Deposit Insurance without Commitment: Wall St. vs. Main St.

Russell Cooper* Hubert Kempf**

*European University Institute and University of Texas at Austin

**Banque de France and Paris School of Economics

May 2011

Outline

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs

7 Conclusions

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- But commitment assumed in theory is less clear
 - UK: Northern Rock (partial coverage and caps)
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: 1980s and current regulations
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an *ex post* bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- But commitment assumed in theory is less clear
 - UK: Northern Rock (partial coverage and caps)
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: 1980s and current regulations
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an *ex post* bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- But commitment assumed in theory is less clear
 - UK: Northern Rock (partial coverage and caps)
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: 1980s and current regulations
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an *ex post* bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- But commitment assumed in theory is less clear
 - UK: Northern Rock (partial coverage and caps)
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: 1980s and current regulations
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an *ex post* bailout) be provided?

Study Using

- Diamond-Dybvig model
- heterogeneity in endowments across households
- Wall St. vs. Main St. tension through claims on entire financial system
- redistribution through the provision of deposit insurance relative to tax contributions
- steps of analysis
 - characterize optimal deposit contract (planner and decentralized)
 - ask if there is a *expectations driven* bank-run (systemic or not) under the optimal allocation
 - if yes, determine if deposit insurance will be provided ex post
 - study this for progressively less flexible taxation systems

Households

- t = 0, 1, 2.
- \circ type α^{0} endowment of single good: $(\alpha^{0},\bar{\alpha},0)$
- $f(\cdot)$ is pdf, $F(\cdot)$ is cdf
- preferences
 - early consumer: $u(c^0) + v(c^E)$
 - late consumer: $u(c^0) + v(c^L)$
 - $u(\cdot)$ and $v(\cdot)$ are strictly increasing and strictly concave
 - $\circ\ \pi\in(0,1)$: fraction early, independent of endowment type

Technology

- one period technology: return of 1
- two-period technology:
 - \circ return of R > 1
 - return of ε if liquidated early

Table: Technology

	period 0	period 1	period 2
liquid	-1	1	1
illiquid	-1	ε	R

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclus 0000000

Optimal Allocation

- endowment types are known, tastes are not
- choose: $(d(\alpha^0), x^E(\alpha^0), x^L(\alpha^0))$ and ϕ
- objective function:

$$\int \omega(\alpha^0) [u(\alpha^0 - d(\alpha^0)) + \pi v(\bar{\alpha} + x^E(\alpha^0)) + (1 - \pi)v(\bar{\alpha} + x^L(\alpha^0))] f(\alpha^0) d\alpha^0.$$
(1)

resource constraints

$$\phi D = \pi \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$$
(2)

$$(1-\phi)DR = (1-\pi)\int x^{L}(\alpha^{0})f(\alpha^{0})d\alpha^{0}$$
(3)

- welfare weights: $\omega(\alpha^0)$
- ignore prospect of run

Outline Motivation Planner's Problem Decer

on Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

FOCs: insurance and redistribution

$$\omega(\alpha^0)u'(\alpha^0 - d(\alpha^0)) = \lambda \tag{4}$$

$$\mathbf{v}'(\bar{\alpha} + \mathbf{x}^{\mathsf{E}}(\alpha^0)) = \mathbf{R}\mathbf{v}'(\bar{\alpha} + \mathbf{x}^{\mathsf{L}}(\alpha^0))$$
(5)

 and

$$v'(\bar{\alpha} + x^{\mathcal{E}}(\alpha^0)) = u'(\alpha^0 - d(\alpha^0))$$
(6)

for all α^0 .

ロ > < 回 > < 目 > < 目 > < 目 > 目 > うへで 9 / 30

Runs

- truth-telling is a Nash Equilibrium: $c^{L}(\alpha^{0}) > c^{E}(\alpha^{0})$
- bank run is an equilibrium too:
 - $\circ~\pi<1$ is sufficient if ε is near 0

$$\phi D = \pi \int x^{\mathcal{E}}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0} < \int x^{\mathcal{E}}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$$

- not enough resources to meet demands for all households
- some households served, others are not $\zeta v(\bar{\alpha} + x^{\mathcal{E}}(\alpha^0)) + (1 - \zeta)v(\bar{\alpha})$
- how does the planner respond to a run?

Runs

- truth-telling is a Nash Equilibrium: $c^{L}(\alpha^{0}) > c^{E}(\alpha^{0})$
- bank run is an equilibrium too:
 - $\circ~\pi<1$ is sufficient if ε is near 0

$$\phi D = \pi \int x^{\mathcal{E}}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0} < \int x^{\mathcal{E}}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$$

- not enough resources to meet demands for all households
- some households served, others are not $\zeta v(\bar{\alpha} + x^{\mathcal{E}}(\alpha^0)) + (1 - \zeta)v(\bar{\alpha})$
- how does the planner respond to a run?

Outline Motivation **Planner's Problem** Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

Figure: Responding to a Run

Outline Motivation Planner's Problem Dece

Responses to a Run: Haircut

Proposition

Given a bank run, the planner has an incentive to reallocate consumption relative to the outcome under sequential service.

Objective:

$$\int \omega(\alpha^{0})[\pi+\nu(\alpha^{0})(1-\pi)][\nu(\bar{\alpha}+\tilde{x}^{\mathsf{E}}(\alpha^{0}))]f(\alpha^{0})d\alpha^{0}+\int \omega(\alpha^{0})[(1-\nu(\alpha^{0}))(1-\pi)][\nu(\bar{\alpha}+\tilde{x}^{\mathsf{L}}(\alpha^{0}))]f(\alpha^{0})d\alpha^{0}$$
(7)

where $u(\alpha^0)$ of type α^0 late consumers announce early

o period 1 resource constraint:

$$\int [\pi + \nu(\alpha^0)(1 - \pi)]\tilde{x}^{\mathcal{E}}(\alpha^0)f(\alpha^0)d\alpha^0 = \phi D - S + \epsilon L.$$
(8)

o period 2 resource constraint:

$$((1-\pi)\int (1-\nu(\alpha^0))\tilde{x}^L(\alpha^0)f(\alpha^0)d\alpha^0 = (\phi D - L)R + S.$$
(9)

 \circ S = 0 and $L \ge 0$ imply

$$\nu'(\bar{\alpha} + \tilde{x}^{\mathsf{E}}(\alpha^0)) = \frac{R}{\epsilon} \nu'(\bar{\alpha} + \tilde{x}^{\mathsf{L}}(\alpha^0)).$$
(10)

o risk sharing and reallocation across types, dominates sequential service

12 / 30

Does this intervention prevent a run?

Corollary

In the allocation characterized in Proposition 1, there is no bank

run.

- $c^L(\alpha^0) > c^E(\alpha^0)$
- illiquid investment remains intact to fund late consumers
- commitment not needed
- but not quite deposit insurance

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclu-0000000

Optimal Contract

- o banks: max HH utility st feasibility and zero expected profit
- contract is α^0 specific
- Household optimization

$$\max_{d} u(\alpha^{0} - d) + \pi v(\bar{\alpha} + r^{1}(\alpha^{0})d) + (1 - \pi)v(\bar{\alpha} + r^{2}(\alpha^{0})d)$$
(11)

 \circ Bank constraints for all $lpha^0$

$$r^{1}(\alpha^{0})\pi d(\alpha^{0}) + r^{2}(\alpha^{0})(1-\pi)d(\alpha^{0}) = \phi(\alpha^{0})d(\alpha^{0}) + (1-\phi(\alpha^{0}))d(\alpha^{0})R;$$
(12)

and

$$\phi(\alpha^{0})d(\alpha^{0}) \ge r^{1}(\alpha^{0})d(\alpha^{0})\pi, \qquad (1-\phi(\alpha^{0}))d(\alpha^{0})R \ge r^{2}(\alpha^{0})(1-\pi)d(\alpha^{0}).$$
(13)

□ > < @ > < 클 > < 클 > = ♡ < ○ 14/30

Timing

- \circ sequential service of households in period 1
- bank exhausts liquid assets
- $\circ \epsilon$ is near zero
- o contacts government: will you provide DI?
- look at expected utilities with and without DI
- o discuss prevention of runs below

• welfare with DI

$$W^{DI} = \int \omega(\alpha^0) v(\bar{\alpha} + \chi(\alpha^0) - T(\alpha^0)) f(\alpha^0) d\alpha^0 \qquad (14)$$

welfare without DI

$$W^{NI} = \int \omega(\alpha^0) [\zeta v(\bar{\alpha} + \chi(\alpha^0)) + (1 - \zeta)v(\bar{\alpha})] f(\alpha^0) d\alpha^0$$
(15)

- $\chi(\alpha^0) \equiv r^1(\alpha^0) d(\alpha^0)$ is total owed under deposit contract
- ζ is the probability of getting served
- $T(\alpha^0)$ is type specific tax
- when is $\Delta \equiv W^{DI} W^{NI}$ positive?

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclus 0000000

$$\Delta = \int \omega(\alpha^{0}) \underbrace{\left[v(\chi(\alpha^{0}) + \bar{\alpha} - T(\alpha^{0})) - v(\chi(\alpha^{0}) + \bar{\alpha} - \bar{T}) \right] f(\alpha^{0}) d\alpha^{0}}_{\text{Redistribution through taxes}} + \frac{\int \omega(\alpha^{0}) \underbrace{\left[v(\chi(\alpha^{0}) + \bar{\alpha} - \bar{T}) - v(\zeta\chi(\alpha^{0}) + \bar{\alpha}) \right] f(\alpha^{0}) d(\alpha^{0})}_{\text{Redistribution through Deposit Insurance}} + \frac{\int \omega(\alpha^{0}) \underbrace{\left[v(\zeta\chi(\alpha^{0}) + \bar{\alpha}) - \zeta v(\chi(\alpha^{0}) + \bar{\alpha}) - (1 - \zeta)v(\bar{\alpha}) \right] f(\alpha^{0}) d\alpha^{0}}_{\text{Insurance gains to DI}}$$

where $\overline{T} = \int T(\alpha^0) f(\alpha^0) d\alpha^0$.

Role of Heterogeneity

Proposition

If $F(\alpha^0)$ is degenerate, v(c) is strictly concave, then the government will have an incentive to provide deposit insurance.

Note:

- Diamond-Dybvig case
- \circ $F(lpha^0)$ degenerate could reflect optimal reallocation in period 0

Study Effects of Heterogeneity by:

- *ex post* optimal taxes
- o *ex ante* taxes
- progressively weaken optimality of tax system to study redistribution costs

Role of Heterogeneity

Proposition

If $F(\alpha^0)$ is degenerate, v(c) is strictly concave, then the government will have an incentive to provide deposit insurance.

Note:

- Diamond-Dybvig case
- $\circ~F(lpha^0)$ degenerate could reflect optimal reallocation in period 0

Study Effects of Heterogeneity by:

- ex post optimal taxes
- ex ante taxes
- progressively weaken optimality of tax system to study redistribution costs

Ex Post Optimal Taxes

 W^{DI} as the solution to an optimal tax problem:

$$W^{DI} = \max_{\mathcal{T}(\alpha^0)} \int \omega(\alpha^0) v(\chi(\alpha^0) + \bar{\alpha} - \mathcal{T}(\alpha^0)) f(\alpha^0) d\alpha^0 \quad (16)$$

Proposition If $T(\alpha^0)$ solves the optimization problem (16), then deposit insurance is always provided.

- with optimal reallocation, no conflict with insurance provision
- like the optimal haircut of the planner
- set tax structure to fund DI along with its provision

Ex Ante Lump Sum Taxes: Example

- two types
- $\alpha^0 = 3$ for poor, $\alpha^0 = 5$ for rich
- 50% rich
- solve for equilibrium
- o check if DI will be provided ex post
- depends on: risk aversion, welfare weight, distribution of endowments

Outline Motivation Planner's Problem Dece

on Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

Risk Aversion as a Basis for Commitment

Figure: Effects of Risk Aversion

Outline Motivation Planner's Problem Decentraliz

Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

Endowment MPS Reduces Commitment Value

Figure: MPS on Endowment Distribution

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclus 0000000

Restricted Contract

$$r^1(\alpha^0) = r, r^2(\alpha^0) = r^2$$

Proposition

If households are not too risk averse and $\omega(\alpha^0)$ is strictly decreasing in α^0 , then a government will not have an incentive to provide deposit insurance.

KEY: explore limit of risk neutrality where redistribution is costly when weights are declining.

Ex ante Taxes

- redistribution through DI reflects deposit claims and tax liabilities
- all else the same, a tax schedule which redistributes more, reduces welfare

Proposition

Compare two tax schedules, $T(\cdot)$ and $\tilde{T}(\cdot)$. If $\tilde{T}(\cdot)$ induces a MPS on consumption relative to $T(\cdot)$ then Δ falls when we replace $T(\cdot)$ with $\tilde{T}(\cdot)$.

Ex ante Taxes

•
$$c(\alpha^0) = (\bar{\alpha} + \chi(\alpha^0))^{(1-\tau)} \bar{T}^{ au}$$

• $\bar{\mathcal{T}}^{ au}$ balances the budget

Proposition

Compare two tax rates, τ^{L} and τ^{H} with $\tau^{H} > \tau^{L} > 0$, then Δ is higher under the tax rate τ^{H} compared to τ^{L} .

Outline Motivation Planner's Problem Decentralization Systemic Runs and DI: Timing **Partial Runs** Preventing Runs Conclusi 0000000

Bank Specific Runs

- \circ a fraction *n* of the households run on multiple symmetric banks
- probability of run is independent of type
- DI redistributes across types and groups (run, no run)

$$\Delta = \int \omega(\alpha^{0}) \{ n[v(c^{E}(\alpha^{0}) - \overline{T}) - \zeta v(\overline{\alpha} + \chi(\alpha^{0})) - (1 - \zeta)v(\overline{\alpha})] + (1 - n)[v(c^{E}(\alpha^{0}) - \overline{T}) - v(c^{E}(\alpha^{0}))] \} f(\alpha^{0}) d\alpha^{0}.$$
(17)

- first term captures insurance gain plus redistribution to those at failed banks (Wall St.)
- second term captures tax obligation of those at surviving banks (Main St.)

Proposition

If $F(\alpha^0)$ is degenerate, then the gains from deposit insurance are positive for any n.

If $F(\alpha^0)$ is not degenerate, two forms of redistribution interact.

Proposition

If $F(\alpha^0)$ is degenerate, then the gains from deposit insurance are positive for any n.

If $F(\alpha^0)$ is not degenerate, two forms of redistribution interact.

Outline Motivation Planner's Problem Decentra

n Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

Computed Example: Partial Runs

□ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷ 》 월 ○ 今 (~ 28 / 30 Outline Motivation Planner's Problem Decentrali

ion Systemic Runs and DI: Timing Partial Runs **Preventing Runs** Conclusi 0000000

Does DI Prevent Runs?

NO

- bank liquidates to meet depositor demands
- DI redistributes what is left to "early consumers"

YES

- provision of DI involves optimal liquidation
- implement haircut allocation of planner
- late consumption exceeds early consumption: no incentive to run

Outline Motivation Planner's Problem Decentrali

ion Systemic Runs and DI: Timing Partial Runs Preventing Runs Conclusi 0000000

Does DI Prevent Runs?

NO

- bank liquidates to meet depositor demands
- DI redistributes what is left to "early consumers"

YES

- provision of DI involves optimal liquidation
- implement haircut allocation of planner
- late consumption exceeds early consumption: no incentive to run

Conclusions

- DI will be provided *ex post* if insurance gains dominate
- DI will not be provided if it redistributes consumption away from favored types
- To consider:
 - cap on DI: effects on monitoring, is it credible?
 - interbank loans
 - too big to fail
 - monetary financing of DI
 - DI in a MU
 - reputation effects of bailout
 - model of political pressure