
Weekly Hedonic House Price Indices: An Imputation

Approach from a Spatio-Temporal Model

Robert J. Hill∗

Department of Economics, University of Graz, Universittsstr. 15/F4, 8010 Graz. Austria

Alicia N. Rambaldi†

School of Economics, The University of Queensland, St Lucia, QLD 4072. Australia

Michael Scholz

Department of Economics, University of Graz, Universittsstr. 15/F4, 8010 Graz. Austria

DRAFT VERSION: 27 April 2017.

Abstract

Since the global financial crisis there is an increased demand for timely house

price indices. The aim of this paper is to develop a method for computing house

price indices at a weekly frequency using the hedonic imputation method. The he-

donic imputation method provides a flexible way of constructing quality-adjusted

house price indices using a matching sample approach. At annual frequencies the

implementation of the hedonic imputation approach typically entails estimating

the hedonic model period-by-period and then using the parameter estimates (i.e.,

characteristics shadow prices) to obtain the required imputed house prices. Once

these imputed prices are available for a matched sample, standard price index

formulas (e.g., Laspeyres, Fisher or Törnqvist) can be used to compute the over-

all price index. A common approach to control for location in hedonic models

has been to include postcode dummies. This may not be feasible at higher fre-

quencies as there may not be enough observations for each postcode and small

samples might cause large variability in the shadow price parameters when es-

timated period-by-period. We develop a spatio-temporal model to obtain the
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imputed prices. A geospatial spline surface controls for location and is embedded

in a state-space formulation that controls for trends and property quality. The

advantage is that the model is parsimonious and shadow price parameters are con-

nected over time while retaining the property that values are not revised as new

time periods are added to the data set. We show the spatio-temporal specification

leads to a modified form of the Kalman filter and a Goldberger’s adjusted form

of the predictor to obtain the imputations. Using a recently developed measure

of index performance and applying this hedonic geospatial spline/Kalman filter

approach to data for Sydney (Australia) we show that it outperforms competing

alternatives for computing house price indices at a weekly frequency. Further-

more, we show that weekly house price indices are much more sensitive than

annual or quarterly indices to the choice of hedonic method. Hence the choice of

hedonic method is of greater practical significance for weekly indices. (JEL. C33;

C43; E01; E31; R31)

Keywords: Housing market; House Price index; Hedonic imputation; Geospatial

data; Spline; Quality adjustment; State Space Models.

1 Introduction

Since the global financial crisis there is an increased awareness of the importance of

the housing market to the broader economy. Hence there is a growing demand from

central banks, governments, banks, real estate developers, and households for reliable

and more timely house price indices. Silver (2011) shows that house price indices

however can be quite sensitive to how they are constructed. This is especially true for

higher frequency (e.g., weekly) indices. It is essential that weekly house price indices

are quality adjusted, since differences in the sample composition each week will cause a

simple median or mean index to be highly volatile. Quality-adjusted indices are typically

computed using either hedonic or repeat-sales methods. The latter are more common in

the US – the best known example being the Standard and Poors’ Case-Shiller (SPCS)

indices. In Europe, by contrast, hedonic methods are more widely used. For example

the national statistical institutes (NSIs) of most member countries of the European

Union now compute an official House Price Index (HPI) at a quarterly frequency using

hedonic methods (Eurostat, 2016). One reason for this difference is that repeat-sales

methods tend to work better when the frequency of transactions (i.e., turnover) is high

as it is in the US. In Europe by contrast turnover is generally much lower. Elsewhere in

the world, it is less clear which approach is preferred. CoreLogic for example computes

both hedonic and repeat-sales indices for Australian cities.
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The increased availability of housing data and advances in computing power and

econometric techniques offer new opportunities for constructing higher frequency quality-

adjusted indices, and for deepening our knowledge of the real estate asset class. Bokhari

and Geltner (2012) give further reasons for the usefulness of higher frequency indices:

“[T]he greater utility of higher frequency indices has recently come to the

fore with the advent of tradable derivatives based on real estate price in-

dices. Tradability increases the value of frequent, up-to-date information

about market movements, because the lower transactions and management

costs of synthetic investment via index derivatives compared to direct cash

investment in physical property allows profit to be made at higher frequency

based on the market movements tracked by the index. Higher-frequency in-

dices also allow more frequent ‘marking’ of the value of derivatives contracts,

which in turn allows smaller margin requirements, which increases the utility

of the derivatives.”

Both hedonic and repeat-sales indices however become more problematic at higher

frequencies. The construction of higher frequency repeat-sales indices is considered by

Bollerslev, Patton, and Wang (2015), and Bourassa and Hoesli (2016). Bokhari and

Geltner (2012) propose a two-step procedure based on a generalised inverse estimator

that improves the accuracy of high-frequency indices in scarce data environment (in an

application to commercial property repeat-sales data). In recent work, Bourassa and

Hoesli (2016) apply the procedure of Bokhari and Geltner (2012) and construct high

frequency house price indices for both cities and submarkets within cities. Bollerslev,

Patton, and Wang (2015) develop daily house price indices for 10 major US metropolitan

areas. Their calculations are based on a database of several million residential property

transactions and a standard repeat-sales method that closely mimics the methodology

of the monthly SPCS house price index. Bollerslev, Patton, and Wang (2015) use a

multivariate time series model to compute daily house price index returns, explicitly

allowing for commonalities across cities and GARCH effects.

Here we focus on hedonic indices, since they have the potential to especially benefit

from improvements in housing data and computing power. More specifically we focus

here on the hedonic imputation method (see Hill (2013) for a taxonomy of hedonic

methods for computing house price indices). The hedonic imputation method provides

a flexible way of constructing quality-adjusted house price indices. An estimated hedonic

model is used to obtain predictions of the sale price for each dwelling at two comparison

periods which provide imputed price relatives that enter the index formula. These are

then averaged to obtain the overall price index (this is formally presented in Section 2).
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Hedonic imputation was first proposed by Court (1939), more formally developed as a

method by Griliches (1961, 1971), and it is recommended as the superior method to

construct price indices for residential property in the Handbook on Residential Property

Price Indices, which was written as a joint project (see European Commission, Eurostat,

OECD, and World Bank (2013)). In practice it is typically implemented by estimating

a separate hedonic model for each period which includes dummies to control for location

(e.g., using zip or post codes) in addition to other hedonic characteristics of the dwelling.

Using the estimated hedonic models price relatives are imputed for each dwelling. A

problem with such an approach is that the method can become unreliable at higher

frequencies (e.g., weekly indices), since then even in large data sets there may not be

enough price observations in each period to satisfactorily estimate the hedonic model.

As a consequence computational and statistical problems occur (e.g., no observations

for some postcodes, a loss in degrees of freedom, or an increased variance of estimated

parameters). Geltner and Ling (2006) describe the trade-off between statistical quality

per period and the frequency of index reporting, holding constant the overall quantity

and quality of raw valuation data and index construction methodology. They conclude

that the usefulness of an index for research purposes clearly increases the greater the

frequency of reporting, holding statistical quality (per period) constant (Bokhari and

Geltner, 2012).

In this article we show how the reliability of weekly hedonic indices can be improved

by replacing postcode dummies by a geospatial spline and then using time-varying

hedonic model in state-space form. This approach has two advantages. First, the di-

mensionality of the model is reduced. Replacing postcode dummies by values from the

geospatial spline function at each location in the data set very significantly reduces the

number of parameters that need to be estimated. Second, the small number of obser-

vations in each period causes larger variability in the estimated parameters (shadow

prices) obtained from the weekly hedonic model. Estimation of a state space model

with the Kalman filter interconnects those parameters over time and optimally weighs

the past market information as shown by Rambaldi and Fletcher (2014).

We consider a basic hedonic imputation method that uses a geospatial spline to con-

trol for locational effects but no state-space model, with a state-space model that con-

trols for location using postcodes, and a state-space model that incorporate a geospatial

spline.

Using a recently developed criterion proposed by Hill and Scholz (2017) we compare

the performance of our indices data for Sydney (Australia) over the period 2003–2014.

This criterion focuses on comparing the imputed price relatives that form the basic
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building blocks of the hedonic imputation price index with their corresponding actual

repeat-sales price relatives. Based on this criterion, we find that the index obtained by

combining a state-space model with a geospatial spline outperforms the indices obtained

by the simpler hedonic models. Furthermore, we find that the results are quite sensitive

to the choice of method, far more than they would be if the indices were computed at

an annual or quarterly frequency.

The remainder of this paper is structured as follows. Section 2 provides an overview of

the hedonic imputation method, the econometric model and the methods for estimation

of the models (a generalized additive model and the Kalman-Filter), and the criterion

used to compare the performance of competing hedonic imputed indices. Section 3

presents our data set, the empirical study and the results of our analysis. Section 4

concludes by considering some implications of our findings and gives a short outlook for

further research. Some technical details regarding the estimation procedures and the

data set are discussed in the Appendix.

2 Hedonic Imputation and Index Quality

2.1 Index Definition

Hedonic price indices for housing are typically constructed using one of the time-dummy,

hedonic imputation, and average characteristic methods (Diewert, 2010; Hill, 2013; Eu-

ropean Commission, Eurostat, OECD, and World Bank, 2013). All of them have in

common that in a hedonic model the price of a product is regressed on a vector of

characteristics (whose prices are not independently observed). The hedonic equation is

a reduced form that is determined by the interaction of supply and demand. Hedonic

models are used to construct quality-adjusted price indices in markets (such as com-

puters) where the products available differ significantly from one period to the next.

Housing is an extreme case in that every house is different.

Here we focus on the hedonic imputation method since it is more flexible than either

the time-dummy or average characteristics methods. The hedonic imputation method

uses the predictions from a hedonic model to impute prices which can be inserted into

standard price index formulas. Let x′t,h be a vector of characteristics associated with

property h sold in period t, and p̂t+1,h(x
′
t,h) as the imputed price for that property had

it sold in period t + 1. The model used in this study to produce these predictions

is presented in the next section. To obtain a hedonic imputed price index comparing

periods t and t+ 1, we use a Laspeyres-type formula that focuses on the properties sold
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in the earlier period t, and a Paasche-type formula that focuses on the properties sold

in the later period t+1. Our price indices are constructed by taking the geometric mean

of the price relatives, giving equal weight to each house.1 Taking a geometric mean of

the Laspeyres and Paasche-type indices, we obtain a Törnqvist-type index, that has the

advantage that it treats both periods symmetrically and is consistent with a log-price

hedonic model (Hill and Melser, 2008).

The indices presented below are all of the double imputation type.2 This means that

both prices in each price relative are imputed. For example, the double imputation

Laspeyres index (DIL), Paasche index (DIP), and Törnqvist index (DIT) are defined

as follows:

PDIL
t,t+1 =

Nt∏
i=1

[(
p̂i,t+1(x

′
i,t)

p̂i,t(x′i,t)

)1/Nt
]
, (1)

PDIP
t,t+1 =

Nt+1∏
h=1

[(
p̂i,t+1(x

′
i,t+1)

p̂i,t(x′i,t+1)

)1/Nt+1
]
, (2)

PDIT
t,t+1 =

√
PDIP
t,t+1 × PDIL

t,t+1 (3)

where i = 1, . . . , Nt indices the dwellings sold in period t, and i = 1, . . . , Nt+1 indices the

dwellings sold in period t + 1. The overall price index is then constructed by chaining

together these bilateral comparisons between adjacent periods. As it will be discussed

in the next section, the predictions used to compute the bilateral indices must take into

account the spatio-temporal nature of our modelling approach.

2.2 The Model

The objective of the hedonic model is to provide predictions of the prices of properties

included in the Törnqvist index calculation. The econometric model is a spatio-temporal

hedonic model that combines elements from the work of Wikle and Cressie (1999)-WC

and Rambaldi and Fletcher (2014)-RF. WC provide a temporally dynamic and spatially

descriptive model and an efficient estimation algorithm designed to deal with a large

1This democratic weighting structure is in our opinion more appropriate in a housing context than
weighting each house by its expenditure share. See Hill and Melser (2008), de Haan (2010) and
Rambaldi and Fletcher (2014) for a discussion on alternative weighting schemes.

2Double imputation indices tend to be slightly more robust to omitted variables bias (Hill and
Melser, 2008). We also calculated single imputation indices where only one price in each price relative
is imputed. The results are virtually indistinguishable. Hence to save space we focus here only on
double imputation indices.
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scale spatio-temporal dataset. We adopt a similar modelling approach in that measure-

ment error, location, property quality components, and a term that captures small scale

spatial variability are incorporated. This term conceptually extends the spatio-temporal

models proposed by Rambaldi and Fletcher (2014), where two parametric alternatives

to model location are used. The model incorporates Hill and Scholz (2017)’s measure

of location, obtained by estimating a geospatial spline surface within a semi-parametric

framework using observed sales in each individual period. The periodwise estimation

also provides a required measure of spatial variability.

We denote the observed (log transformed) price by yit = ln priceit. The objective is

to predict y∗it, a smoother but unobservable (log) price of property i in period t, for i

in any location and over all time periods t, regardless of when and where the data are

observed.

We write this model as

yit = y∗it + εit; εit ∼ N(0, σ2
ε ). (4)

The random process εit is not correlated across location or time and captures overall

measurement error.

At a given time period, τ , Nτ properties are sold, and y∗τ is given by

y∗τ = x†τ + vτ ; vτ ∼ N(0, Vτ )

where, vτ is a random error that does not have a temporally dynamic structure but

might have some spatial structure and thus Vτ might not be diagonal. It is assumed

that E(viτ εjt) = 0 for all i, j = 1, . . . , N and −∞ ≤ t ≤ ∞.

x†t is assumed to evolve according to three components, trend, property quality and

location,

x†it = µt +
K∑
k=1

βk,tzk,it + γtgit(zlong, zlat)

where,

µt is a trend component common to all i in period t and captures overall macroeco-

nomic conditions that affect all locations in the market under study;

zk,it is the kth hedonic characteristic from a set of K providing information on the

type/quality of the property (e.g., number of bedrooms, bathrooms, size of the lot).

These are not trending variables.
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git(zlong, zlat) is a measure of the location of property i defined on a continuous surface

at time period t. It is not a trending function of time.

βk,t and γt are time-varying parameters to be estimated.

E(zkvt) = 0, E(zkεt) = 0 for all k = 1, . . . , K, E(gitvjt) = 0, E(gitεjt) = 0, for all i, j.

Assuming an estimate of location, denoted by ĝit(zlong, zlat), is available (estimation

is discussed in Section 2.4) then the model in (4) with above definitions can be written

in familiar state-space representation

yt = Xtαt + vt + εt; εt ∼ N(0, H) (5)

αt = Dαt−1 + ηt; ηt ∼ N(0, Q) (6)

where,

Xt is Nt × (K + 2) and with the ith row being x′it = {1, z1,it, . . . , zK,it, ĝit(zlong, zlat)}
yt is the vector of log transformed observed prices of properties sold at t.

H = σ2
ε INt

αt = {µt, β1t, . . . , βK,t, γt}′

D =

 1 0 0

0 IK 0

0 0 ρ

; 0 ≤ ρ ≤ 1; If ρ < 1 the estimate of γt is mean reverting. If

ρ = 1, γt evolves as a random walk as do the other state parameters αt.

Q =

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
g


The estimate of the location spline surface for property i sold in period t, ĝit(zlong, zlat)

is obtained non-parametrically at each time period using only those properties that have

sold that period. This estimate enters the spatio-temporal model as a generated regres-

sor and the parameter γt, in (5) and (6), provides the flexibility for the vector of location

spline estimates of properties sold in period t, , i = 1, . . . , Nt, to be shifted by temporal

market information up to time t. The combination of spatial and temporal informa-

tion leads to two unconventional features of this model, compared to one in a standard

time-series setting, with consequences for the form of the Kalman filter algorithm as

well as the price prediction to be used for the computation of the Törnqvist price index.

First the error has two components, εt, the conventional overall measurement error, and

vt arising from predicting the (log) sale price using only the spatial variability within

each time period. This results in the Kalman gain, Gt, which is a function of the sum

of the two covariances (H + Vt) under the assumptions already stated. The second is
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that the value of the location spline for property i sold in period t will not be identical

in value if property i is priced in a different time period. That is, a given property

has fixed location coordinates and hedonic characteristics; however, its location spline

value, unlike the size of the land, will differ between period t and period t + 1. We

denote by ĝt(t)(zlong, zlat) the vector of spline values for properties sold and priced in

period t, and by ĝt(t−1)(zlong, zlat) the vector of spline values for the set of properties sold

in t when priced in t− 1. The implications for the form of the Kalman filter algorithm

are presented next.

Using the innovation form of the filter, the state at time t is given by

αt|t = αt|t−1 +Gt{yt −X1
t αt|t−1} (7)

where, the prediction step of the Kalman filter uses X1
t which is the Xt matrix with

the ĝi,t(t) replaced by ĝi,t(t−1)(zlong, zlat). This is necessary to obtain the conditional

prediction error from a conditional prediction of the state. The mean square error

matrix given information up to time period t is Pt|t,

Pt|t = Pt|t−1 −GtXtPt|t−1 (8)

The Kalman gain takes the form

Gt = Pt|t−1X
′
t{H + Vt +XtPt|t−1X

′
t}−1 (9)

The updating equations are given by

αt|t−1 = Dαt−1|t−1 (10)

Pt|t−1 = DPt−1|t−1D
′ +Q (11)

Estimates of the state (7), α̂t|t, are obtained by replacing H, Q, D, and Vt, by suitable

estimates.

Hill and Scholz (2017) use a period-by-period semi-parametric model to construct

price indices. This model can provide two key estimates to our state-space model, the

estimate of location, ĝt(t+j)(zlat, zlong) for j = −1, 0, 1, and a prediction of the (log) of

price for each property based only on the spatial information of properties sold in a

given time period which will allow us to obtain an estimate of Vt.

For any period τ ∈ t = −∞, . . . ,+∞ the semi-parametric model is given by
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yiτ = θ0τ + z′itθ
†
τ + gi,τ (zlong, zlat) + viτ (12)

where,

θ†τ = {θ1τ , . . . , θK,τ}′

Estimating (12) predictions of (log) prices, denoted by x̂†t , estimates of the parame-

ters, θ̂†t , and of the location spline ĝt(zlat, zlong) can be obtained for each property in each

period of the sample, t = 1, . . . , T . Residuals and estimates of the location spline are

required for for j = −1, 0, 1, v̂t(t+j) and ĝt(t+j)(zlat, zlong), respectively, to implement the

predictions/imputations to construct the index (discussed in the next section). Details

of the estimation of the semi-parametric model are provided in section 2.4.

2.3 Constructing the Predictions

The computation of the index, (3), depends crucially on the prediction of log price. In

Appendix A1 we show that given the state vector at period t conditional on information

up to time period t, the prediction of the log price for property h is given by the natural

predictor plus a Goldberger’s correction term (Goldberger (1962)) as follows,

ŷ∗t|t,h = x′t,hα̂t|t + c′vt,hΩ
−1et (13)

where,

Ω = cov{yt, yt}
c′vt,h = E(vht, vt) is the row of Vt corresponding to property h and has elements

cv,hj ≡ E{vhtvjt} which could be equal to zero for h 6= j.

et = yt − E(yt)

In this study we implement this prediction by defining v̂t = yt− x̂†t and et = yt− ŷt|t,
where ŷt|t is the state-space prediction of the (log) price of property h at time t, ŷt|t =

Xtα̂t|t.

For the index calculation predictions and imputations are needed. The prediction of

the price of property h sold in period t = 1, . . . , T is defined as

p̂t,h(z
′
t,h, ĝh,t(t)) = exp(ŷ∗t|t,h) (14)

The imputation of the price of property h sold in period t for period t − 1 is given

by

p̂t−1,h(z
′
t,h, ĝh,t(t−1)) = exp(x1t,h

′α̂t−1|t−1 + c′v(t−1),hΩ
−1et(t−1)) (15)
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The crucial point is that the constructed location effect and parameters need to be

matched with the correct period that is being imputed. In this case, ĝt(t−1),h enters in

x1t,h
′
, c′v(t−1),h and together with α̂t−1|t−1, et(t−1).

2.4 Estimation

Estimation of gt(.) and Vt

A semi-parametric hedonic model with the specification in (12) can be implemented

as a generalized additive model (GAM) – a flexible model class that generalizes linear

models with a linear predictor combined with a sum of smooth functions of covariates

estimated period by period using the available sample data on prices, characteristics

and location coordinates.

yit = x′itθt + vit (16)

= z′itθ
†
t + g(zlong, zlat) + vit (17)

The estimates of the spline surface, ĝt(.) enter the spatio-temporal model’s Xt matrix;

while the predictions from this model, x̂†t , provide v̂t = yt − x̂†t , from which a sample

estimate of Vt, and thus c′vt,h, make operational the correction term in (13) (see section

2.3).

To estimate (17) the problem is to select the smooth functions and their degree

of smoothness. Here, we use a penalized likelihood approach (see Wood 2006 and the

references therein) based on a transformation and truncation of the basis that arises from

the solution of the thin plate spline smoothing problem. This method is computationally

efficient and avoids the problem of choosing the location of knots, known to be crucial

for other basis functions.

For the selection of the smoothing parameter we refer to Wood (2011), who pro-

poses a Laplace approximation to obtain an approximate restricted maximum likelihood

(REML) estimate which is suitable for efficient direct optimization and computationally

stable. The REML criterion requires that a Newton-Raphson approach is used in model

fitting, rather than a Fisher scoring. The penalized likelihood maximization problem is

solved by Penalized Iteratively Reweighted Least Squares (P-IRLS).

The semi-parametric model is estimated using the mgcv package of the statistical

software R 2.15.3 (R Core Team 2013). The same basis dimension and sample size are
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used as in Hill and Scholz (2017).3

Estimation of D, H, Q and αt

Given yt, Zt = {z1t, . . . , zKt}, ĝt(·) and V̂t, estimates of ρ̂, σ̂2
ε , σ̂

2
µ, σ̂2

β and σ̂2
γ are required

to obtain the estimated state-vector α̂t|t (and mean squared prediction matrix) using

the Kalman filter recursion given by (7) which optimally weighs information up to and

including week t. These parameters define the system matrices D, H and Q. The

estimator’s algorithm is a function of a prediction error, νt|t−1 = yt −X1
t α̂t|t−1, and the

Kalman Gain (9), which is a function of Ft = E(νt|t−1ν
′
t|t−1) = H+Vt+XtPt|t−1X

′
t. The

Kalman filter algorithm is run to evaluate the log-likelihood lnL in predictive form.

lnL(ρ, σ2
ε , σ

2
µ, σ

2
β, σ

2
γ; yt, Yt−1, Zt, ĝt|t−1) = −NT

2
ln(2π)− 1

2

T∑
t=d

ln|Ft| −
1

2

T∑
t=d

ν ′t|t−1F
−1
t νt|t−1

We use a standard Newton-Raphson algorithm to estimate σ̂2
ε , σ̂

2
µ, σ̂2

β and σ̂2
γ within

a grid search for ρ in the range (0.1 to 1). Yt−1 = yt−1, yt−2 . . . N =
∑T

t=dNt; d is

sufficiently large to avoid the log-likelihood being dominated by the initial condition,

α0 ∼ N(a0,Ω0). In the empirical implementation we have 731 weeks and set d = 105

(this choice is explained in the empirical section). For details on estimation of state-

space models see Harvey (1989) or Durbin and Koopman (2012). The estimation of the

model and computation of indices were coded by the authors.

2.5 Measuring the quality of the index

The constructed indices should be useful instruments for policymakers and market par-

ticipants. A criterion is needed therefore to evaluate the quality of the proposed indices.

An important distinction can be made here between the hedonic model and the result-

ing price index. What matters is the performance of the index. Hence performance

criteria should focus on the Törnqvist index defined in (3), and not the within-period

fit of the hedonic model itself. Guo, Zheng and Geltner (2014) and Jiang, Phillips and

Yu (2015) take a similar view. Guo, Zheng and Geltner (2014) suggest criteria based

on the autocorrelation and volatility of the index, and Jiang, Phillips and Yu (2015)

create a testing sample which is used for out-of-sample evaluation of the model’s fit.

We follow a more direct approach here that makes use of the underlying structure of

3It is important that the sample size each period exceeds the basis dimension. Hill and Scholz
select these values by comparing computing time and model fit as measured by the Akaike Information
Criterion (AIC).
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our hedonic imputation price indices.

The Törnqvist index is the geometric mean of the Laspeyres and Paasche-type

price index formulas (1) and (2). From inspection of (1) and (2) it can be seen

that the building blocks of the Laspeyres-type index are the imputed price relatives

p̂i,t+1(x
′
i,t)/p̂i,t(x

′
i,t), while the building blocks of the Paasche-type index are the imputed

price relatives p̂i,t+1(x
′
i,t+1)/p̂i,t(x

′
i,t+1). Hence the performance of the index depends on

the quality of these imputed price relatives. Following Hill and Scholz (2017), the key

insight is that for some houses in our data set repeat sales are available. These actual

repeat sales price relatives can be used as a benchmark for evaluating the imputed

price relatives. To ensure a large enough sample size, repeat-sales price relatives over

any time horizon in our data set are with their imputed counterparts, and not just in

adjacent periods.

More formally, suppose proprerty i sells in both periods t and t+k. For this property

therefore we have a repeat-sales price relative: pi,t+k/pi,t. The corresponding imputed

price relative is p̂i,t+k/p̂i,t. The sample of repeat-sale dwellings are indexed by i =

1, . . . , HRS. We can now define the ratio of imputed to actual price relative for house i

as follows:

Vi =
p̂i,t+k
p̂i,t

/
pi,t+k
pi,t

. (18)

Our quality measure is then the average squared error of the log price relatives of each

hedonic method:

D =

(
1

HRS

)HRS∑
i=1

[ln(Vi)]
2, (19)

where the summation in (19) takes place across the whole repeat-sales sample. We

prefer whichever hedonic imputation model generates the smallest value of D, on the

grounds that the resulting Törnqvist index will be constructed from the most reliable

imputed price relatives.

Given that we use repeat-sales as a benchmark for our imputed price relatives, our

intention is to exclude repeat sales where the house was renovated between sales. We

attempt to identify such houses in two ways. First, we exclude repeat sales where one

or more of the characteristics have changed between sales (for example a bathroom

has been added). Second, we exclude repeat sales that occur within six months on

the grounds that this suggests that the first purchase was by a professional renovator.4

Finally, for houses that sold more than twice during our sample period (2003-2014), we

only include the two chronologically closest repeat sales (as long as these are more than

4Exclusion of repeat-sales within six months is standard practice in repeat-sales price indices such
as the Standard and Poor’s/Case-Shiller (SPCS) Home Price Index.
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six months apart). This ensures that all repeat-sales houses exert equal influence on

our results. There are 83 258 repeat-sales houses in the full data set. As a result of the

deletions explained above, the sample was reduced to 61 024 houses.

One potential problem with using repeat-sales as a benchmark is that a repeat-sales

sample may have a “lemons” bias, since starter homes sell more frequently as people

upgrade as their wealth rises. This lemons bias has been documented by, amongst oth-

ers, Clapp and Giaccotto (1992), Gatzlaff and Haurin (1997), and Shimizu, Nishimura

and Watanabe (2010). The quality of the house between repeat sales may also decline

due to depreciation or it could improve due to renovations and repairs. If over the whole

data set one of these effects dominates the other, then the repeat-sales index will not

be fully quality adjusted.

We correct for any such bias by adjusting the repeat-sales price relatives pt+k,h/pt,h

as follows: (
pi,t+k
pi,t

)adj
=

[(
PRS
t+k

PRS
t

)/(
PHed
t+k

PHed
t

)] (
pi,t+k
pi,t

)
, (20)

where PRS
t+k/P

RS
t denotes the change in the repeat-sales price index between periods t

and t+ k, while PHed
t+k /P

Hed
t is the change in a reference hedonic index, calculated using

the Törnqvist formula in (3) over the same time interval. Hence the ratios of actual to

imputed price relatives are adjusted as follows:

V adj
i = Vi

[(
PRS
t+k

PRS
t

)/(
PHed
t+k

PHed
t

)]
. (21)

Bias corrected D coefficients, denoted by Dadj in Table 1, are then calculated as

follows:

Dadj =

(
1

HRS

)HRS∑
i=1

[ln(V adj
i )]2.

There remains the question of which set of hedonic price indices should be used to

make the lemons bias correction when computing (20) and (21). As a robustness check

we take each of three indices (details in the next section) in turn as the reference method

when making the bias correction. Hence in Table 1 we present three alternative Dadj

coefficients. In all cases the ranking of methods is the same. Hence our findings are

robust to the treatment of lemons bias.
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3 Empirical application

3.1 The data set

We use a data set obtained from Australian Property Monitors that consists of prices

and characteristics of houses sold in Sydney (Australia) for the years 2001–2014. For

each house we have the following characteristics: the actual sale price, time of sale,

postcode, property type (i.e., detached or semi), number of bedrooms, number of bath-

rooms, land area, exact address, longitude and latitude. (We exclude all townhouses

from our analysis since the corresponding land area is for the whole strata and not for

the individual townhouse itself.) Some summary statistics are provided in the Appendix

in Table 2, and a plot of the number of sales per week is shown in Figure 1.

Figure 1: Number of Transactions per Week, 2001-2014
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For a robust analysis it was necessary to remove some outliers. This is because there

is a concentration of data entry errors in the tails, caused for example by the inclusion

of erroneous extra zeroes. These extreme observations can distort the results. The

exclusion criteria we applied are shown in the Appendix in Table 3. Complete data on

all our hedonic characteristics are available for 433 202 observations. To simplify the

computations we also merged the number of bathrooms and number of bedrooms to

broader groups (one, two, and three or more bathrooms; one or two, three, four, five
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or more bedrooms). The quality of the data improves over time. In particular, missing

characteristics are quite common in the first two years (i.e., 2001 and 2002). Thus we

present the hedonic indices starting in 2003. Nevertheless, we use the full sample period

to run the Kalman filter algorithm but compute the log-likelihood function (see section

2.4) with all weeks in the 2003-2014 period.

3.2 Property price indices

We construct three hedonic price indices. A basic index is computed from the semi-

parametric hedonic model in (17) estimated separately each week. This index is referred

to as GAM. The second is based on the spatio-temporal hedonic model presented in

section 2 and is referred to as SS+GAM. As discussed in section 1, a frequent control

for location used in hedonic imputation is the addition of postcode dummies. Thus, a

simpler alternative to (17) is

yt = µt + Ztβt +Dtπt + εt (22)

where µt is local level trend, Zt hedonic characteristics, Dt is a matrix of postcode

dummies containing the location information and πt is the vector of corresponding

shadow prices.

Computing hedonic imputation price indices using period-by-period estimation with

(22) is not feasible in a weekly context. It happens that for some postcodes we have no

observations in some weeks causing both statistical and computational problems, espe-

cially in the hedonic prediction step. However, it can be estimated as a regression with

time-varying parameters by setting it up as a state-space model. The index obtained

from this model is referred to here as SS+PC. Imputed price relatives from the three

models are inserted into the Törnqvist formula to generate the respective price index.

Figure 2 shows the three hedonic indices (chained), a repeat sales index calculated

using the standard Bailey, Muth, and Nourse (1963) formula, and a median price index

computed from the median of the prices of observed sales in each week. The median

index is a quality and location unadjusted index. It is extremely volatile, thus demon-

strating the need for quality adjustment to generate an economically meaningful index.

All indices except for SS+GAM lie below the median price index for most of the sample

period. The GAM index appears to suffer from some chain drift. Prior to 2011 the

index is closer to the median and the SS+GAM; however, it drifts down to the SS+PC

and repeat-sales indices after 2011. Index drift is likely to occur in the conventional

approach to hedonic imputation when the market is thin. Small samples and sales’ com-
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position in thin markets can affect the parameter estimates and lead to large changes

in the price relatives. Chaining then compounds the effect. Rambaldi and Fletcher

(2014) find chain drift occurs in monthly indices even when using a two-months rolling

window to estimate the parameters of the model, while this is not the case when the

imputation is obtained from a state-space model. The SS+PC and repeat-sales indices

are uniformly below the median and virtually indistinguishable from each other.

The differences between the hedonic indices in Figure 2 are surprisingly large and

far larger than one would expect to observe in hedonic indices computed at annual

or quarterly frequency (Hill and Scholz, 2017). The results therefore demonstrate the

importance of the choice of hedonic method for indices computed at lower frequencies,

such as weekly.

Figure 2: Weekly Property Price Indices from 2003 to 2014
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Note: GAM is based on periodwise estimation of model (12); SS+PC is the state space model
(22) with postcode dummies; SS+GAM is the spatio-temporal model; Repeat Sales index is
calculated using the Bailey, Muth, and Nourse (1963) formula; Median is the usual median
index on a weekly frequency. Base:Week starting 30/12/2002 = 1

The median is a unbiased estimator of the central tendency in log-normal data, such

as property prices, and thus the large deviation of these two indices from the median
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over the period would seem to indicate a systematic bias. The next section formally

evaluates the quality of these indices.

3.3 Comparing the quality of the indices

The performance of our three indices according to the D and Dadj criteria is shown in

Table 1.

Table 1: Index quality based on D and Dadj criteria (2003-2014)

D Dadj
GAM Dadj

SS+GAM Dadj
SS+PC

GAM 0.0233 0.0272 0.0313 0.0230
SS+GAM 0.0102 0.0096 0.0099 0.0133
SS+PC 0.0246 0.0279 0.0320 0.0240

Note: GAM is based on periodwise estimation of the semiparametric model (17) with a
geospatial spline; SS+GAM is the spatio-temporal model; SS+PC is the state space model
applied to the semilog model in (22) with location effects captured using postcodes. Dadj

GAM

refers to the adjusted D criteria with lemons bias corrected for using the GAM hedonic price
index as the adjustment factor. Similarly, Dadj

SS+GAM and Dadj
SS+PC use the SS+GAM and

SS+PC hedonic price indexers, respectively as the adjustment factors.

All our criteria (D, Dadj
GAM , Dadj

SS+GAM , Dadj
SS+PC) generate the same ranking of hedonic

methods. In all cases, the SS+GAM model performs best followed by GAM, with

SS+PC performing worst.

Furthermore, the superior performance of SS+GAM is highly statistically significant.

To show this we apply the following hypothesis test based on the Central Limit Theorem

(see, for example, pages 490-491 in Devore and Berk, 2012). The D and Dadj criteria

are of the form:

X̄ :=
1

HRS

HRS∑
i=1

u2i ,

with the prediction errors ui equal to ln
(
p̂i/pi

)
or ln

(
Vi
)
, respectively. Now we want

to test whether X̄1 and X̄2 are significantly different, where X̄1 and X̄2 are the results

(criteria) of different hedonic models. To test the null hypothesis that the true difference

is zero (H0 : X̄1 − X̄2 = 0), assume

X̄1 − X̄2 ∼ N
(

0,
s21 + s22
H

)
,

where sj (j=1,2) is the sample standard deviation of u2h of the hedonic model j. The
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test-statistic and corresponding two-sided p-values of this exercise are shown in the

Appendix in Table 4.

These results therefore show the importance of correctly modelling space and time

in a unified framework which can account for all sources of error.

4 Conclusion

This article focuses on the construction of weekly house price indices using the hedo-

nic imputation method. The hedonic imputation method provides a flexible way of

constructing quality-adjusted house price indices using a matching sample approach.

We develop a spatio-temporal model to obtain the imputed prices. A geospatial spline

surface controls for location and is embedded in a state-space formulation that controls

for trends and property quality. We show the spatio-temporal specification leads to a

modified form of the Kalman filter and a Goldberger’s adjusted form of the predictor

to obtain the imputations.

The paper makes three main contributions to the hedonic literature. First, it shows

how flexible and robust hedonic indices can be estimated by embedding a geospatial

spline surface in a state-space framework. Second, using a data set for Sydney (Aus-

tralia) weekly hedonic indices are shown to be far more sensitive to the method of

construction than indices computed at an annual or quarterly frequency. Hence it is

at these higher frequencies that the choice of hedonic method matters most. Third,

using a criterion proposed by Hill and Scholz (2017) it is shown that embedding a

semi-parametric model with geospatial spline surface in a state-space model generates

house price indices that outperform two competing hedonic imputation methods and

the repeat-sales method.
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Appendix

A1. Proof of prediction expression (13)

ŷ∗t|t,h = x′t,hαt|t + c′vt,hΩ
−1et (23)

In addition to assumptions already stated, we assume vit and yt have a joint mul-

tivariate normal distribution. Taking the characteristics and location of properties as

given, the predictor is derived as follows,

ŷ∗i,t|t = E{y∗it|yt, yt−1, . . . , y1}

= E{Xitαt + vit|yt, yt−1, . . . , y1}
= XitE{αt|yt, yt−1, . . . , y1}+ E{vit|yt, yt−1, . . . , y1}
= Xitαt|t + c′vt,hΩ

−1et

The last term is of this form since E{vityjt} = cv,ij; cv,ij ≡ E{vitvjt}, and c′v,it =

E{vit, vt) = {cv(i, j1), . . . , cv(i, jNt)}′

A2. Further information on the data set

Some summary statistics for our data set are provided in Table 2.

Table 2: Summary of characteristics

PRICE ($) BED BATH AREA LAT LONG
Minimum 56500 1: 1348 1: 190395 100.0 -34.20 150.6
1st Quartile 420000 2: 38578 2: 174161 461.0 -33.93 150.9
Median 610000 3: 200428 3: 57673 587.0 -33.84 151.0
Mean 784041 4: 147794 4: 8835 626.1 -33.85 151.0
3rd Quartile 900000 5: 38734 5: 1746 720.0 -33.76 151.2
Maximum 3200000 6: 6320 6: 392 4998.0 -33.40 151.3

For a robust analysis it was necessary to remove some outliers. The exclusion criteria

we applied are shown in Table 3.

Table 3: Criteria for removing outliers

PRICE BED BATH AREA LAT LONG
Minimum Allowed 50000 1.000 1.000 100.0 -34.20 150.60
Maximum Allowed 4000000 6.000 6.000 5000.0 -33.40 151.35
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A3. Hypothesis tests to show that the D and Dadj criteria are
significantly different

The p-values for the hypothesis tests (with null hypothesis of equality of the D criteria

across hedonic methods are as follows:

Table 4: p-values for hypothesis tests

D Dadj
SS+PC Dadj

SS+GAM Dadj
GAM

SS+PC vs. SS+GAM 0.00000000 0.0000000 0.0000000 0.0000000
SS+PC vs. GAM 0.04830767 0.1004416 0.2572753 0.2732328
GAM vs. SS+GAM 0.00000000 0.0000000 0.0000000 0.0000000
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