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1 Introduction

Most economic decisions require probabilistic forecasts which provide information on a

range of possible future scenarios. This stands in contrast to traditional point forecasts

which indicate a single “expected” outcome. The need for probabilistic forecasts raises two

questions: First, what is a good probabilistic forecast? Second, how can it be constructed?

Building upon earlier work in meteorology and other fields, these two questions have

recently received much attention from econometricians.

Similar to the literature on combinations of point forecasts (Timmermann, 2006), combin-

ing probabilistic forecasts is a natural idea. Rather than choosing a particular model, com-

binations average over several available models. Following a proposal by Wallis (2005),

combinations of probabilistic forecasts typically take the form of linear prediction pools.

Using the log score (the out-of-sample log likelihood) as an evaluation criterion, a num-

ber of studies have demonstrated that linear pools provide good density forecasts of key

economic variables, where “good” is meant relative to the individual models which enter

the pool. See e.g. Hall and Mitchell (2007), Jore, Mitchell, and Vahey (2010), Kascha

and Ravazzolo (2010), Bache, Jore, Mitchell, and Vahey (2011) and Geweke and Amisano

(2011).

It should be stressed, however, that the log score is by far not the only available scoring

rule which specifies the forecast user’s utility from a density forecast f(·) and an outcome

y that materializes. Gneiting and Raftery (2007) provide a comprehensive review of

alternative scoring rules. All of the common rules are proper, i.e. they are maximized in

expectation by the (unknown) true model. However, they may well give different rankings

of alternative misspecified models. Hence, it seems important to analyze whether the

positive results on linear prediction pools hold true under scoring rules other than the

log score.

Focusing on discrete outcome variables, a number of studies (e.g. Boero, Smith, and
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Wallis, 2011 and Clements and Harvey, 2011) have considered the performance of linear

prediction pools under alternative scoring rules. By contrast, evidence for continuous

outcome variables is almost entirely missing from the economic literature, with Gneiting

and Thorarinsdottir (2010) being a notable exception. This lack of results is a shortcom-

ing of the extant literature, since i) most economic variables are treated as continuous,

and ii) the papers focussing on discrete outcomes do not cover the forecasting models

typically used in macroeconomics.

This paper analyzes the performance of linear prediction pools for continuous variables,

under two scoring rules: The quadratic score (Brier, 1950) and the continuous ranked

probability score (Matheson and Winkler, 1976). For a number of conceptual and prac-

tical reasons detailed below, these scoring rules should at least be considered as viable

alternatives to the log score. They have been used extensively in meteorology, but not in

economics. Throughout, I include the log score as a reference case. The paper is divided

into three parts.

Firstly, I show that under all three scoring rules, Jensen’s inequality sets a lower bound

on the success of linear pools, relative to the models which constitute the pool. The

inequality holds for all realizing values of the predictand, and thus also in expectation

over any (unknown) true model. This makes pooling very attractive from an ex ante

perspective.

Secondly, I use a Monte Carlo study to analyze the performance of linear pools in a

dynamic setting. The individual models to be combined are several autoregressive models

calibrated to match monthly US macro variables. I show that even if one of the individual

models coincides with the true data-generating process, a (misspecified) linear pool often

comes close to the performance of the true model. Tests for equal predictive ability

(Giacomini and White, 2006) tend to have little power in discriminating between the

linear pool and the true model, even for large evaluation samples.
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Thirdly, I provide empirical results for US macro variables and different vector autore-

gressive specifications. I find that under all three scoring rules and for most variables and

forecast horizons, equally weighted linear pools perform very well relative to the individ-

ual models. In half of the forecast comparisons, equally weighted pools even outperform

all individual models on average over the evaluation sample. The intuition for this result

is that, by Jensen’s inequality, the equally weighted pool performs relatively well for each

point in the evaluation sample. In contrast, even good individual models fail from time

to time.

In summary, my analysis shows that the success of linear pools is not restricted to the

log score, but carries over to two other major scoring rules. It appears that little can be

lost but much can be gained by combining a set of density forecasts, rather than picking

a single forecast.

The rest of this paper is organized as follows. Section 2 briefly reviews the scoring rules

considered in this paper. Sections 3, 4 and 5 present analytical, simulation and empirical

results, respectively. Section 6 concludes. All proofs are relegated to the appendix.

2 Scoring Rules

This section presents the three scoring rules considered in the following; detailed surveys

on the topic are provided by Winkler (1996) and Gneiting and Raftery (2007).

Suppose a forecaster issues a probability density function (p.d.f.) f(·) for a real-valued

random variables Y , and an outcome y ∈ R materializes. It is not immediately clear how

to judge whether the forecast f(·) was ”good” or ”bad”, since the true density of Y (say,

f0(·)) is unobservable even ex post. All that is observed is a single draw Y = y from this

density.
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Scoring rules assign a real value based on y and f(·); I take them to be positively oriented

(the larger the better). In the following, I consider three scoring rules: The logarithmic

(”log”), quadratic, and continuous ranked probability scores:

LS(y, f(·)) = ln f(y), (1)

QS(y, f(·)) = 2f(y)−
∫

f 2(z)dz, (2)

CRPS(y, f(·)) = −
∫

(F (z)− I{z≥y})
2dz, (3)

where F (·) is the cumulative density function (c.d.f.) implied by f(·) and I{A} is the

indicator function of the event A.

All three scoring rules are strictly proper, that is, a forecaster who knows the true p.d.f.

f0(·) can maximize her expected score by actually stating f0(·), instead of another density

f(·):
∫

S(z, f0(·))f0(z)dz >

∫

S(z, f(·))f0(z)dz, (4)

for any density forecast f(·) 6= f0(·), where S(·, ·) is one of the three scoring rules above.

Note that for each rule, Equation (4) is based on measure-theoretic regularity conditions

which are detailed in Gneiting and Raftery (2007).

Propriety is typically considered a minimal criterion for a ”reasonable” scoring rule. The

fact that the three rules are proper implies that in expectation, they all favor the (un-

known) true model over any competitor. However, they may well give different rankings

of alternative misspecified models. In practice, all models are misspecified; hence nothing

says that empirical forecast comparisons should be robust to the choice of scoring rule.

This motivates my analysis of linear prediction pools under scoring rules other than the

log score.

As stated earlier, virtually all econometric studies on probabilistic forecasting of continu-

ous variables use the log score criterion proposed by Good (1952). The popularity of the
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log score may be due to its close relation to (log) likelihood and the Kullback and Leibler

(1951) divergence. From Equations (1) to (3), an important difference between the log

score and the other two scoring rules becomes apparent: The log score is ”local”. This

means that the assigned score depends only on the predictive density at the value Y = y

that actually materializes, and not on the density at other values. Locality often makes

the log score simpler to handle than the other two scoring rules, which involve potentially

complicated integrals. An important practical drawback of the log score is its lack of

robustness which results from the fact that ln(f(y)) → −∞ as f(y) → 0. Hence in the

tails of f(·), small differences in the outcome y – which may be due to rounding, data

revisions, etc. – can lead to drastic differences in the assigned log score (Selten, 1998).

The quadratic score (QS) in Equation (2) is a continuous version of the Brier (1950)

score for probability forecasts of discrete events, which has been used extensively across

many fields. Like its discrete counterpart, QS in (2) is neutral, i.e. the expected score

of a forecast f(·) if f0(·) is the true density is the same as the expected score of forecast

f0(·) if f(·) is true (Gneiting and Raftery, 2007, p. 365). Selten (1998, p. 54) argues in

favor of this property, and points out some other attractive features of QS in a discrete

setting. In particular, QS does not share the log score’s sensitivity to tail events.

The cumulative ranked probability score (CRPS) in Equation (3) has been proposed by

Matheson and Winkler (1976); unlike the two other rules, it is in terms of a predictive

c.d.f., rather than a p.d.f. It is very popular in meteorology (Hersbach, 2000) and has

recently been employed in econometrics (Gneiting and Thorarinsdottir, 2010; Gneiting

and Ranjan, 2011). Unlike the log and quadratic scores, the CRPS rewards predictive

densities which have probability mass near but not at the realizing value y (i.e., the

CRPS is ”sensitive to distance”). This can be an important benefit in the presence

of noisy data. Furthermore, Hersbach (2000) remarks that the CRPS reduces to the

absolute error if the predictive ”density” is a point forecast. Hence the CRPS can in

principle be used to compare point and density forecasts. A practical drawback of the
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CRPS is that for non-Gaussian models, the integral in (3) is typically not available in

closed form.

3 Jensen’s Inequality and the Success of Linear Pre-

diction Pools

In this section, I consider a one-shot scenario in which a single outcome of a random

variable Y is to be predicted. I consider linear prediction pools of the form

fc(Y ) =

n∑

i=1

ωifi(Y ), (5)

where fi(Y ), i = 1, . . . , n are n predictive densities for a random variable Y , and the

weights satisfy ωi ≥ 0 ∀ i and
∑n

i=1 ωi = 1. The mean µc and variance σ2
c of the linear

pool are given by

µc =

n∑

i=1

ωiµi,

σ2
c =

n∑

i=1

ωiσ
2
i +

n∑

i=1

ωi(µi − µc)
2,

where µi and σ2
i are the mean and variance of model i.

Although linear pools have long been known as a method for aggregating density functions

(Stone, 1961), it appears that the econometric use of linear pools has first been proposed

by Wallis (2005). Geweke and Amisano (2011) provide a detailed analysis of linear

prediction pools under the log score.

Equation (6) implies that the variance of the pool is generally larger than the minimal

variance across the n individual models: σ2
c ≥ mini∈{1,...,n} σ

2
i . Furthermore, if the means
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of the individual models differ substantially (|µi − µj| ”large” for some i, j), the variance

of the pool can even exceed the variances of all individual models. Taken together, this

implies that linear pooling will often produce very dispersed predictive densities.

McNees (1992) points out that in terms of the squared prediction error, the equally

weighted mean of n point forecasts necessarily performs better than the average of the

n individual models. This result is a simple arithmetical consequence of Jensen’s in-

equality. Manski (2010) emphasizes the power of this statement, and argues that it has

been under-appreciated by the extensive literature which analyzes the success of forecast

combinations. Perhaps surprisingly, results which are similar to those of McNees (1992)

apply to combinations of density forecasts, under all three scoring rules considered here.

Proposition 3.1. Consider a linear pool as defined in Equation (5) and the three scoring

rules defined in (1) to (3). Then, if an outcome Y = y materializes,

LS(y,

n∑

i=1

ωifi(·)) ≥
n∑

i=1

ωiLS(y, fi(·)), (6)

QS(y,

n∑

i=1

ωifi(·)) ≥
n∑

i=1

ωiQS(y, fi(·)), (7)

CRPS(y,
n∑

i=1

ωifi(·)) ≥
n∑

i=1

ωiCRPS(y, fi(·)). (8)

Equation (6) is a slightly more general version of the result in Kascha and Ravazzolo

(2010, p. 237). To the best of my knowledge, Equations (7) and (8) are novel to the

literature.

Proposition 3.1 gives a lower bound on the score of the prediction pool, for any realizing

observation y and under any of the three scoring rules. This lower bound depends on

the scores attained by the n individual models and the weights ωi. For the special case

n = 2, the inequalities in the proposition boil down to a definition of concavity when the
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argument is function-valued; c.f. Equation (3) of Gneiting and Raftery (2007). Hence for

given y, the three scoring rules S(y, f(·)) are concave functions of f(·).

The next result shows that the nature of the bounds from Proposition 3.1 is different for

LS than for QS and CRPS.

Corollary 3.1. Define ∆LS = LS(y,
∑n

i=1 ωifi(·)) −
∑n

i=1 ωiLS(y, fi(·)), and similarly

for QS and CRPS. Then,

∆LS = ln

{∑n

i=1 ωifi(y)
∏n

i=1 fi(y)
ωi

}

≥ 0, (9)

∆QS =

∫
{

n∑

i=1

ωif
2
i (z)− (

n∑

i=1

ωifi(z))
2

}

dz ≥ 0, (10)

∆CRPS =

∫
{

n∑

i=1

ωiF
2
i (z)− (

n∑

i=1

ωiFi(z))
2

}

dz ≥ 0. (11)

The term ∆LS can be interpreted as a normalized performance measure for linear pools,

which accounts for the tautological lower bound from Equation (6). It can be seen from

(9) that ∆LS depends on the realizing outcome y. It is easy to construct examples in

which the term takes arbitrarily large values.

Example 3.1. Consider n = 2 Gaussian densities with means µi and variances σ2
i (i =

1, 2), as well as their linear pool with weights (ω, 1 − ω), where 0 < ω < 1. Then if

σ2
1 6= σ2

2, ∆LS → ∞ as y → ∞ or y → −∞.

The behavior of ∆LS stands in contrast to ∆QS and ∆CRPS in Equations (10) and (11).

Both terms do not depend on y, but are deterministic functions of the component models

{fi(·)}ni=1 and the weights {ωi}ni=1. Hence Corollary 3.1 implies that the benefits of

pooling are stochastic and unbounded under LS, whereas they are constant under QS

and CRPS.
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The above results compare the score of the pool to the average score of its members.

Another relevant comparison is between the pool and the best and worst of its members.

Corollary 3.2. 1. LS(y,
∑n

i=1 ωifi(·)) ≥ mini ∈ {1,...,n} LS(y, fi(·)), and analogously

for QS and CRPS.

2. maxi ∈ {1,...,n} LS(y, fi(·)) ≥ LS(y,
∑n

i=1 ωifi(·)), but analogous statements for QS

and CRPS do not hold.

Hence the pool necessarily performs better than its worst member; this has been remarked

by Kascha and Ravazzolo (2010) for the log score. Also, the log score of the pool is limited

by the log score of its best member. Interestingly, the latter statement does not hold true

for the other two scoring rules, where it is possible to construct examples in which the

pool outperforms all of its members.

Figure 1 summarizes the results of Proposition 3.1, Corollary 3.1 and Corollary 3.2 for a

simple example: An equally weighted combination of two Gaussian densities with mean

zero and variances 1 and 4. The formulas which underlie the graphs are given in Table 1;

they will also be used in the simulation study and the empirical application below. One

of these formulas, the quadratic score for a pool of normals, has not been mentioned in

the extant literature. A derivation of this formula is provided in the appendix.

It can be seen from the graphs that for all scoring rules and realizing outcomes, the score

of the pool is above the lower bound and thus closer to the (ex post) better of the two

models. For LS, the sharpness of the lower bound depends on the realizing outcome; this

is not the case under QS and CRPS. Furthermore, the log score of the pool is bounded

between the two log scores of its members. For the other two scoring rules, there is

an (albeit small) range of realizing outcomes for which the pool outperforms both of its

members.
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LS

QS

CRPS

Figure 1: The upper graph plots the log score (vertical axis) against the realizing outcome
(horizontal axis), for a N (0, 1) density, a N (0, 4) density, and an equally weighted linear pool.
Furthermore, the graph shows the lower bound from Proposition 3.1. The graphs in the middle
and the bottom give the same information for the quadratic and continuous ranked probability
scores. The formulas which underlie these graphs are given in Table 1 below.



A simple but powerful consequence of Proposition 3.1 is that the expected score of a linear

pool is at least as large as the average expected score of its components.

Corollary 3.3. Let f0(Y ) be the true density of Y , and denote by ELS0(f(·)) the expected

log score of a predictive density f(·), with respect to the true density f0(·). Then,

ELS0(

n∑

i=1

ωifi(·)) ≥
n∑

i=1

ωiELS0(fi(·)),

and analogous relations hold for QS and CRPS.

Corollary 3.3 defines a lower bound for the expected performance of the pool, relative to

the expected performance of the n components. It is intriguing that this bound holds true

for all possible true distributions f0(·). This implies that a forecaster does not need to

know anything about f0(·) to know that in expectation, pooling will perform reasonably

well relative to the individual models.

The existence of lower bounds on their performance is an attractive feature of linear

pools. An interesting question is whether similar lower bounds exist for other methods

for combining predictive densities. I briefly consider two of these methods in the following.

Based on a set of n predictive densities and positive weights which sum to one, a loga-

rithmic pool (Winkler, 1968) is given by

flog(Y ) =

∏n

i=1 f
ωi

i (Y )
∫ ∏n

i=1 f
ωi

i (z)dz
. (12)

Genest and Zidek (1986) remark that in contrast to linear pools, logarithmic pools are

typically less dispersed and unimodal.
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N (µ, σ2)
∑n

i=1 ωiN (µi, σ
2
i )

LS lnφ
(
y−µ

σ

)
− ln σ ln

(
∑n

i=1
ωi

σi
φ
(

y−µi

σi

))

QS 2
σ
φ
(
y−µ

σ

)
− 1√

4πσ2
2
(
∑n

i=1
ωi

σi
φ
(

y−µi

σi

))

−∑n
i=1

∑n
j=1

ωiωj

σj
(2π(1 + b2ij))

− 1

2 × exp
{

−a2ij
2

(
1

1+b2ij

)}

,

with aij =
µi−µj

σj
, bij =

σi

σj

CRPS −σ
(

y−µ

σ

[
2Φ
(
y−µ

σ

)
− 1
]
+ 2φ

(
y−µ

σ

)
− 1√

π

)

−∑n
i=1 ωiA(y − µi, σ

2
i ) +

1
2

∑n
i=1

∑n
j=1 ωiωjA(µi − µj, σ

2
i + σ2

j ),

with A(µ, σ2) = 2σφ
(
µ

σ

)
+ µ

(
2Φ
(
µ

σ

)
− 1
)

Table 1: Log score (LS), quadratic score (QS) and continuous ranked probability score (CRPS) for a normal distribution (left
column) and a mixture of n normals (right column), given that an outcome y ∈ R materializes. The formulas for the CRPS

have been derived by Gneiting, Raftery, Westveld, and Goldman (2005) and Grimit, Gneiting, Berrocal, and Johnson (2006). The
formula for the QS of a pool of normals is derived in the appendix.
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A beta-transformed linear pool (Gneiting and Ranjan, 2011) is given by

fb(Y ) = (

n∑

i=1

ωifi(Y ))× b(

n∑

i=1

ωiFi(Y )). (13)

Here b(z) = B(α, β)−1zα−1(1 − z)β−1 is the p.d.f of the beta distribution with strictly

positive parameters α and β, and B(·, ·) denotes the beta function. Based on their key

result that a linear pool of calibrated components is necessarily uncalibrated, Gneiting

and Ranjan (2011) propose the combination in (13) to restore calibration. It has two

tuning parameters, α and β, which can either be fixed or fitted to training data.

The next proposition shows that Jensen’s inequality does not necessarily apply to loga-

rithmic and beta-transformed pools. This contrasts the situation for linear pools, where

Jensen’s inequality holds under all three scoring rules.

Proposition 3.2. For the logarithmic pool defined in Equation (12), it holds that

LS(y, flog(·)) ≥
n∑

i=1

ωiLS(y, fi(·)),

but similar inequalities for QS and CRPS do not hold. Furthermore, for the beta-

transformed linear pool defined in Equation (13), Jensen’s inequality does not hold under

LS.

4 Simulation Evidence

The results discussed until now are for a stylized setting in which forecasts are made

for a single realization of the random variable Y . In practice, however, forecasts are

typically made for a sequence of T realizations {yt}Tt=1 of a time series process Yt. The

forecasts of n different models are made h steps ahead and are based on a sigma algebra
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Ft−h, h > 0 generated by information up to time t − h. Let fi(Yt|Ft−h) ≡ fi,t−h(Yt) be

the i-th forecasting density, with i = 1, . . . , n. In this setting, a linear prediction pool

with weights ωi,t−h ∈ Ft−h is given by fc,t−h(Yt) =
∑n

i=1 ωi,t−hfi,t−h(Yt).

Hence the performance of linear pools depends on i) the true process generating Yt, ii)

the set of forecasting densities to be combined, and iii) the combination weights. In the

following, I analyze the impact of i) and ii) within a simulation study. For brevity, I

abstract from the third aspect by assuming equal weights. Equal weights are of high

practical interest due to their trivial implementation without estimation uncertainty.

Furthermore, the theoretical results from the last section are clearest for equal weights.

I report additional simulation results for other weighting schemes in an online appendix

to this paper.

I consider a setting in which a forecast of a time series process Yt is required at horizon

h = 1. The n individual models are Gaussian first-order autoregressive (AR(1)) processes.

In addition, I consider their equally weighted (EW) combination:

fi(Yt|Ft−1) = N (νi + αiYt−1, σ
2
i ), i = 1, . . . , n, (14)

fEW (Yt|Ft−1) =
1

n

n∑

i=1

fi(Yt|Ft−1),

with αi < 1 ∀ i. Assume that the true process is given by model i∗ ∈ {1, . . . , n}, i.e.

f0(Yt|Ft−1) = fi∗(Yt|Ft−1). Then, under any of the three scoring rules S,

1

n

n∑

i=1

ES0(fi,t−1(·)|Ft−1) ≤ ES0(fEW,t−1(·)|Ft−1) < ES0(fi∗,t−1(·)|Ft−1), (15)

where ES0(fi,t−1(·)|Ft−1) denotes the expected score of model i under the true density,

conditional on Ft−1. Note that the first inequality follows from Corollary 3.3, and the

second (strict) inequality follows from strict propriety of the three scoring rules. Assuming

that the process generating Ft−1 is stationary, the law of iterated expectations implies
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that the inequalities hold also unconditionally:

1

n

n∑

i=1

ES0(fi,t−1(·)) ≤ ES0(fEW,t−1(·)) < ES0(fi∗,t−1(·)). (16)

The second inequality in (16) reflects the disutility from using an equally weighted pool,

instead of the true model i∗. In order to analyze the empirical relevance of this disutility,

I consider the test statistic analyzed by Giacomini and White (2006):

GWi∗,EW =
1
T

∑T

t=1 (S(yt, fi∗,t−1(·))− S(yt, fEW,t−1(·)))
√

σ̂2
i∗,EW

, (17)

where t = 1, . . . , T denotes the evaluation sample. Note that the numerator of (17) is

the difference between the average scores of the two models i∗ and EW , and σ̂2
i∗,EW is a

Newey and West (1987, HAC) estimator of the variance of this difference. The statistic

can be used to test the null hypothesis of equal predictive ability (EPA):

H0 : ES0(fi∗,t−1(·)) = ES0(fEW,t−1(·)). (18)

Under this null hypothesis and regularity conditions detailed in Giacomini and White

(2006), the test statistic in (17) has a limiting standard normal distribution.

Of course, Equation (16) implies that the null hypothesis of EPA is false and should be

rejected in favor of the true model i∗. Analyzing the test’s actual rejection frequency (i.e.,

its power) allows to assess how often an empirical researcher would be able to statistically

distinguish between the equally weighted pool and the true model. In the following, I

report how often the null hypothesis is rejected in favor of i∗ at a 5 % level, i.e. how often

GWi∗,EW > 1.96 in (17).

The processes in the following simulation experiment are calibrated to match four monthly

US macro series: The consumer price index (CPI), industrial production, the treasury bill
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rate, and the unemployment rate. All data were downloaded from the FRED R© database

of the Federal Reserve Bank at St. Louis and are transformed to achieve stationarity.

For details, see Table 2 and Figure 3 in the appendix. For a given series, the model

suite consists of n = 5 AR(1) models, each of which is calibrated to a different sample of

empirical data (starting in 1960, 1970, 1980, 1990, and 2000; all samples end in November

2011). Table 3 in the appendix reports the resulting parameter values.

Tables 4 and 5 in the appendix report the simulation results, which are qualitatively very

similar across the three scoring rules. When the true process is calibrated to industrial

production or unemployment, the Giacomini and White (2006) has very little power in

distinguishing between the equally weighted pool and the true model. Rejection rates

for the small (large) evaluation sample average merely 9 (14) percent. The power of

the tests is somewhat larger when the true process is calibrated to match CPI inflation.

Still, rejection rates are only 18 (38) percent on average. In contrast, the EPA tests have

good power properties when the true process is calibrated to the treasury bill rate, with

average rejection rates of 69 (94) percent.

These results can be explained by the set of models used in the simulation experiments.

As detailed in Table 3, the model coefficients for industrial production and unemployment

are relatively stable over different subperiods. Hence for these series, the five models to

be combined are fairly similar, which makes it hard for the EPA tests to distinguish

between the equally weighted pool and any individual model. The opposite scenario

applies to the treasury bill rate: The process features strong structural breaks in both

the autoregressive coefficient and the error term variance. As a consequence, it is fairly

easy to distinguish the equally weighted pool from any of the individual models. The

inflation rate is somewhere between these two polar cases, featuring instabilities in AR

persistence but not in the other two coefficients.1

1See Stock and Watson (2007) and Guidolin and Timmermann (2009) for additional evidence on
instabilities in US inflation and short term interest rates, respectively.
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I view these results as very positive for linear pools, especially because the setup of the

simulation study is deliberately biased in favor of the individual models: The true process

is given by one of these models, which of course need not hold in practice. In addition,

I use a pool with equal weights. In contrast, Geweke and Amisano (2011) consider

estimating unconditionally optimal weights based on a historical training sample. Bache,

Jore, Mitchell, and Vahey (2011, Equation 2), among others, consider recursive weights

based on the individual models’ past performance. Both schemes can be expected to push

the weights toward their theoretical optimum which has ωi∗,t−1 = 1 and ωi,t−1 = 0 for

i 6= i∗. The results for equally weighted pools should thus give a conservative estimate

of the performance of more general pools. The results for the other weighting schemes,

which are presented in the online appendix, confirm this suggestion.

5 Empirical Evidence

The preceding simulation study is driven by the conservative assumption that the true

process is given by one of the n individual models. I next drop this assumption and

analyze the performance of linear pools in an empirical application where the true process

is unknown.

5.1 Setup and Data

I again consider the four US macro series introduced in the last section. I use data

between January 1985 and November 2011 (=323 observations) as an evaluation period;

earlier observations are used for estimating the models.

The individual predictive models are several Gaussian (vector) autoregressive specifica-

tions (VARs). I consider iterated forecasts (Marcellino, Stock, and Watson, 2006) at

horizons of one, three, and six months. The autoregressive models to be combined differ
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along two dimensions: The set of system variables, and the sampling scheme used for

parameter estimation. The set of system variables can in principle be validated using

information criteria. In contrast, in the likely presence of structural breaks of unknown

size and/or timing there is no clear-cut way of choosing the optimal estimation sample.

Hence averaging over several estimation samples is a natural idea which has been pro-

posed by Pesaran and Timmermann (2007) for point forecasts; Jore, Mitchell, and Vahey

(2010) extend this idea to density forecasts.

Here I consider two different choices for the estimation sample: A short rolling window

covering seven years of monthly data, and a long rolling window covering fourteen years.

Furthermore, for each variable I consider four different sets of system variables: A uni-

variate specification, and three bivariate specifications, each of which includes one of the

other variables in addition. This leads to 2 × 4 = 8 forecast models for each variable.

For all models, the lag lengths are adaptively chosen via the Schwarz (1978) information

criterion using a maximum lag length of six. For simplicity, all VARs feature multivariate

Gaussian, conditionally homoscedastic forecast densities.2

Throughout, I estimate all models via Ordinary Least Squares (OLS). A more strin-

gent approach would be to tailor the parameter estimates to the scoring rule which

is used for out-of-sample evaluation (c.f. Gneiting, 2011).3 This is cumbersome for the

CRPS, where multivariate generalizations (Gneiting, Stanberry, Grimit, Held, and John-

son, 2008), which are needed to estimate the VARs, are not available in closed form. Since

these issues are out of the focus of the present paper, I follow standard practice and use

OLS estimation instead.

2Rolling window estimation and adaptive lag length choice produce time variation in the estimated
variance-covariance matrix of a VAR’s error term vector. However, these effects are distinct from
GARCH-type models in the tradition of Engle (1982) which would feature conditional heteroscedas-
ticity even if one knew the true values of their parameters.

3Using OLS estimation, this principle is satisfied for the log score: Since the models are Gaussian, and
the OLS and Maximum Likelihood estimators of a Gaussian model coincide, the parameter estimates
maximize the in-sample log score of each model. However, the OLS estimates do not maximize the
in-sample quadratic and continuous ranked probability scores.
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As in the last section, I focus on equally weighted pools for brevity. Results for two other

weighting schemes are presented in the online appendix.

5.2 Forecast Evaluation

The present empirical analysis covers four variables, three forecast horizons and three

scoring rules, which amounts to 36 forecast horse races. Each horse race features nine

competing models (eight autoregressive models and their equally weighted combination,

EW). The results are summarized in Tables 6 to 9 in the appendix. The main findings

are as follows.

First, for inflation and the treasury bill rate there is strong evidence that short rolling

windows are preferable to long rolling windows. This finding, which holds across all

forecast horizons and scoring rules, is in line with well known instabilities in the two

series (see Section 4). These instabilities work in the favor of short rolling windows which

discount outdated information more quickly than long windows. For industrial production

and unemployment, the relative performance of short and long rolling windows is less clear

and differs across system variables, forecast horizons and scoring rules. Quite generally,

models using different system variables (but the same choice of estimation sample) tend

to perform very similarly.

Second, the overall performance of EW is very good. Considering the average score

over the evaluation sample, EW beats all eight individual models in half of the 36 horse

races. Furthermore, the rank of EW among all nine models is never worse than five. The

example in Figure 2, which refers to one-step ahead inflation forecasts under LS, provides

some intuition for this result. The figure plots the ranks of EW and a VARs
C,T model,

for each point in the evaluation sample.4 The performance of the VARs
C,T (relative to

4The VARs
C,T contains the CPI and treasury bill series and is estimated based on a short rolling

window; see below Table 6. For each evaluation period t, the rank of a model is computed as one plus
the number of models which attain a strictly higher score in period t.
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the other models) is very instable over time. During the evaluation sample, it repeatedly

visits all possible ranks (one to nine); this is illustrated by the wildly fluctuating light

line. In contrast, by Jensen’s inequality EW performs relatively well for each point in the

evaluation sample. In the graph, this is reflected by the stable bold line. This stability is

rewarded by concave scoring rules like the log score, so that EW outperforms the VARs
C,T

on average over the evaluation sample. Hence the example, and the empirical results in

general, provide clear evidence against the classic notion of a “single best model”.

Third, in order to analyze the statistical significance of these results, I consider Giacomini

and White (2006) tests of equal predictive ability (EPA) as described in Section 4. The

null hypothesis is EPA of the pool and a given individual model.5 The results of the EPA

tests are reported in Tables 6 to 9; see below Table 6 for details. The reported p-values

refer to a two-sided test, and a truncation lag of four is used for the HAC estimator.

The results feature an asymmetric pattern: While there are many cases in which EW

significantly outperforms an individual model at the 5% level, it rarely happens that EW

is itself outperformed. Even in horse races in which EW ranks fifth, it occurs that four

models are significantly worse than EW while no model is significantly better. This is

what happens for inflation at horizons three and six, using QS or CRPS. The only

exception in which EW is repeatedly outperformed in terms of EPA tests is for the

treasury bill rate and evaluation via QS. However, these results are not shared by LS

and CRPS.

Fourth, there is evidence that the payoff to linear pooling is larger under LS than under

QS and CRPS. Under LS, it never occurs (in 8×4×3 = 96 occasions) that an individual

model is significantly better than EW. Among others, EW performs well for inflation and

the treasury bill rate. This is somewhat surprising since for these series, half of the models

(the ones using long rolling windows) are clearly dominated by the other half. One might

5Note that unlike the classical test of Diebold and Mariano (1995), the test of Giacomini and White
(2006) compares the predictive accuracy of the two estimated models, rather than the accuracy of their
population counterparts. See Section 3 in Clark and McCracken (2011) for an insightful discussion.
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Figure 2: Light and bold lines: Rank of VARs
C,T and EW, for each evaluation point, in

terms of the log score for one-step ahead inflation forecasts, plotted against time.

expect that in such a setting, an equally weighted combination of all models would be

inferior to the (ex post) better set of models. In fact, this is what happens under QS

and CRPS, but not under LS. Hence under LS, equally weighted pools seem to be very

robust to the inclusion of models which (ex post) turn out to perform poorly.

6 Conclusion

The results of this paper imply that linear pooling is an attractive forecasting strategy

under three strictly proper scoring rules. The downside risk of linear pooling is bounded

by Jensen’s inequality. The existence of this bound is a mechanical consequence of the

scoring rules and does not depend on the true data-generating process or the set of

forecasting models being used. In contrast, the upside potential of linear pools does

depend on these factors. I therefore present simulation and empirical evidence that

equally weighted pools often perform similar to (or better than) the best individual

model. This is remarkable since picking the best individual model requires hindsight,

while constructing the equally weighted pool does not.
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I next relate my results to recent studies which point to some negative features of linear

prediction pools. Generalizing earlier results by Hora (2004) and Ranjan and Gneiting

(2010), Gneiting and Ranjan (2011) show that a linear pool of well-calibrated densities

will generally be overdispersed,6 which can be diagnosed via Probability Integral Trans-

forms (PITs). Clearly, this feature is a drawback of linear pools. However, these results

do not contradict the findings of the present paper: It is well possible that an overdis-

persed density (in the definition of Gneiting and Ranjan) outperforms neutrally dispersed

competitors in terms of scoring rules. The simulation example in Section 4.1 of Gneiting

and Ranjan (2011) provides clear evidence in favor of this claim. In this example, the

(overdispersed) linear pool outperforms all three neutrally dispersed competitors in terms

of the average log score over the evaluation sample. See Tables 6 and 7 of Gneiting and

Ranjan (2011). Hence this example leads to a situation in which different evaluation

methodologies – PITs versus the log score – lead to different judgments about linear pre-

diction pools. Although this situation is unsatisfactory from a practical perspective, its

occurrence is not surprising in a setup with misspecification.

Interestingly, the tendency of linear pools to produce dispersed predictive densities is

both a blessing and a curse. It can explain both the overdispersion results cited above

and the lower bounds derived in the present paper. Compared to nonlinear combination

methods, or the selection of a single model, linear pools are a safe choice which may

entail some costs in terms of efficiency. Whether these costs are acceptable depends on

the empirical scenario at hand; see also the comments by Gneiting and Ranjan (2011,

p. 33). In macroeconomics, time series data is typically scarce and prone to structural

breaks. Furthermore, crucial tuning parameters like the choice of estimation sample

are hard to validate. In this scenario, the quest for (large-sample) optimality may be

unrealistic, and a robust but suboptimal choice like equally weighted linear pools may do

the job.

6See Definition 2.7 of Gneiting and Ranjan (2011) for a formal definition of overdispersion.
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Appendix A: Proofs

Proof of Proposition 3.1

LS(y,
n∑

i=1

ωifi(·)) = ln

(
n∑

i=1

ωifi(y)

)

≥
n∑

i=1

ωi ln (fi(y))

=

n∑

i=1

ωiLS(y, fi(·)),

where the inequality follows from Jensen’s inequality.

QS(y,
n∑

i=1

ωifi(·)) =
n∑

i=1

2ωifi(y)−
∫

(
n∑

i=1

ωifi(z))
2

︸ ︷︷ ︸

≤∑n
i=1

ωif
2
i
(z)

dz

≥
n∑

i=1

2ωifi(y)−
n∑

i=1

ωi

∫

f2
i (z)dz

=

n∑

i=1

ωi

(

2fi(y)−
∫

f2
i (z)dz

)

=

n∑

i=1

ωiQS(y, fi(·)),

where the inequality follows from Jensen’s inequality.

CRPS(y,

n∑

i=1

ωifi(·)) = −
∫
(

n∑

i=1

ωiFi(z) − I(z ≥ y)

)2

dz

= −
∫
(

n∑

i=1

ωi(Fi(z)− I(z ≥ y))

)2

︸ ︷︷ ︸

≤∑n
i=1

ωi(Fi(z)−I(z≥y))2

dz

≥ −
n∑

i=1

ωi

∫

(Fi(z)− I(z ≥ y))2 dz

=

n∑

i=1

ωiCRPS(y, fi(·)),

where the second equality uses the fact that the weights sum to one and the inequality follows
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from Jensen’s inequality.

Proof of Corollary 3.1

∆LS = LS(y,
∑n

i=1 ωifi(·)) −
∑n

i=1 ωiLS(y, fi(·)), and similarly for QS and CRPS. From the
definition of LS in Equation (1),

∆LS = ln(
n∑

i=1

ωifi(y))−
n∑

i=1

ωi ln(fi(y))

︸ ︷︷ ︸

=
∑n

i=1
ln(fi(y)ωi )=ln(

∏n
i=1

fi(y)ωi )

= ln

(∑n
i=1 ωifi(y)

∏n
i=1 fi(y)

ωi

)

.

The formula for ∆QS follows immediately from the definition of QS in Equation (2). Further-
more, from the definition of CRPS in (3),

∆CRPS =

∫
{

n∑

i=1

ωi(Fi(z)− I{z≥y})
2 − (

n∑

i=1

ωiFi(z)− I{z≥y})
2

}

dz

=

∫
{

n∑

i=1

ωi(F
2
i (z)− 2 I{z≥y}Fi(z) + I{z≥y})− (

n∑

i=1

ωiFi(z))
2 + 2 I{z≥y}

n∑

i=1

ωiFi(z)− I{z≥y}

}

dz

=

∫
{

n∑

i=1

ωiF
2
i (z) − (

n∑

i=1

ωiFi(z))
2

}

dz,

where the second equality uses the fact that a binary term equals its square and the third
equality uses the fact that the weights sum to one.

The positivity of the three terms follows from Proposition 3.1 or directly from Jensen’s inequality.

Proof of Example 3.1

For i = 1, 2, let fi(·) = N (µi, σ
2
i ). Without loss of generality, assume that σ2

1 > σ2
2. For a weight

ω ∈ (0, 1), it holds that

∆LS = ln (ωf1(y) + (1− ω)f2(y))− ω ln(f1(y))− (1− ω) ln(f2(y))

≥ ln(ωf1(y))− ω ln(f1(y))− (1− ω) ln(f2(y))

= ln(ω) + (1− ω) (ln(f1(y))− ln(f2(y)))

= ln(ω) + (1− ω)

(

0.5 ln(2πσ2
2) +

(y − µ2)
2

2σ2
2

− 0.5 ln(2πσ2
1)−

(y − µ1)
2

2σ2
1

)

=








1− ω

2
︸ ︷︷ ︸

>0








1

σ2
2

− 1

σ2
1
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>0












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y2 +

(

(1− ω)

(
µ1

σ2
1

− µ2

σ2
2

))

y + c, (19)
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where c does not depend on y. The limiting behavior of (19) as y → ∞ is governed by the first
(quadratic) term. Since the coefficient in front of this term is strictly positive, (19) – and thus
also ∆LS – diverge to ∞ as y → ∞. The same reasoning applies when y → −∞.

Proof of Corollary 3.2

The first part follows from Proposition 3.1 and the fact that
∑n

i=1 ωiLS(y, fi(·)) ≥ mini∈{1,...,n}LS(y, fi(·)),
which in turn follows from the positivity of the weights. Analogous reasoning applies for QS

and CRPS.

Concerning the second part,

LS(y,
n∑

i=1

ωifi(·)) = ln(
n∑

i=1

ωifi(y))

≤ ln(maxi∈{1,...,n}fi(y))

= maxi∈{1,...,n}LS(y, fi(·)).

In contrast to this result, Figure 1 provides examples which show that under QS and CRPS, a
linear pool can potentially outperform all of its components. Among other cases, this happens
under QS when y = 1, and under CRPS when y = 1.1.

Proof of Corollary 3.3

ELS0

(
n∑

i=1

ωifi(·)
)

=

∫

LS(z,
n∑

i=1

ωifi(·))
︸ ︷︷ ︸

≥∑n
i=1

ωiLS(z,fi(·))

f0(z)dz

≥
n∑

i=1

ωi

∫

LS(z, fi(·))f0(z)dz

=
n∑

i=1

ωiELS0 (fi(·)) ,

where the inequality follows from Proposition 3.1. The proof for the quadratic and continuous
ranked probability scores is analogous.

Proof of Proposition 3.2

The proof that Jensen’s inequality holds for the logarithmic pool under the log score follows
along the lines of Kascha and Ravazzolo (2010, p. 237), which can easily be extended to n > 2
models.

To show that Jensen’s inequality does not hold for QS and CRPS, it is enough to find coun-
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terexamples which violate the inequality. To get such examples, consider again the setup of
Figure 1, where the first model is f1(·) = N (0, 1), the second model is f2(·) = N (0, 4), and the
combination weights are 0.5. In this case, the logarithmic pool is given by flog(·) = N (0, 85) (c.f.
Kascha and Ravazzolo, 2010, p. 235). Suppose that the outcome y = 2.5 realizes. Using the
formulas in Table 1 gives

QS(2.5, flog(·))
︸ ︷︷ ︸

≈−0.13

< 0.5 ×QS(2.5, f1(·))
︸ ︷︷ ︸

≈−0.25

+0.5×QS(2.5, f2(·))
︸ ︷︷ ︸

≈0.04

,

CRPS(2.5, flog(·))
︸ ︷︷ ︸

≈−1.81

< 0.5 × CRPS(2.5, f1(·))
︸ ︷︷ ︸

≈−1.94

+0.5× CRPS(2.5, f2(·))
︸ ︷︷ ︸

≈−1.57

,

which contradicts Jensen’s inequality.

To find an example in which Jensen’s inequality does not hold for the beta-transformed linear
pool under the log score, consider again the two individual densities and weights from above.
Furthermore, for the beta-transformed linear pool fb(·), set α = 1.492 and β = 1.440. These
numbers match the empirical results of Gneiting and Ranjan (2011, Table 5). Again considering
a realization of y = 2.5 and using the formulas of Gneiting and Ranjan (2011, p. 21), one finds

LS(2.5, fb(·))
︸ ︷︷ ︸

≈−3.33

< 0.5× LS(2.5, f1(·))
︸ ︷︷ ︸

≈−4.04

+0.5× LS(2.5, f2(·))
︸ ︷︷ ︸

≈−2.39

,

which again contradicts Jensen’s inequality.
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Quadratic Score of a Gaussian Mixture

Auxiliary Result

Let a and b be two real-valued constants, and denote by φ(·) the p.d.f. of the standard normal
distribution. Then,

∫

φ(u)φ(a + bu) du =
1

2π

∫

exp
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−u2

2
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2

)

du
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Main Result

The quadratic score for a generic p.d.f. f(·) and a realization y is given by

QS (f(·), y) = 2f(y)−
∫

f2(z)dz (20)

If f(·) is a mixture of n normals,

f(y) =
n∑

i=1

ωi

σi
φ

(
y − µi

σi

)

(21)
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Furthermore,

∫

f2(z)dz =
n∑
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∫
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2 × exp
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−
a2ij

2

(

1

1 + b2ij

)}

,

(22)

where aij and bij have been defined in Table 1, and the second equality follows from integration
by substitution and the auxiliary result above. Combining (20), (21) and (22) then yields the
result in Table 1.

Appendix B: Additional Figures and Tables

Consumer Price Index (100×∆ ln) Industrial Production (100×∆ ln)

Treasury Bill Rate (∆) Unemployment Rate (∆)

Figure 3: Time series graphs for the full sample (February 1960 – November 2011). See
below Table 2 for details.
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Variable Description Transformation Mean Std. Q05 Q50 Q95 ACF(1) ACF(5)

Consumer Price Index All urban customers, seasonally ad-

justed, FRED series ”CPIAUCSL”

100×∆ ln 0.33 0.32 -0.09 0.29 0.95 0.62 0.41

Industrial Production Seasonally adjusted, FRED series

”INDPRO”

100×∆ ln 0.22 0.78 -0.97 0.27 1.36 0.34 0.1

Treasury Bill Rate Secondary market rate, FRED series

”TB3MS”

∆ -0.01 0.45 -0.62 0.01 0.51 0.33 0.04

Unemployment Rate Percent, seasonally adjusted, FRED

series ”UNRATE”

∆ 0.01 0.18 -0.3 0 0.3 0.11 0.16

Table 2: Definitions and descriptive statistics. Transformation ”100 × ∆ ln” means that Yt = 100 × (lnXt − lnXt−1), where Yt is
the transformed and Xt is the original series at date t. Similarly, transformation ”∆” means that Yt = Xt −Xt−1. All descriptive
statistics are for the transformed series over the full sample (February 1960 – November 2011, 623 monthly observations). ”Q05”,
”Q50” and ”Q95” denote the five, 50 and 95 percent quantiles. ”ACF(1)” and ”ACF(5)” denote the autocorrelation at lags one and
five.
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i = 1 i = 2 i = 3 i = 4 i = 5
(1960-2011) (1970-2011) (1980-2011) (1990-2011) (2000-2011)

Consumer Price Index
0.124 0.131 0.122 0.128 0.116
0.624 0.631 0.554 0.412 0.431
0.062 0.068 0.062 0.061 0.096

Industrial Production
0.145 0.118 0.113 0.125 0.020
0.336 0.362 0.285 0.246 0.280
0.528 0.500 0.456 0.426 0.520

Treasury Bill Rate
-0.005 -0.010 -0.020 -0.016 -0.018
0.333 0.332 0.354 0.458 0.524
0.183 0.218 0.229 0.032 0.034

Unemployment Rate
0.005 0.007 0.005 0.010 0.022
0.116 0.197 0.173 0.166 0.296
0.033 0.032 0.030 0.025 0.027

Table 3: Parameter calibrations used in the simulation study. The numbers in each cell
represent the parameters νi (first row), αi (second row) and σ2

i (third row) of the AR(1)
model in Equation (14), for four different time series. The series are transformed to
stationarity; see Table 2 and Figure 3 for details.
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Consumer Price Index Industrial Production
True model (i∗) 1 2 3 4 5 1 2 3 4 5

LS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.066 -0.118 -0.047 -0.052 -0.314 -1.110 -1.080 -1.032 -1.002 -1.105
ES0(fEW,t−1(·)) -0.048 -0.096 -0.032 -0.038 -0.283 -1.104 -1.075 -1.027 -0.998 -1.100
ES0(fi∗,t−1(·)) -0.031 -0.076 -0.027 -0.022 -0.247 -1.100 -1.072 -1.026 -0.992 -1.092

Rej. (T = 120) 0.208 0.174 0.191 0.328 0.263 0.043 0.033 0.117 0.186 0.118
Rej. (T = 360) 0.440 0.434 0.267 0.551 0.679 0.106 0.074 0.123 0.264 0.232

QS

1
n

∑n
i=1ES0(fi,t−1(·)) 1.094 1.040 1.114 1.109 0.862 0.384 0.396 0.416 0.429 0.386
ES0(fEW,t−1(·)) 1.114 1.062 1.131 1.123 0.879 0.386 0.398 0.417 0.430 0.388
ES0(fi∗,t−1(·)) 1.130 1.082 1.135 1.140 0.910 0.388 0.399 0.418 0.433 0.391

Rej. (T = 120) 0.104 0.109 0.081 0.213 0.215 0.049 0.038 0.066 0.102 0.100
Rej. (T = 360) 0.252 0.283 0.116 0.359 0.500 0.092 0.070 0.066 0.150 0.173

CRPS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.145 -0.153 -0.142 -0.143 -0.180 -0.413 -0.401 -0.382 -0.370 -0.411
ES0(fEW,t−1(·)) -0.143 -0.150 -0.140 -0.142 -0.178 -0.411 -0.400 -0.381 -0.369 -0.410
ES0(fi∗,t−1(·)) -0.141 -0.147 -0.140 -0.140 -0.175 -0.410 -0.399 -0.381 -0.368 -0.407

Rej. (T = 120) 0.118 0.141 0.088 0.262 0.252 0.043 0.038 0.098 0.145 0.132
Rej. (T = 360) 0.304 0.374 0.135 0.465 0.519 0.091 0.080 0.097 0.195 0.230

Table 4: Simulation results. Horizontal blocks represent the log score (LS), quadratic score (QS) and cumulative ranked probability
score (CRPS). In each block, the first three rows are simulation estimates of the quantities in Equation (16). All estimates are
averages over 10000 Monte Carlo samples, each of which is 480 periods long. The fourth and fifth rows are rejection frequencies
of the null hypothesis in (18), for two different sample sizes. The frequencies are computed over 10000 Monte Carlo samples. A
truncation lag of four is used for the Newey and West (1987) estimator. Columns represent different true processes, calibrated to
different subsamples of CPI inflation and industrial production. See Table 3 for details on calibration.
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Treasury Bill Rate Unemployment Rate
True model (i∗) 1 2 3 4 5 1 2 3 4 5

LS

1
n

∑n

i=1ES0(fi,t−1(·)) -1.175 -1.445 -1.514 -0.010 -0.024 0.273 0.290 0.326 0.413 0.362
ES0(fEW,t−1(·)) -0.621 -0.736 -0.767 0.061 0.048 0.280 0.296 0.332 0.417 0.367
ES0(fi∗,t−1(·)) -0.570 -0.657 -0.681 0.299 0.275 0.286 0.298 0.332 0.424 0.378

Rej. (T = 120) 0.436 0.594 0.634 0.998 0.997 0.064 0.039 0.058 0.184 0.149
Rej. (T = 360) 0.860 0.962 0.975 1.000 1.000 0.157 0.070 0.064 0.279 0.303

QS

1
n

∑n

i=1ES0(fi,t−1(·)) 0.450 0.368 0.349 1.232 1.211 1.535 1.561 1.617 1.766 1.676
ES0(fEW,t−1(·)) 0.587 0.506 0.488 1.365 1.344 1.543 1.569 1.625 1.773 1.684
ES0(fi∗,t−1(·)) 0.659 0.603 0.590 1.573 1.535 1.552 1.572 1.626 1.783 1.702

Rej. (T = 120) 0.424 0.570 0.594 0.919 0.901 0.073 0.054 0.055 0.096 0.097
Rej. (T = 360) 0.835 0.947 0.957 1.000 1.000 0.130 0.063 0.059 0.155 0.192

CRPS

1
n

∑n
i=1ES0(fi,t−1(·)) -0.254 -0.279 -0.286 -0.121 -0.124 -0.103 -0.102 -0.098 -0.090 -0.095
ES0(fEW,t−1(·)) -0.245 -0.270 -0.277 -0.113 -0.116 -0.103 -0.101 -0.098 -0.089 -0.095
ES0(fi∗,t−1(·)) -0.241 -0.264 -0.270 -0.101 -0.104 -0.103 -0.101 -0.098 -0.089 -0.094

Rej. (T = 120) 0.306 0.460 0.541 0.999 0.998 0.080 0.034 0.069 0.142 0.099
Rej. (T = 360) 0.711 0.905 0.945 1.000 1.000 0.151 0.055 0.072 0.202 0.243

Table 5: Simulation results (continued). True processes calibrated to the treasury bill rate and the unemployment rate. See Table
4 for details.
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Consumer Price Index

Model LS QS CRPS SE

h = 1

ARs 0.0222.9 1.4975.8 −0.1263.3 0.0676.2

ARl −0.092.5 1.360.0 −0.130.0 0.062.3

VARs
C,I 0.0010.3 1.4653.5 −0.137.8 0.064.7

VARl
C,I −0.110.6 1.330.0 −0.130.0 0.060.7

VARs
C,T 0.0439.1 1.4778.7 −0.1340.8 0.0676.1

VARl
C,T −0.091.0 1.360.0 −0.130.0 0.064.4

VARs
C,U −0.016.7 1.4641.5 −0.132.8 0.062.9

VARl
C,U −0.120.8 1.330.0 −0.130.0 0.060.0

EW 0.06 1.48 −0.12 0.06
(Rank) (1) (2) (2) (2)

h = 3

ARs −0.1058.3 1.3941.7 −0.1346.6 0.0882.2

ARl −0.273.5 1.200.0 −0.140.0 0.080.5

VARs
C,I −0.0977.6 1.3770.4 −0.1475.3 0.0840.3

VARl
C,I −0.282.1 1.180.0 −0.150.0 0.080.1

VARs
C,T −0.0968.9 1.3864.3 −0.1499.2 0.0870.2

VARl
C,T −0.282.1 1.170.0 −0.150.0 0.080.0

VARs
C,U −0.0968.0 1.3774.8 −0.1458.9 0.0831.0

VARl
C,U −0.291.6 1.170.0 −0.150.0 0.080.0

EW −0.08 1.36 −0.14 0.08
(Rank) (1) (5) (2) (1)

h = 6

ARs −0.1285.8 1.3451.0 −0.1445.6 0.0882.2

ARl −0.312.4 1.130.0 −0.150.0 0.080.3

VARs
C,I −0.1198.4 1.3453.6 −0.1443.4 0.0865.8

VARl
C,I −0.331.4 1.100.0 −0.150.0 0.080.0

VARs
C,T −0.1196.6 1.3458.2 −0.1457.8 0.0893.0

VARl
C,T −0.331.2 1.090.0 −0.150.0 0.080.0

VARs
C,U −0.1199.7 1.3447.9 −0.1439.3 0.0861.8

VARl
C,U −0.331.4 1.110.0 −0.150.0 0.080.0

EW −0.11 1.32 −0.14 0.08
(Rank) (2) (5) (5) (5)

Table 6: Performance of density forecasts of the US consumer price index, for an evaluation
sample from January 1985 to November 2011 (323 monthly observations), for forecast horizons
of h = 1, 3 and 6 months. In column one, superscript s indicates that a model was estimated
based on a short rolling window (72 obs.); l indicates a long rolling window (288 obs.). For
the VARs, subscripts indicate the system variables, where C = CPI inflation, I = industrial
production, T = treasury bill rate, U = unemployment rate. “EW” is an equally weighted
pool of all models. The second to third columns give the scoring rules defined in the text (the
larger the better); ”SE” denotes the squared prediction error of a point forecasts (the smaller the
better). Superscript numbers are p-values (in percent) of the two-sided Giacomini-White test
for equal predictive ability, using EW as a benchmark model.



Industrial Production

Model LS QS CRPS SE

h = 1

ARs −1.043.2 0.5120.4 −0.350.9 0.441.1

ARl −1.022.1 0.5131.8 −0.3379.9 0.3962.0

VARs
I,C −1.070.6 0.491.0 −0.360.1 0.461.1

VARl
I,C −1.056.7 0.503.1 −0.3411.5 0.4143.3

VARs
I,T −1.0122.2 0.5151.8 −0.3434.4 0.4128.2

VARl
I,T −1.055.8 0.5012.0 −0.3428.6 0.4143.4

VARs
I,U −1.029.7 0.491.3 −0.351.4 0.435.7

VARl
I,U −1.040.9 0.501.4 −0.345.2 0.4146.0

EW −0.98 0.52 −0.33 0.40
(Rank) (1) (1) (1) (2)

h = 3

ARs −1.0511.9 0.4927.7 −0.352.9 0.432.4

ARl −1.049.6 0.4815.8 −0.3371.7 0.3723.9

VARs
I,C −1.0421.1 0.4918.4 −0.350.4 0.420.2

VARl
I,C −1.077.9 0.483.1 −0.3423.6 0.4157.7

VARs
I,T −1.0331.9 0.4937.7 −0.344.4 0.422.5

VARl
I,T −1.086.1 0.4810.2 −0.3440.6 0.4077.3

VARs
I,U −1.0415.3 0.4813.7 −0.350.2 0.430.0

VARl
I,U −1.083.2 0.487.7 −0.3418.1 0.4047.3

EW −1.01 0.50 −0.34 0.40
(Rank) (1) (1) (2) (2)

h = 6

ARs −1.149.4 0.4711.0 −0.374.7 0.498.8

ARl −1.125.3 0.479.4 −0.3552.8 0.4266.0

VARs
I,C −1.1056.1 0.4846.9 −0.3512.6 0.4315.9

VARl
I,C −1.119.4 0.4734.7 −0.3569.4 0.4126.3

VARs
I,T −1.0980.2 0.4856.8 −0.3533.8 0.4358.7

VARl
I,T −1.127.0 0.4719.7 −0.3594.2 0.4128.5

VARs
I,U −1.1048.0 0.4839.6 −0.358.5 0.4410.8

VARl
I,U −1.141.1 0.465.3 −0.3512.5 0.4341.8

EW −1.08 0.48 −0.35 0.43
(Rank) (1) (1) (3) (4)

Table 7: Same as Table 6, but for industrial production.
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Treasury Bill Rate

Model LS QS CRPS SE

h = 1

ARs −0.0258.9 1.610.4 −0.1234.8 0.0424.2

ARl −0.230.0 1.110.0 −0.150.0 0.050.0

VARs
T,C −0.0256.0 1.610.5 −0.1258.4 0.045.6

VARl
T,C −0.260.0 1.070.0 −0.150.0 0.041.6

VARs
T,I 0.0499.4 1.640.1 −0.1222.6 0.0415.4

VARl
T,I −0.240.0 1.080.0 −0.140.0 0.0420.0

VARs
T,U −0.0745.0 1.600.7 −0.1288.1 0.042.1

VARl
T,U −0.240.0 1.090.0 −0.140.0 0.040.1

EW 0.04 1.49 −0.12 0.04
(Rank) (1) (5) (5) (1)

h = 3

ARs −0.2145.7 1.405.3 −0.1350.3 0.0539.8

ARl −0.320.0 0.990.0 −0.160.0 0.060.1

VARs
T,C −0.2147.6 1.402.8 −0.1352.1 0.0539.1

VARl
T,C −0.350.0 0.960.0 −0.160.0 0.0521.8

VARs
T,I −0.1179.5 1.440.1 −0.135.9 0.0577.1

VARl
T,I −0.340.0 0.980.0 −0.160.0 0.0547.4

VARs
T,U −0.2148.2 1.420.5 −0.1351.8 0.0532.1

VARl
T,U −0.340.0 0.980.0 −0.160.0 0.0577.7

EW −0.08 1.30 −0.13 0.05
(Rank) (1) (5) (5) (3)

h = 6

ARs −0.1099.2 1.390.7 −0.1335.6 0.0521.4

ARl −0.340.0 0.970.0 −0.160.0 0.060.5

VARs
T,C −0.0981.5 1.390.5 −0.1323.7 0.0530.7

VARl
T,C −0.360.0 0.960.0 −0.160.0 0.0572.0

VARs
T,I −0.0982.0 1.390.7 −0.1327.7 0.0544.4

VARl
T,I −0.360.0 0.960.0 −0.160.0 0.0580.6

VARs
T,U −0.0981.2 1.380.9 −0.1324.4 0.0537.2

VARl
T,U −0.360.0 0.960.0 −0.160.0 0.0595.8

EW −0.10 1.28 −0.14 0.05
(Rank) (4) (5) (5) (2)

Table 8: Same as Table 6, but for the treasury bill rate.
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Unemployment Rate

Model LS QS CRPS SE

h = 1

ARs 0.382.1 1.780.4 −0.091.2 0.034.0

ARl 0.4114.9 1.8761.5 −0.0999.0 0.0278.2

VARs
U,C 0.371.2 1.790.9 −0.090.2 0.030.2

VARl
U,C 0.363.3 1.800.7 −0.092.7 0.036.7

VARs
U,I 0.407.8 1.801.8 −0.092.8 0.037.9

VARl
U,I 0.4111.4 1.8530.2 −0.0939.9 0.0251.7

VARs
U,T 0.3921.0 1.8639.0 −0.0911.0 0.037.1

VARl
U,T 0.343.8 1.803.7 −0.096.6 0.039.6

EW 0.44 1.89 −0.09 0.02
(Rank) (1) (1) (1) (2)

h = 3

ARs 0.3821.9 1.801.9 −0.096.9 0.0314.7

ARl 0.4048.2 1.8681.3 −0.0960.7 0.0242.1

VARs
U,C 0.388.4 1.823.7 −0.090.0 0.030.0

VARl
U,C 0.379.2 1.8424.0 −0.0937.9 0.0253.6

VARs
U,I 0.388.0 1.812.0 −0.090.1 0.030.1

VARl
U,I 0.382.4 1.8414.3 −0.0979.3 0.0242.4

VARs
U,T 0.4030.5 1.8424.5 −0.093.0 0.031.9

VARl
U,T 0.366.3 1.8320.4 −0.0936.3 0.0260.3

EW 0.41 1.87 −0.09 0.02
(Rank) (1) (1) (2) (3)

h = 6

ARs 0.339.5 1.772.5 −0.091.3 0.032.2

ARl 0.3529.3 1.8268.5 −0.0974.6 0.0338.9

VARs
U,C 0.3520.4 1.807.8 −0.090.1 0.030.0

VARl
U,C 0.3515.2 1.8260.8 −0.0965.0 0.0323.3

VARs
U,I 0.3414.0 1.794.3 −0.090.0 0.030.0

VARl
U,I 0.357.4 1.8122.5 −0.0969.7 0.0339.9

VARs
U,T 0.3648.5 1.809.5 −0.091.8 0.032.6

VARl
U,T 0.356.5 1.8016.6 −0.0959.9 0.0351.5

EW 0.37 1.83 −0.09 0.03
(Rank) (1) (1) (3) (5)

Table 9: Same as Table 6, but for the unemployment rate.
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