreign residents

□ "Weak" interest rate rules make for riskier currencies

□ Broadly consistent with carry trade recipients versus funders (*e.g.*, USD vs AUD)

Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

\triangleright Calibration

Approach Consumption Taylor Coefficients AUD/USD Levels AUD/USD Carry Nominal Results Comp Statics Enhanced Model Conclusions

Extra Slides

Calibration

Approach

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

▷ Approach

Consumption Taylor Coefficients AUD/USD Levels AUD/USD Carry Nominal Results Comp Statics Enhanced Model

Conclusions

Extra Slides

 \Box Calibrate n_{t+1} , n_{t+1}^* to consumption, real FX rate

– Assume countries are symmetric

Choose Taylor rule parameters to match U.S.-Australia inflation data

□ See what exchange rates, interest rates look like

Consumption

Question Overview	Moment	Sample	Theoretical	Parameter
Model				
Bilson-Fama Regression	Consumption Growth			
Main Result	Mean	1.80	1.80	$\theta_{x} = 0.0015$
Intuition	Standard Deviation	2.72	2.72	$\theta_{u} = 6.355 \text{E-}05$
Calibration	Autocorrelation	_	0.00	$\varphi_r = 0$
Approach	Cross-Country Correlation	0.35	0.35	$\eta_{x \ x^*} = 0.35$
Consumption	Cross-Country Vol Correlation	_	0.99	$\eta_{u,u^*} = 0.99$
AUD/USD Levels	Real Interest Rate			<i>va</i> , <i>a</i>
AUD/USD Carry	Mean	0.86	0.86	$\beta = 0.99988$
Nominal Results Comp Statics	Standard Deviation	0.97	0.05	$\sigma_{u} = 6.500 \text{E-06}$
Enhanced Model	Autocorrelation	_	0.987	$\varphi_{u}^{a} = 0.987$
Conclusions	Real Depreciation Rate			
Extra Slides	Standard Deviation	11.41	11.41	$\alpha = -2.630$
	Bilson-Fama Coefficient	_	-1.66	$\rho = 0.500$

Taylor Rule Coefficients

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Approach

Consumption

Taylor ▷ Coefficients

 $\mathsf{AUD}/\mathsf{USD}$ Levels

 $\mathsf{AUD}/\mathsf{USD}\ \mathsf{Carry}$

Nominal Results

Comp Statics

Enhanced Model

Conclusions

Extra Slides

Using U.S.-Australia data:

- $\Box \ au_x$, au_x^* not separately identified
- □ Five coefficients uniquely identified by
 - Average inflation: $E(\pi_t)$, $E(\pi_t^*)$
 - Volatility of inflation: $Var(\pi_t)$, $Var(\pi_t^*)$
 - Nominal Bilson-Fama coefficient of -1.00.

	U.S.	Australia
$ar{ au}_x \ au_\pi$	-0.0033 0.7623 2.2636	-0.0004 0.7623 1.0517

U.S. – Australia Data

Question Overview Model **Bilson-Fama** Regression Main Result Intuition Calibration Approach Consumption **Taylor Coefficients** ▷ AUD/USD Levels AUD/USD Carry Nominal Results **Comp Statics** Enhanced Model Conclusions

Extra Slides

Australia-U.S. 1-Month Interest Rate Differential and Spot Exchange Rate

U.S. – Australia Data

Nominal Results

Moment	Sample	Theoretical
Domestic, U.S.		
Mean	2.80	2.80
Standard Deviation	0.93	0.93
Autocorrelation	0.84	0.0002
Foreign, Australia		
Mean	3.67	3.67
Standard Deviation	2.01	2.01
Autocorrelation	0.75	0.0001
Nominal Interest Rates (i_t, i_t^*)		
Domestic, U.S.		
Mean	4.48	3.77
Standard Deviation	2.54	0.032
Autocorrelation	0.99	0.98
Foreign, Australia		
Mean	7.25	4.71
Standard Deviation	3.69	0.024
Autocorrelation	0.99	0.98
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	MomentSampleInflation (π_t, π_t^*) Domestic, U.S. Mean2.80 Standard DeviationStandard Deviation0.93 AutocorrelationAutocorrelation0.84 Foreign, Australia MeanMean3.67 Standard DeviationStandard Deviation2.01 AutocorrelationAutocorrelation0.75Nominal Interest Rates (i_t, i_t^*) Domestic, U.S. Mean4.48 Standard DeviationStandard Deviation2.54 AutocorrelationMean7.25 Standard DeviationStandard Deviation3.69 AutocorrelationMean7.25 Standard DeviationMean7.25 Standard DeviationAutocorrelation0.99

(continued)

Question Overview	Moment	Sample	Theoretical
Model			
Bilson-Fama Regression	Nominal Depreciation ($\log(m_t^*/m_t)$)		
Main Result	Mean	2.05	-0.87
Intuition	Standard Deviation	11.43	9.78
Calibration	Autocorrelation	0.04	pprox 0.0
Approach	Nominal Currency Risk Variables		
Consumption Taylor Coefficients	Nominal Bilson-Fama Coefficient	-1.00	-1.00
AUD/USD Levels	Uncond. Risk Premium on AUD, $-E(p_t)$	4.77	0.13
AUD/USD Carry	Uncond. Sharpe Ratio	0.41	0.01
Nominal Results Comp Statics	Cond. Sharpe Ratio	0.73	0.02
Enhanced Model			

Extra Slides

Conclusions

Comparative Statics

(continued)

Question Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Approach

Consumption

Taylor Coefficients

AUD/USD Levels

AUD/USD Carry Nominal Results

 \triangleright Comp Statics

Enhanced Model

Conclusions

Extra Slides

Enhanced Model

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration Approach Consumption Taylor Coefficients AUD/USD Levels AUD/USD Carry Nominal Results Comp Statics Enhanced Model

Conclusions

Extra Slides

□ Incorporate long-run risk in consumption

- Decouples conditional mean of x_t from other moments
- Allows for low cross-country consumption correlations and low real exhange rate variability
- Used previously by Bansal and Shaliastovich (2008)

□ Fixes interest rate volatility, but not low FX Sharpe ratios

□ Qualitative aspects of Taylor mechanism survive

Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

▷ Conclusions

Carry Trade

Point

Last Thoughts

Extra Slides

Conclusions

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Carry Trade

Point Last Thoughts

Extra Slides

Is there a link between monetary policy and the carry trade?

□ Asymmetric Taylor rules can generate inflation processes that magnify expected carry trade profits

Mechanism: Taylor rules affect the volatility of nominal pricing kernels through their effect on inflation.

 Tight policy country has (i) low volatility in inflation, (ii) high volatility in nominal pricing kernel.

 Fits some broad facts about carry-trade funding currencies (*e.g.*, U.S., Germany, Switzerland, Japan) versus recipient currencies (*e.g.*, Australia, New Zealand).

Future Work

Question

Overview

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Carry Trade

Point

Last Thoughts

Extra Slides

□ Nominal frictions:

- Link between Taylor rules and real exchange rates

Richer model of how monetary policy interacts with volatility

Currency Risk

Question

Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Carry Trade

▷ Point

Last Thoughts

Extra Slides

"Change of units risk:"

□ Suppose there is a global risk factor that affects international equities, fixed-income, etc.

 If currency-specific pricing kernels load on it symmetrically it won't matter for exchange rates

- There must be some asymmetries

Asymmetric monetary policy is a plausible, coherent source of asymmetries in pricing kernels

- Cross-sectional predictions

Last Thoughts

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Carry Trade

Point

▷ Last Thoughts

Extra Slides

Question: does monetary policy *cause* carry trade profits?

- RBI policy has been to accumulate USD reserves and sterilizes the effect on domestic money supply
- Short side of the carry trade (Indian rates high, U.S. rates low)
- Are carry trade *losses* a cost of conducting monetary policy?
- Is this a good policy?

(continued)

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Carry Trade

Point

▷ Last Thoughts

Extra Slides

Example of India is pretty explicit. Other centrals banks much less so. However, consider

 \Box U.K. increases rates, Fed lowers rates.

Open-market operations:

- Bank of England sells gilts to JPM
- Fed buys U.S. treasuries from JPM

 \Box JPM is long the carry trade

 Consolidated balance sheets of Fed and Bank of England are short.

References

Question	Alvarez, Fernando, Andrew Atkeson, and Patrick J. Kehoe, 2007, Time-varying risk, interest rates, and exchange rates in general equilibrium, Working paper 371, Federal Reserve Bank of Minneapolis.
Overview	Backus, David K., Allan W. Gregory, and Christopher I. Telmer, 1993, Accounting for forward rates in markets for foreign currency. <i>Journal of Finance</i> 48, 1887–1908.
Model	
Bilson-Fama Regression	Bansal, Ravi, and Ivan Shaliastovich, 2008, A long-run risks explanation of predictability puzzles in bond and currency markets, Working Paper.
Main Result	Bekaert, Geert, 1994, Exchange rate volatility and deviations from unbiasedness in a cash-in-advance model, Journal of International Economics 36, 29–52.
Intuition	Runneide, Crein Mantin Fishankaum, Jacob Klashakalaki and Sauria Dakala, 2006. The naturna to summary
Calibration	speculation, Working Paper, Northwestern University.
Conclusions	Canova, Fabioi, and Jane Marrinan, 1993, Profits, risk and uncertainty in foreign exchange markets, <i>Journal of Monetary Economics</i> 32, 259–286.
Doint	
Last Thoughts	Cochrane, John H., 2007, Inflation determination with taylor rules: A critical review, Working paper, University of Chicago.
Extra Slides	Dutton, John, 1993, Real and monetary shocks and risk premia in forward markets for foreign exchange, Journal of Money, Credit and Banking 25, 731–754.
	Gallmeyer, Michael F., Burton Hollifield, Francisco Palomino, and Stanley E. Zin, 2007, Arbitrage-free bond pricing with dynamic macroeconomic models, Working paper, Carnegie Mellon University.
	Grilli, Vittorio, and Nouriel Roubini, 1992, Liquidity and exchange rates, <i>Journal of International Economics</i> 32, 339–352.
	Hansen, Lars P., John C. Heaton, and Nan Li, 2005, Consumption strikes back?: Measuring long-run risk, NBER Working Paper No. 11476.
	Lucas, Robert E, 1982, Interest rates and currency prices in a two-country world, Journal of Monetary
	Economics 10, 335–60.
	Macklem, Tiff, 1991, Forward exchange rates and risk premiums in artificial economies, <i>Journal of</i> – 50 International Money and Finance 10, 365–391.

Overview

Model

Bilson-Fama

Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Carry Trade Volatility, Skewness HML & MSCI Vol Diff Euros Changing Units

Extra Slides

Carry Trade Profits (Again)

From "The Returns to Currency Speculation," by Burnside, Eichenbaum, Kleshchelski and Rebelo, August 2006.

Effect of Relatively Tight Domestic Monetary Policy

Volatility, Skewness

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides Carry Trade Volatility, Skewness HML & MSCI Vol Diff Euros Changing Units □ Recent evidence: volatility is bad news for carry-trade returns

□ Lustig-Roussanov-Verdelhan (2010)

Correlation of FX returns and equity returns increasing in market volatility

□ Brunnermeier-Nagel-Pedersen (2008)

- FX returns negatively correlated with market volatility
- Negative skewness of FX returns increasing in $i_t i_t^*$

FX and Equity During the Crisis

Volatility Difference

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Carry Trade Volatility, Skewness HML & MSCI Vol Diff

Euros

Changing Units

These are statements about how FX returns are related to:

$$\operatorname{Var}_t(S_{t+1}/S_t) = \operatorname{Var}_t(\log m_{t+1}^* - \log m_{t+1})$$

 $\hfill\square$ But the expected FX return is:

$$E_t(f_t - s_{t+1}) = Var_t(\log m_{t+1}^*)/2 - Var_t(\log m_{t+1}^*)/2$$

Overview

Bilson-Fama

Main Result

Regression

Intuition

Calibration

Conclusions

Extra Slides

Carry Trade

HML & MSCI

Changing Units

Vol Diff

Volatility, Skewness

Model

Difference in Interest Rates and Difference in Implied Volatility from Interest-Rate Options

(USD less EUR, Jan 2000 – Nov 2010)

USD/EUR Graph

Eonia Less Fed Funds Interest Rate Spread and USD/EUR Spot Exchange Rate

	Pricing kernel (marginal rate of substitution) for real units:
Question	
Overview	$E_t n_{t+1} \left(1 + r_{t+1}^{goods} \right) = 1$
Model	
Bilson-Fama Regression	
Main Result	
Intuition	
Calibration	
Conclusions	
Extra Slides	
Carry Trade	
Volatility, Skewness	
Furos	
Changing Units	

□ Pricing kernel (marginal rate of substitution) for *real* units:

$$E_t n_{t+1} \left(1 + r_{t+1}^{goods} \right) = 1$$

□ *Nominal* units:

$$E_t \underbrace{n_{t+1} \frac{P_t}{P_{t+1}}}_{} \left(1 + r_{t+1}^{USD}\right) = 1$$

 m_{t+1}

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides

Carry Trade

Volatility, Skewness

HML & MSCI

Vol Diff

Euros

Changing Units

Pricing kernel (marginal rate of substitution) for *real* units:

$$E_t n_{t+1} \left(1 + r_{t+1}^{goods} \right) = 1$$

Nominal units:

$$E_t \underbrace{n_{t+1} \frac{P_t}{P_{t+1}}}_{m_{t+1}} \left(1 + r_{t+1}^{USD}\right) = 1$$

 m_{t+1}

Foreign currency units:

$$E_{t} \underbrace{n_{t+1} \frac{P_{t}}{P_{t+1}} \frac{S_{t+1}}{S_{t}}}_{m_{t+1}^{*}} \left(1 + r_{t+1}^{FX}\right) = 1$$

Question

Overview

Model

Bilson-Fama Regression

Main Result

Intuition

Calibration

Conclusions

Extra Slides Carry Trade Volatility, Skewness HML & MSCI Vol Diff Euros

Changing Units

Pricing kernel (marginal rate of substitution) for *real* units:

$$E_t n_{t+1} \left(1 + r_{t+1}^{goods} \right) = 1$$

Nominal units:

Question

Overview

Bilson-Fama

Main Result

Regression

Intuition

Calibration

Conclusions

Extra Slides Carry Trade

HML & MSCI

Vol Diff Euros

Volatility, Skewness

Changing Units

Model

$$E_t \underbrace{n_{t+1} \frac{P_t}{P_{t+1}}}_{m_{t+1}} \left(1 + r_{t+1}^{USD}\right) = 1$$

 m_{t+1}

Foreign currency units:

$$E_{t} \underbrace{n_{t+1} \frac{P_{t}}{P_{t+1}} \frac{S_{t+1}}{S_{t}}}_{m_{t+1}^{*}} \left(1 + r_{t+1}^{FX}\right) = 1$$

Complete markets implies *pointwise* equality

$$m_{t+1}^* = m_{t+1} \frac{S_{t+1}}{S_t}$$