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Abstract

Combined density nowcasts for quarterly Euro-area GDP growth are produced

based on the real-time performance of component models. Components are distin-

guished by their use of “hard” and “soft”, aggregate and disaggregate, indicators.

We consider the accuracy of the density nowcasts as within-quarter information on

monthly indicators accumulates. We focus on their ability to anticipate the recent

recession probabilistically. We find that the relative utility of “soft” data increased

suddenly during the recession. But as this instability was hard to detect in real-

time it helps, when producing nowcasts not knowing any within-quarter “hard”

data, to weight the different indicators equally. On receipt of at least one month

of within-quarter “hard” data better calibrated densities are obtained by giving a

higher weight in the combination to “hard” indicators.
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1 Introduction

Statistical offices publish ‘official’ GDP data at a lag. Eurostat publishes its so-called Flash

estimate of quarterly GDP growth for the Euro-area (EA) about 45 days after the end of

the quarter. This meant that Eurostat data did not indicate, for example, that the Euro-

area was in “recession” until 14th November 2008. As is common, a “recession” is defined

as two successive quarters of negative quarterly growth. Economists and policymakers

therefore had to wait 45 days to be told that the economy shrank in 2008q3 - as well as

2008q2. This was despite the fact that published qualitative survey data, as well as other

so-called indicator variables, were at the time being interpreted by some as convincing

evidence that the Euro-area economy was already in recession. But without a formal

means of assessing the utility of these qualitative survey data, and relating them to

official Eurostat GDP data, it is impossible to know how much weight to place on them

when forming a view about the current state of the economy. An accurate, but timely,

impression of the state of the economy is important for policymakers.

There is always a pressure on statistical offices to speed up the delivery of these

estimates. Inevitably, with resource constraints impeding the production of earlier/higher

frequency official quantitative surveys, this means relying increasingly on forecasting. Or,

more accurately, this should be called nowcasting - as within quarter information on

indicator variables is exploited. But there is an expected trade-off between the timeliness

and accuracy of nowcasts. Nowcasts can always be produced more quickly by exploiting

less information; but, we might expect the quality of the nowcasts to deteriorate as a

result.

In this paper we suggest a formal but computationally convenient method for estab-

lishing what role, if any, these indicator variables should play when constructing nowcasts

of current quarter GDP growth. Importantly, the uncertainty associated with the nowcast

is acknowledged, and subsequently evaluated, by constructing density nowcasts. Publica-

tion of these uncertainty estimates, alongside the central estimate, provides a means of

indicating to the user the ‘quality’ of the nowcast, as measured by the confidence associ-

ated with the nowcast. Increasingly, in fact, forecasts are being presented probabilistically,

with many central banks now publishing “fan charts”. To construct the density nowcasts

we take combinations across a large number of competing models. In this approach, model

uncertainty, in particular uncertainty about what indicator variables should be used, is

explicitly accommodated. The approach is also based on the belief that the candidate

component models are all incorrectly specified. But the components allow the modeller
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to explore a wide range of uncertainties. The resulting combination reflects the model

uncertainty by taking a weighted average across many (simple) component models, with

the component models distinguished by what indicator variables they consider. The post-

data weights on the components can be time-varying and reflect the relative fit of the

individual model forecast densities. The combination becomes very flexible as the num-

ber of component models rises; and aims to approximate an unknown but likely complex

(non-linear and non-Gaussian) data-generating-process. A related approach has been ap-

plied by Jore et al. (2010) to forecast US macroeconomic aggregates. This paper considers

both how it can be used, and assesses its efficacy in an application, when nowcasting with

real-time mixed-frequency data.

While GDP growth is published at a quarterly frequency, many indicator variables

are available at a higher frequency. We consider how nowcasts of quarterly GDP can

be constructed as within quarter, monthly, information on these indicator variables ac-

crues. Thereby, our density nowcasts reflect the publication lags of each indicator variable.

Following Giannone et al. (2008), we distinguish between quantitative (“hard”) and qual-

itative (“soft”) indicator variables, with the soft indicators typically published ahead of

hard data. And we consider both EA (aggregate) and country-level (disaggregate) indi-

cators. Examination of country-level indicator data might prove efficacious if, following

Hendry & Hubrich (2011), these disaggregates contain information over and above that

in aggregate indicators. Moreover, some countries publish their hard data more quickly

than others, indeed more rapidly than Eurostat publishes the corresponding aggregate.

We then assess the ability of the combination methods to anticipate the 2008-2009 re-

cession. We assess their ability to predict the probability of a recession and more generally

examine their density nowcasts. How well did they do at flagging up the recent contraction

to GDP growth, and how far ahead did they successfully call the recession? The latter

is important, given the likely trade-off between the timeliness and accuracy of nowcasts.

We also seek to identify what, if any, indicator variables were most helpful in anticipat-

ing the recession. Thereby, this paper provides timely evidence about the performance of

nowcasts over this unusual period. It also extends previous work, such as Giannone et al.

(2008), by explicitly constructing density nowcasts. At times of heightened uncertainty

it is particularly important to quantify, in real-time, the degree of uncertainty associated

with any nowcast. Moreover, in contrast to the majority of applied studies studying the

Euro-area, we exploit real-time (aggregate and disaggregate) data made available to us

by Eurostat. This means that our out-of-sample simulations are genuinely, rather than

‘pseudo’, real-time.
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The plan of the remainder of this paper is as follows. Section 2 motivates the use of

density nowcasts. Section 3 explains the importance of accommodating model uncertainty

when nowcasting by considering a set of component models rather than a single model.

Section 4 describes the component models used in our nowcasting application. Section

5 explains how our combined density nowcasts are computed and Section 6 provides the

empirical results. Section 7 concludes.

2 Density nowcasts

It has become increasingly well understood that it is not a question of this nowcast proving

to be ‘right’ and that nowcast proving to be ‘wrong’. Point nowcasts, the traditional focus,

are better seen as the central points of ranges of uncertainty. A GDP growth nowcast

of, say, 2% must mean that people should not be surprised if actual growth turns out

to be a little larger or smaller than that. Moreover, perhaps, at a time of heightened

economic uncertainty, they should not be very surprised if it turns out to be much larger

or smaller. Consequently, to provide a complete description of the uncertainty associated

with the point nowcast many forecasters now publish density nowcasts/forecasts, or more

popularly “fan charts”.

More formally, density forecasts of GDP growth, say, provide an estimate of the prob-

ability distribution of its possible future values. In contrast to interval forecasts, which

give the probability that the outcome will fall within a stated interval, such as GDP

growth falling within its target range, density forecasts provide a complete description of

the uncertainty associated with a forecast. They can thus be seen to provide information

on all possible intervals.

What really matters is how nowcasts, or indeed forecasts, affect decisions. The ‘better’

nowcasts are those that deliver ‘better’ decisions. On this basis it is argued that the ap-

propriate way of evaluating nowcasts is not to use some arbitrary statistical loss function,

but the appropriate economic loss function; e.g. see Granger & Pesaran (2000). Only

when the nowcast user has a symmetric, quadratic loss function, and the constraints (if

relevant) are linear, is it correct to focus on the point nowcast alone. This is what text-

book’s call “certainty equivalence”. In the more general case, the degree of uncertainty

matters. Users are not indifferent to the degree of uncertainty about the point forecast.

Uncertainty is expected to attenuate responses to the point nowcast.

The importance of publishing density nowcasts then follows from the fact that we tend,
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in reality, not to know users’ loss functions. But we should not expect these (unknown

to us) functions to be quadratic. For example, we should expect the range of uncertainty

to matter. When the user’s loss function is asymmetric, such that positive and negative

forecasting errors have differing costs, the user’s “optimal” forecast need not equal the

conditional mean; e.g., see Zellner (1986). By publishing the whole density nowcast for

GDP growth the statistics office, the putative producer of the densities in our application,

ensures the user is free to extract from the density any feature of concern to them. This

feature might be the conditional mean. But interest often focuses in tail events, which

require an explicit statement about the uncertainty associated with the nowcast. Users of

growth forecasts may be concerned about the probability of recession. These probability

event forecasts can readily be extracted from the density forecast.

The trend towards forecasters publishing density forecasts is also explained by the

obvious advantages they bring when communicating with the public. It reminds them

that the statisticians/forecasters themselves expect the point forecasts to be ‘wrong’. It

also lets users assess the balance of risks associated with the nowcast.

3 Combination forecasts - and nowcasts

Bayesian Model Averaging (BMA) offers a conceptually elegant means of dealing with

‘model uncertainty’. BMA forecasts condition not on a single ‘best’ model but take a

weighted average over a range of candidate models; see Hoeting et al. (1999). This follows

from appreciation of the fact that, although one model may be ‘better’ than the others,

we may not select it with probability one. We may not be sure that it is the best forecast.

Therefore, if we considered this single forecast alone, we would be overstating its precision.

Similarly in practical macroeconomic forecasting exercises, whether within a Bayesian

context or not, it is a stylised fact that combination forecasts are hard to beat. The

estimated parameters of a single forecasting model are commonly found to exhibit insta-

bilities and these can be difficult to identify in real-time. In the presence of these so-called

‘uncertain instabilities’ it can be helpful to combine the evidence from many models. For

example, Clark & McCracken (2010) examine the scope for taking linear combinations of

point forecasts in real time, motivated by the desire to circumvent the uncertain insta-

bilities in any particular specification. In a series of influential papers, Stock & Watson

(2004) have documented the robust performance of point forecast combinations using var-

ious types of models for numerous economic and financial variables. Selecting a single
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model has little appeal under ‘uncertain instabilities’ when the single best model suffers

from instability. This might happen either if the ‘true’ model is not within the model

space considered by the modeller, or if the model selection process performs poorly on

short macroeconomic samples. We may better approximate the truth, and account for

the uncertainty in model selection, by combining forecasts.

While methods for combining point forecasts are well established and much exploited,

less direct attention has been given in econometrics to the combination of density fore-

casts.1 Although, as Wallis (2005) has noted, density forecasts, in fact, have been com-

bined in the ASA-NBER Survey of Professional Forecasters since 1969. The forecasters’

densities are combined by taking a linear average, a so-called “linear opinion pool”, as

in BMA. Mitchell & Hall (2005) and Hall & Mitchell (2007) used this combination rule

(but non-Bayesian weights) to combine and then analyse density forecasts from the Bank

of England and the National Institute of Economic and Social Research. They consid-

ered how, in practice, the densities in the combination might be weighted, considering

alternatives to equal weights. Jore et al. (2010) examine linear combinations of densities

from VAR models, and Bache et al. (2011) take a linear combination of VAR and DSGE

densities. Alternatives include consideration of logarithmic pooling rules; see Kascha &

Ravazzolo (2010) and Wallis (2011). Using several examples, and theoretical analysis,

Geweke & Amisano (2011) demonstrate the scope for pooled forecast densities to produce

superior predictions, even if the set of components to be combined excludes the ‘true’

model - namely, when there is an ‘incomplete model space’.

In this paper we follow in the spirit of this forecasting literature and use the linear

opinion pool to combine density nowcasts. The design of the model space and the number

of components to be considered needs to be specified; and we describe this below. We

then produce density forecasts from a large set of component models, which differ in terms

of the indicators variables, and transformations thereof, they consider. We suggest the

use of simple regression based methods. Density forecasts from the component models are

then produced analytically. This means that our approach is easy to apply.

1Outside the econometrics literature, the benefits of producing density forecasts by combining infor-
mation across different models have been recognised for some time. For a review see Genest & Zidek
(1986).
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4 Nowcasting component models

The nowcasts are produced by statistical models. These statistical models by construction,

and unlike structural or economic models, are reduced-form. They seek to explain and

then nowcast GDP growth by exploiting information on indicator variables. These are

variables which are meant to have a close relationship with GDP but are made available

more promptly than the data for which they stand as a proxy; moreover, often these

indicators are published at a higher frequency (e.g. monthly) than GDP itself, which is

typically published on a quarterly basis only.

But there is uncertainty about what indicator variable or variables to use; in practice

there is a large number to choose from. Following Giannone et al. (2008), we distinguish

between quantitative (“hard”) and qualitative (“soft”) indicator variables, with the soft

indicators typically published ahead of hard data. But the cost of that timeliness is

their qualitative nature. These surveys typically ask respondents to provide qualitative

categorical answers to a number of questions including what has happened to their output

in the recent past and what they expect to happen to their output in the near future.

Respondents say whether output has fallen, stayed the same or risen and which of the three

they anticipate over some specified future period. The difference between the proportion

of those expecting or reporting a rise and those expecting or reporting a fall is then related

to GDP growth.

The set of indicator variables increases further when, as possible indicators, we consider

variables not directly related to GDP but presumed to have some indirect relationship. For

example, interest rates or exchange rates might be considered as they might help predict

GDP growth. Our proposed combination approach provides a way of accommodating

uncertainty about what indicator(s) to use.

Different nowcasting models involve different ways of linking the indicator variables

to GDP. This can be done at a quarterly, monthly or mixed frequency. It is an empirical

question which is most sensible. Appealing to Occam’s razor, we focus on simple compo-

nent models; we estimate a linear regression of quarterly GDP growth on a single indicator

variable. We then combine the component density nowcasts using the linear opinion pool.

4.1 Indicator variables: aggregate and disaggregate

To illustrate use of the density forecast combination method we focus on a widely con-

sidered set of soft and hard indicator variables, generically denoted xm
soft,t and xm

hard,t,
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respectively, where m = 1, 2, 3 denotes the month in quarter t. As soft indicators, we

consider the Economic Sentiment Indicator (ESI) and the spread between short term and

10 year Euro interest rates (available from the ECB). The ESI, published by the Euro-

pean Commission, is a widely used composite indicator. It combines various information

from qualitative business tendency surveys, including expectations questions, into a single

cyclical confidence indicator. As hard indicators we consider real-time monthly industrial

production (IP) data.

As well as considering these data at the Euro-area aggregate, EA(12), level, we exam-

ine them at the disaggregate (national) level for each of the twelve Euro-area countries.

The EA(12) comprise Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,

Luxembourg, Netherlands, Portugal and Spain. Again real-time data (vintages) are used

for these national data. We consider the three monthly releases of national IP, but use only

the first release values of national GDP, rather than the three within quarter estimates

produced by Eurostat for the EA; this reflects variability across the European countries in

terms of their publication of within quarter GDP data. We supplement the national quali-

tative survey data published by the European Commission (except for Greece and Ireland

where data are unavailable) with additional business survey data for Germany, from Ifo,

on the business climate, situation and expectations, given it is the largest economy in the

EA. Use of these disaggregate data considerably increases the set of indications available;

and allows for the possibility that a specific data series from a given country may help

explain the aggregate over and above the aggregate information itself. Examination of

hard country-level data can also prove efficacious given that some countries, as discussed

below, publish their hard data more quickly than others and indeed more quickly than

Eurostat publishes the corresponding aggregate. These disaggregate data can therefore

be exploited when nowcasting the aggregate; cf. Hendry & Hubrich (2011).

The soft variables are published at the end of the month to which they refer. The hard

variables for month m tend to be published, both for the Euro-area aggregate and most

countries, around the middle of month m + 2 (i.e. at about t+45 days). The Quarterly

National Accounts, which include the GDP data, are also updated around the middle of

each month.

But there are some differences across countries in terms of how quickly they publish

their data, and this must be reflected when producing nowcasts to different timescales.

Portugal publishes its monthly industrial production data at the end of month m + 1;

similarly Belgium publishes its quarterly GDP data at the end of month m + 1 (i.e.,

at t+30 days); therefore, below, we will introduce a nowcast of the Euro-area aggregate
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(j = 5, below) which exploits these data.2 In fact, given the putative role of globalisation,

we also condition this nowcast on the advance quarterly GDP data for the US, given that

they are published at t+30 days too. Specifically, we use US real-time GDP vintage data

from the Federal Reserve Bank of Philadelphia.

In principle, one could add further to our set of indicator variables, especially to the set

of soft indicator variables. One could follow Giannone et al. (2008) and extract common

factors from a panel data containing information on many indicators and regress GDP

on them (‘bridging with factors’) in an additional component model. This could then be

added to our existing set of models. We mention these possible extensions, like others

previously, simply to illustrate the generality of our approach.

4.2 The trade-off between the timeliness and accuracy of now-

casts

We focus on producing nowcasts of quarterly GDP growth for the EA(12) to six timescales:

t-30, t-15, t+0, t+15, t+30 and t+45 days. t denotes quarter, so that t-30, for example,

means that a nowcast for quarter t is produced 30 days before the end of the quarter for

which we want a quarterly GDP estimate. In contrast, the nowcast produced at t+45 is

produced 45 days after the end of the quarter of interest.

At all six timescales we know the value of GDP in the previous quarter. But this (t-1)

estimate may be measured by the first (Flash), second or third release from Eurostat.

Eurostat’s Flash GDP estimate for the current quarter is released at about t+45 days. So

our nowcast computed at t+45 is produced to the same timescale and therefore provides

a benchmark for these official Eurostat estimates. By producing a density nowcast we are

also able to characterise the uncertainty at t+45 days.

Since a monthly indicator, by construction, is released three times a quarter, following

Kitchen & Monaco (2003), we estimate, in principle when the full quarter’s data are

available, three component models for each indicator. These involve relating quarterly

GDP growth, ∆yt, to xm
k,t (m = 1, 2, 3; t = 1, ..., T ). xm

k,t denotes the k-th indicator

variable drawn from the information set Ωj
t where j (j = 1, ..., 6) denotes the first, second,

third, fourth, fifth and sixth nowcast formed at t-30, t-15, t+0, t+15, t+30 and t+45

days, respectively. Each successive nowcast exploits an ever larger information set. This

2Spain also recently began production of an earlier GDP estimate, at t+30 days. Once a sufficient
number of vintages are available one could exploit these data too in out-of-sample simulations of the type
undertaken in Section 6 below.
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reflects the fact that with the passage of time more and more (aggregate and disaggregate)

indicator data become available. Specifically, the component models take the form:

∆yt = β0 + β1x
m
k,t + et; (m = 1, 2, 3), (1)

where et is assumed to be normally distributed. Let xk,t denote the quarterly analogue of

xm
k,t.

As an alternative to this approach of Kitchen & Monaco (2003), one could relate

quarterly GDP growth directly to xk,t, with monthly “bridge equations” used to forecast

any missing monthly indicator data prior to aggregating to the quarterly estimate xk,t,

which is then regressed against ∆yt; e.g. see Baffigi et al. (2004). Our combination

approach could also be employed if we adopted a related approach and, following Clements

& Galvão (2008), used MIDAS regressions, say, to produce the component forecasts.3

MIDAS regressions also provide a means of running regressions that allow the regressand

and regressors (indicators) to be sampled at different frequencies.

4.2.1 The information set as within-quarter data accrues

The information set available at t-30, t-15, t+0, t+15, t+30 and t+45 accumulates as

follows, where :

1. j=1. t-30: 30 days before the end of the quarter.

Ω1
t =

({
xm

soft,t

}2

m=1
, {xhard,t−l}p1

l=1 , {∆yt−l}p2

l=1

)
(2)

N1 = no of elements of Ω1
t . p1 and p2 denote the number of lags of the quarterly

variables xk,t (k = hard) and ∆yt. We do not consider lagged quarterly values

of the soft data; this seems reasonable, since when the nowcasts are produced we

always have in our information set at least two months of within-quarter information

on the soft indicators. But, to accommodate dynamics, we do consider previous

quarter information about the hard indicators and GDP growth itself, given that

these variables are published at a greater lag. In particular, for previous quarter

GDP growth, ∆yt−1, we consider all three EA national accounts (vintage) estimates

ending with (T −1) information; plus we consider lagged values of the GDP vintage

3Alternatively, monthly GDP estimates could be estimated using mixed-frequency regression, VAR or
factor based methods; these impose an aggregation constraint so that monthly GDP is consistent with
the published quarterly values (e.g., see Mitchell et al. (2005), Mariano & Murasawa (2003) and Angelini
et al. (2010)).
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containing the first release of GDP for data up to quarter T (since this is available

at about t+45 days, it has been known for about 15 days at j=1). Simultaneous

consideration of multiple vintages means that, implicitly without modelling, the

revisions process to GDP is accommodated; our density combination exercise does

not simply use only the most recent vintage. In sum, (2) means Ω1
t includes two

months of within-quarter soft data, as well as previous quarter hard indicator data

and lagged GDP data. Ω1
t is then related to ∆yt, as measured by the first release

of GDP growth, via (1).

2. j=2. t-15: 15 days before the end of the quarter.

Ω2
t =

({
xm

soft,t

}2

m=1
, x1

hard,t, {xhard,t−l}p1

l=1 , {∆yt−l}p2

l=1

)
(3)

N2 = no of elements of Ω2
t . This means Ω2

t now includes the first month of within-

quarter hard data, as well as Ω1
t . Ω2

t is related to ∆yt, as measured by the second

release of GDP growth data.

3. j=3. t+0: 0 days after the end of the quarter.

Ω3
t =

({
xm

soft,t

}3

m=1
, x1

hard,t, {xhard,t−l}p1

l=1 , {∆yt−l}p2

l=1

)
(4)

N3 = no of elements of Ω3
t . Ω3

t now includes the final month of within-quarter soft

data, as well as Ω2
t . In practice, given that we use the same GDP release as at j=2

to measure ∆yt, to avoid duplicating component forecasts we do not re-consider

indicators already used at j=2. This means the only new component forecast at j=3

involves regressing x3
soft,t on ∆yt.

4. j=4. t+15: 15 days after the end of the quarter.

Ω4
t =

({
xm

soft,t

}3

m=1
,
{
xm

hard,t

}2

m=1
, {xhard,t−l}p1

l=1 , {∆yt−l}p2

l=1

)
(5)

N4 = no of elements of Ω4
t . Ω4

t now includes the second month of within-quarter

hard data, as well as Ω3
t . Ω4

t is related to ∆yt, as measured by the third release of

GDP growth data.

5. j=5. t+30: 30 days after the end of the quarter.

Ω5
t =

({
xm

soft,t

}3

m=1
,
{
xm

hard,t

}2

m=1
, x3,Por

hard,t, {xhard,t−l}p1

l=1 , ∆yBel,US
t , {∆yt−l}p2

l=1

)
(6)
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N5 = no of elements of Ω5
t . Ω5

t now includes full quarter hard data for Belgium (for

GDP), Portugal (for IP) and the US (for GDP), as well as Ω4
t . Ω5

t is related to ∆yt,

as measured by the third release of GDP growth data.4

6. j=6. t+45: 45 days after the end of the quarter.

Ω6
t =

({
xm

soft,t

}3

m=1
,
{
xm

hard,t

}3

m=1
, {xhard,t−l}p1

l=1 , {∆yt−l}p2

l=1

)
(7)

N6 = no of elements of Ω6
t . We ignore the fact that we know, at t+45, Eurostat’s

Flash estimate for GDP growth in quarter t and now use all three months of within-

quarter information on the monthly hard indicator data. At t+45 quarterly GDP

data are also available for some of the Euro-area countries, but again we ignore these

as a means of isolating the informational content of the monthly indicator data.

In each case (j = 1, ..., 6), each element (i.e. indicator) from Ωj
t is related to ∆yt via

(1) for t = 1, ..., T . We then use this model, and its estimated coefficients from the sample

t = 1, . . . , T , and the quarter T + 1 values of the indicator variables, ΩT+1, to nowcast.

Recall that the quarter T + 1 values of the indicator variables are published ahead of

the quarter T + 1 values for ∆yt and can therefore be exploited when nowcasting. The

nowcasts can be evaluated when ∆yT+1 is subsequently published.

We set p1 = 1 and p2 = 1. These lag length assumptions rule out processes with

lengthy lags in exogenous variables. We believe this is plausible when nowcasting, in

particular. It is difficult for a statistics office to defend a situation where GDP is sharply

influenced, for example, by movements in some indicator variable more than three months

ago. (A professional forecaster, on the other hand, may have no difficulties in explaining

the economic transmission mechanism.) Our assumption is designed to comply with the

criterion that the models used to produce nowcasts should be credible to policymakers

and other non-statisticians. The role of forecasting, as opposed to nowcasting, should be

minimised. In practice, empirically we did experiment with the use of longer lags. These

did not improve the accuracy of the density nowcasts. Unsurprisingly, within-quarter data

is more informative.

4We did also consider the use of retail trade data, since they are published at t+30 days. But these data
are available over a restricted sample period, which limited the scope of the out-of-sample simulations,
and were in any case not found to improve accuracy.
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4.2.2 Temporal transformation of indicator variables

When relating the monthly variables xm
hard,t and xm

soft,t to quarterly GDP growth ∆yt,

via (1), there is an issue about how these monthly data should be transformed. Rather

than a priori or a posteriori selecting one particular transformation, our approach is to

consider simultaneously various transformations of a given indicator variable xm
k,t and then

essentially treat these as additional component models (and nowcasts).

The qualitative survey data are considered in both monthly first-differences and quar-

terly differences. The quarterly transformation of the monthly survey data involves trans-

forming xm
k,t in a manner consistent with the quarterly variable ∆yt (which represents

quarterly growth at a quarterly rate). This is achieved, for example, following Mariano &

Murasawa (2003). Consider the monthly variable k in levels (rather than log differences)

zm
k,t, where again the subscript t indicates the particular quarter and m the month within

that quarter, m = 1, 2, 3, t = 1, ..., T . Then, by some simple arithmetic,

xk,t = log zk,t−log zk,t−1 =
1

3
∆ log z3

k,t+
2

3
∆ log z2

k,t+∆ log z1
k,t+

2

3
∆ log z3

k,t−1+
1

3
∆ log z2

k,t−1

(8)

where ∆ log z3
k,t is monthly growth. The monthly qualitative survey data xm

k,t are also

considered in (monthly) levels and quarterly levels, with the quarterly transformation

again involving smoothing as in (8) but without application of the logarithmic first differ-

ence. Consideration of these four transformations of xm
k,t accommodates uncertainty: (i)

about whether the soft data, in levels, are stationary and (ii) whether the informational

content of these data is higher when a first or quarterly difference is taken. This means

inference does not depend on application of some unit root test. This is attractive, given

that unit root tests are well known to suffer from low power in macroeconomic samples.

The interest rate spread, which we believe to be stationary, is considered in monthly and

quarterly levels only. The hard data, which unlike these survey data we believe to be

integrated of order one, are considered in both monthly log first-differences and quarterly

differences. Given how we treat xm
hard,t, when defining xhard,t−1 (e.g. in (2)) we again

consider each monthly release separately (for each transformation) rather than aggregate

xm
hard,t−1, across m = 1, 2, 3, to obtain a single lagged quarterly series.

Given these assumptions, and the availability of the aggregate and disaggregate data,

N1 = 214; N2 = 293; N3 = 351; N4 = 430; N5 = 438 and N6 = 444.

13



5 The linear opinion pool

We formalise density combination in a way that extends the commonly-adopted convex

mix of point forecasts by utilising the linear opinion pool approach.

Given i = 1, . . . , Nj component models, the combination densities for GDP growth

are given by the linear opinion pool:

p(∆yτ ) =

Nj∑
i=1

wi,τ ,j g(∆yτ | Ωj
τ ), τ = τ , . . . , τ , (9)

where Nj (j = 1, ..., 6) where Nj+1 > Nj; g(∆yτ,h | Ωj
τ ) are the nowcast forecast densities

from component model i, i = 1, . . . , Nj of ∆yτ each conditional on one element (indica-

tor/transformation) from the information set Ωj
τ . These densities, as we discuss below,

are obtained having estimated (1). The non-negative weights, wi,τ ,j, in this finite mixture

sum to unity.5 Furthermore, the weights may change with each recursion in the evaluation

period τ = τ , . . . , τ .

The predictive densities for ∆yτ (with non-informative priors), g(∆yτ | Ωj
τ ), allowing

for small sample issues, are Student-t; see Zellner (1971). Since each component model,

(1), considered produces a forecast density that is t, the combined density defined by

equation (9) will be a mixture —accommodating skewness and kurtosis. That is, the

combination delivers a more flexible distribution than each of the individual densities

from which it was derived. As Nj increases, the combined density becomes more and

more flexible, with the potential to approximate non-linear specifications.

We construct the weights wi,τ ,j in two ways.

First, we consider equal weights (EW). The EW strategy attaches equal (prior) weight

to each model with no updating of the weights through the recursive analysis: wi,τ ,j =

wi,j = 1/Nj. We present results for the EW strategy without (prior) truncation of the

set of models to be included, although we do experiment below with different groupings

of the models. The EW strategy is often recommended when combining point forecasts,

5The restriction that each weight is positive could be relaxed; for discussion see Genest & Zidek (1986).
Note that in (9) the only unknown parameters to be estimated are the wi,τ,j . The N component densities
are taken as given. Somewhat confusingly, in “mixture models” these weights are interpreted on the basis
of a latent binary random variable, which is often assumed to have a Markov structure; see Geweke &
Amisano (2011) and Mitchell & Wallis (2011). But in these models the parameters of the component
models are often estimated simultaneously with wi,τ,j . In so-called BMA for ensemble forecasting models
(see Raftery et al. (1995)), the component densities g(.) are centered on the point forecasts from the
competing component models, but the variance of the component density forecasts is assumed common
across N and estimated simultaneously with wi,τ,j .
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although its effectiveness for density forecasts has been questioned (see Jore et al. (2010)

and Garratt et al. (2011)).

Secondly, we construct the weights wi,τ ,j based on the fit of the individual model

forecast densities: the Recursive Weight (RW) strategy. Following Jore et al. (2010), we

use the logarithmic score to measure density fit for each model through the evaluation

period. The logarithmic scoring rule is intuitively appealing as it gives a high score to

a density forecast that assigns a high probability to the realised value.6 Specifically, the

recursive weights for the nowcast densities take the form:

wi,τ ,j =
exp

[∑τ−1
τ−8 ln g(∆yτ | Ωj

τ )
]

∑N
i=1 exp

[∑τ−1
τ−8 ln g(∆yτ | Ωj

τ )
] , τ = τ , . . . , τ (10)

where the τ−8 to τ comprises a two-year training period, since we employ quarterly data,

used to initialise the weights. Computation of these weights is feasible even for large Nj.

Given the uncertain instabilities problem, the recursive weights should be expected to

vary across τ .

From a Bayesian perspective, density combination based on recursive logarithmic score

weights has many similarities with an approximate predictive likelihood approach (see

Eklund & Karlsson (2007)). Given our definition of density fit, the model densities are

combined using Bayes’ rule with equal (prior) weight on each model—which a Bayesian

would term non-informative priors. Hall & Mitchell (2007) and Geweke & Amisano (2011)

consider iterative algorithms to select weights that maximise the logarithmic score. Nev-

ertheless, there are important differences with (predictive) BMA as Geweke & Amisano

(2011) explain. When the component models are assumed to constitute an incomplete

model space, the conventional Bayesian interpretation of the weights as reflecting the pos-

terior probabilities of the components is inappropriate. We note that instead of looking

at fit over the entire density, with a larger out-of-sample window than available in our

application the component models could be scored according to their ability to forecast

specific probability events of interest.

5.1 Occam’s Window: excluding bad component models

There is always a question about how one should choose the set of models over which one

combines. We start by employing an uninformative prior on all component models and

6The logarithmic score of the density forecast, ln g(∆yτ | Ωj
τ ), is the logarithm of the probability

density function g(. | Ωj
τ ), evaluated at the outturn ∆yτ .
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use the data (Bayes’ rule) to update the weight on each model as evidence accumulates.

But we also consider whether there are empirical benefits to excluding some bad models,

prior to taking the combination.

Madigan & Raftery (1994) propose the use of Occam’s Window, under which one

averages over a subset of preferred models, treating all the worst fitting models outside

this subset as having zero posterior probability. We select the preferred, better fitting,

models using wi,τ ,j as computed in (10). Specifically, model i is discarded from the

combination if it predicts far less well according to the logarithmic score than the best

model, i.e. if:

max{wi,τ ,j}N
i=1

wi,τ ,j

> c (11)

where c is a constant; following Madigan & Raftery (1994) (and Hoeting et al. (1999))

we set c at 20 in analogy with the 0.05 cutoff used for P -values. In principle, one might

think of alternative means of excluding bad or uninformative models, e.g. based on

subjecting component models to specification tests or dropping those component models

where the indicator (on an in-sample basis) is poorly correlated with ∆yt. But here we

rely on Occam’s window, given both its Bayesian pedigree and its use of an out-of-sample

measure of fit (namely wi,τ ,j via (10)), which we might hope offers protection against data

mining (or snooping or over-fitting). Having used Occam’s window to discard the bad

models, both equal and recursive weight combinations of the remaining densities are then

taken. As an alternative to the combination-based density nowcasts, we also consider the

performance of that model which is recursively selected as the best single model, according

to wi,τ ,j as estimated in (10).

5.2 Evaluation of nowcast densities

In constructing the combined densities using the linear opinion pool, we evaluate the

density forecasts using the logarithmic score at each recursion. These weights provide

an indication of whether the support for the component models is similar, or not, based

on the score of the individual densities. A finding of similar weights across component

models would be consistent with the equal-weight strategy.

A common approach to forecast density evaluation provides statistics suitable for tests

of (absolute) forecast accuracy, relative to the “true” but unobserved density. A popular

method evaluates using the probability integral transforms (pits) of the realisation of
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the variable with respect to the forecast densities. See Mitchell & Wallis (2011) for

a review. A density forecast can be considered optimal (regardless of the user’s loss

function) if the model for the density is correctly conditionally calibrated. We gauge

calibration by examining whether the pits zτ , where zτ =

∫ ∆yτ

−∞
p(u)du, are uniform and

independently and identically distributed. In practice, therefore, density evaluation with

the pits requires application of tests for goodness-of-fit and independence at the end of

the evaluation period.7 Mitchell & Wallis (2011) refer to this two component condition as

“complete calibration”. In the face of alternative goodness-of-fit and independence tests,

and in order to build up a robust impression of how well calibrated the densities are, we

undertake a battery of tests widely used in the literature.

The eight goodness-of-fit tests employed on the pits include, firstly, the Likelihood

Ratio (LR) test proposed by Berkowitz (2001). We use a three degrees-of-freedom variant

with a test for independence, where under the alternative zτ follows an AR(1) process.

Secondly, and thirdly, we follow Berkowitz (2001) and report a censored LR test which

focuses on the 10% top and bottom tails of the forecast densities. Fourthly, we consider

the Anderson-Darling (AD) test for uniformity, a modification of the Kolmogorov-Smirnov

test, intended to give more weight to the tails. Fifthly, we follow Wallis (2003) and employ

a Pearson chi-squared test which divides the range of the zτ into eight equiprobable

classes and tests whether the resulting histogram is uniform. The remaining three tests

are for independence of the pits ; we use a Ljung-Box (LB) test, based on autocorrelation

coefficients up to four. To investigate possible higher order dependence we undertake tests

in the first, second and third powers of the pits.

6 Application nowcasting Euro-Area GDP growth

We compare the accuracy of density nowcasts of Euro-area GDP growth at the six horizons

(j = 1, .., 6) in recursive out-of-sample experiments using real-time data. The evaluation

period is 2003q2-2010q4 (Eurostat published its first Flash estimate for GDP growth for

2003q2). Specifically, we use the real-time data triangles for real GDP and industrial

production, for the EA aggregate and the twelve countries, available from Eurostat’s real-

time (EuroIND) database. The qualitative survey data are not revised (in a significant

manner at least). Models are estimated on data vintages back to 2001 with data back to

7Given the large number of component densities under consideration, we do not allow for estimation
(parameter) uncertainty when evaluating the pits. Corradi & Swanson (2006) review pits tests compu-
tationally feasible for small Nj .
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1991q1. Seasonally adjusted data are used. It is important to use real-time data, namely

data available at the time rather than the latest release, given data are revised.

The nowcasts are evaluated by defining the ‘outturn’ as the first (Flash) GDP growth

estimate from Eurostat. The exercise could be repeated for different definitions of the

outturn, say the second or third QNA release. But as our primary interest is in acceler-

ating delivery of national accounts data, the first estimate does appear to be the natural

benchmark.

We break our results into two parts: the RW weights on the soft indicators, the hard

indicators and lagged GDP growth derived from the logarithmic score of the component

forecast densities; and, the evaluations of the recursive weight, RW, and equal weight, EW,

strategies for combination. We also consider strategies that focus only on (equal-weighted)

combinations formed using the soft and hard data only.

6.1 Weights on the components

Figure 1 presents the Recursive Weights on the soft indicators (i.e., ESI survey data and

the interest rate spread), hard indicators (i.e., IP) and lagged values of GDP growth

for the six nowcast horizons, j = 1, ..., 6. The interest rate spread, in fact, received

little or no weight and henceforth we equate the soft data with the (qualitative) survey

data. Note that these weights, on a given type of indicator, say the survey data or IP,

involve summing the weights on all of the component models estimated using various

transformations of the given indicator. For the hard indicators (i.e., IP and GDP growth)

it also involves summation of the weights given to component models which use lagged

instead of contemporaneous values. To identify the relative informational content of the

aggregate versus the disaggregate indicators, we also plot the weights when aggregate

indicators only are considered; when the aggregate indicators receive a high weight the

two lines, for a given indicator, will be close.

We draw out four features from Figure 1. First, comparison of the six panels indicates

that the weight on IP increases as j increases; as more hard data become available they

get a higher weight in the combination, since the data suggests that their consideration

improves (out-of-sample) density fit. In particular, at t-15 days, when the first month

of within-quarter IP data become available, the weight on IP increases dramatically,

relative to the (soft) survey data. The weight on the IP indicator data further increases,

particularly towards the end of the evaluation period when it approaches one, on receipt,

at t+15 days, of the second month of within-quarter IP data.

18



Secondly, the fact that the weights on the component models change over time is

consistent with the uncertain instabilities literature referred to above. In particular,

during the recession, no doubt thanks to their forward-looking nature, the weight on the

soft data dramatically and suddenly increases at t-30, t-15, and t-0 days. Indeed, during

the depth of the recession the weight on these soft data became close to unity. In turn,

the weight on IP declined rapidly during the recession, but rose as it ended. But when

two months of within-quarter IP data are available, i.e. if one is willing to wait until t+15

days, the weight remains high on the IP data even over the recessionary period.

Thirdly, we see that the disaggregate indicators are more informative than the aggre-

gate ones, except at t+45 days when all the weight is given to aggregate indicators. For

the three nowcasts produced earlier than t+15 days, prior to receipt of the second month

of within quarter IP data, Figure 1 shows that the disaggregate indicators dominate. At

t+0 days, Spanish qualitative survey data account for much of the increased weight given

to the disaggregate survey data during the recessionary period. But at t+15 and t+30

days, we see that it is the aggregate IP data that account for the majority of the increasing

weight given to IP components. From 2009 the utility of the aggregate IP data decreases

dramatically in favour of disaggregate IP indicators.

Fourthly, consistent with the stylised fact that it is hard to beat an auto-regressive

(AR) model when point forecasting, by deduction from Figure 1 we can infer that the

weight on the AR components in the combination is small but non-negligible (since the

weights on the soft and hard indicators sum to more than 0.9 but often less than unity).

Although, close inspection reveals that the weight on the AR components does decline

as within-quarter information accumulates. By t+45 days the AR components receive

less than a third of the weight received at t-30 days; on average a weight of about 2.5%

rather than 8%. Importantly, we also see the utility of the AR models, as we should

expect given that they adjust to change only with a lag, decline during the recessionary

period. Once the evaluation period is extended to include the recession the autoregressive

nowcasts are clearly beaten by the indicator-based nowcasts, which adapt more quickly to

the recessionary “regime”. The utility of constructing nowcasts using indicator variables

increased over the recessionary period. The weight on that sub-component AR model

which constructs the forecast using only the most recent GDP data (the most recent

column of data) is quite small, less than 0.01 (or 1%). This indicates that there is

informational content in previous, as well as the latest, EA GDP release(s).

There is always an issue about how one should choose the length of the training period

to calibrate the weights in (10). There is a trade-off involved. The shorter the length of
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the training period the more quickly the combined density can adjust to changes over

time in the performance of the different models. But the longer the length of the training

period the better the combination weights are estimated. In (10), and in Figure 1, an

increasing window of data is used. Experimentation with rolling windows did not indicate

any gains in density fit, as we summarise below. Alternatives, for future research and for

datasets where τ−τ spans more than one recession, are to let the weights follow a Markov-

switching process such that they vary across regimes (cf. Waggoner & Zha (2012)); or,

following the suggestion of a referee, condition the weights on a threshold. For example,

when the soft data indicate a high probability of recession (negative GDP growth), the

combination weights could be estimated not over all τ , as in (10), but based only on

observations from previous recessions.

6.2 Evaluating the nowcast densities

Table 1 summarises the results of the eight pits tests, for different j, employed on ten

forecasting strategies. These are the EW and RW density combinations, and equal-

weighted density averages from those component models which use only survey, IP or

lagged GDP (AR) data. EW and RW combinations are also considered when aggregate

indicator data only are used, as a means of isolating the relative informational content

of the disaggregate indicator data.8 Finally, AR, Occam’s window and model selection

densities are examined. To avoid presenting evaluations for each pits test separately (see

the working paper version of this paper for full details), we follow the pragmatic approach

of weighting all eight pits tests equally. Table 1 reports how many of these eight tests

indicate that the density forecast is correctly calibrated at a 95% significance level—that

is, when we cannot reject the null hypothesis that the densities are correctly calibrated

on the basis of each individual test.9 Table 2 presents, again for j = 1, ..., 6, the average

logarithmic score of each density over the evaluation period.

8These EW combinations, taken across all of the component models, effectively give a higher weight to
those indicators, in particular the ESI, which are transformed in more ways; e.g. the ESI is considered in
quarterly and monthly levels and differences. We found that this implicit weighting is not innocuous. We
experimented with EW combinations which group the different indicators (IP, ESI, the interest rate spread
and lagged GDP growth) so that, across transformations of a given indicator, the four different indicators
have the same weight. Across the board we found that this latter strategy led to less accurate density
nowcasts. On average, across j, it led to the average logarithmic score falling by 0.05 units compared
with Table 2 below. We eschew formal tests of equal predictive performance given our small-samples.

9To control the joint size of the eight evaluation tests, at a 95% significance level, would require the
use of a stricter p-value for each individual test than the 5% value we use. The Bonferroni correction
indicates a p-value threshold, for a 95% significance level, of (100% − 95%)/8 = 0.6% rather than 5%.
Table 1 can therefore be seen to offer a conservative impression of calibration.
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Table 1 shows that, in general across the ten different forecasting strategies, the cal-

ibration of the density nowcasts improves as we accumulate within-quarter information.

Similarly, Table 2 indicates that the density nowcasts become sharper, and produce a

higher log score, as within-quarter information accrues. It is also worth remarking (de-

tailed results are again in the working paper version of this paper) that the story is

essentially the same if we look at point forecast accuracy, as measured by root mean

squared error. Similarly, we note that experimentation with rolling instead of expanding

windows to estimate the weights in RW combinations, via (10), did not deliver clear gains

and in some instances led to obvious losses. For example, use of a two-year rolling window

led to modest increases in the average log score of “RW Disag” at j = 1, 2, 3 (-0.854 to

-0.796, -0.804 to -0.796 and -0.791 to 0.789) but more substantial decreases (losses) at

j = 4, 5, 6 (-0.495 to -0.634, -0.496 to -0.635 and -0.483 to -0.607).

By t+45 days, only one combination strategy (RW) has a correct calibration ratio

of 8/8. This is the case whether one considers either the aggregate and disaggregate

indicator data jointly or the aggregate data alone. But model selection and the use of

Occam’s window, even with equal weights, also both deliver calibration ratios of 8/8 at

t+45 days and similar log scores to RW (Table 2), precisely because, like RW, they pick

up the aggregate IP indicator data, now available for all three months of the quarter.

Recall from Figure 1 that at t+45 days these aggregate IP indicators are by far the most

informative indicators. Indeed, as a result, by the end of the evaluation period, as the

evidence has accumulated, Occam’s window in fact eliminates from the combination all

but two of the 444 models considered by the RW and EW combinations. This explains

the comparable performance of equal and weighted combinations having eliminated bad

models (indicators/transformations).

In contrast, Table 1 shows that all ten strategies produce poorly calibrated densities

according to at least four of the pits tests at t-30 days - when no within quarter IP data

are available. From t-15 days onwards, when the first month of IP data is published,

there is some evidence that calibration improves for the EW and RW combinations which

focus exclusively on the aggregate indicators. Indeed the EW combination of aggregate

indicators only produces the highest log score at t-15 days. At t+0 days, Table 1 indicates

that calibration further improves, with two or three fewer pits tests failed for EW and

RW combinations using aggregate indicators, relative to Occam’s window and selection.

Therefore, while later in the quarter the informational content of specific indicators is

strong and stable enough for either selection or Occam’s window to work, earlier in the

quarter one is better off taking a combination, given the additional instabilities. Table
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2 shows that selection and Occam’s window, relative to the other strategies, do partic-

ularly poorly on the basis of the log score until t+15 days. Until t+15 days, the EW

combination produces the highest, or amongst the highest, log scores in Table 2. Indeed,

it is only marginally beaten by survey-based combinations in one instance at t-30 days.

Only with the arrival of the second month of within-quarter IP data is there enough sta-

bility (i.e. consensus over the preferred indicator(s); cf. Figure 1) for Occam’s window

and selection to work. Otherwise, as seen in Figure 1, since the evidence in favour of

particular component models changed abruptly over the recessionary period - with the

relative informational content of the survey data increasing - one is better off weighting

each component model equally. The RW strategy is not as effective as EW, although

far preferable to model selection certainly when aggregate indicators only are combined.

Nevertheless, the RW combination struggles keep up with the pace of change this early

in the quarter. It is only later in the quarter that RW pays off, due to the increased

informational content of the IP data.

On receipt of the second month of within-quarter IP data, at t+15 days, we see

in Tables 1 and 2 a marked improvement in calibration and density fit, with the RW

combination, of aggregate and disaggregate indicators, now having a correct calibration

ratio of 8/8. The EW strategy now performs noticeably worse than RW, failing three

more pits tests, unless Occam’s window is used. This failure is again because EW does

not weight highly enough the IP data. The gains associated with the RW combined density

at t+15 days are much weaker when only the aggregate indicators are considered, with

the average logarithmic score rising from -0.74 to -0.61 rather than -0.79 to -0.50. In

fact, looking at the RW weights, it is the latest Spanish IP data that appear particularly

helpful in improving density fit. When one considers only the aggregate indicators, the

EW combination in fact performs slightly better than the RW combination even at t+15

days. This demonstrates the gains from consideration of the disaggregate IP data.

It does not appear to be worth waiting an additional 15 days for receipt, at t+30 days,

of the Portuguese IP data, the Belgian GDP data and the US GDP data. Consideration

of these indicators, despite the fact that they are known for the whole quarter, does not

improve calibration (Table 1) or density fit (as measured in Table 2). This is consistent

with the view that Belgium and Portugal are too small, relative to the EA aggregate,

for their data to offer a reliable guide as to likely movements in the aggregate; similarly,

while the US economy may influence the European economy at a lag, receipt of the latest

US data does not appear to help when nowcasting.

Finally, from Tables 1 and 2 we see that both the survey-based and AR densities do
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not improve in accuracy as time passes. Only when produced very early are these densities

competitive relative to the other approaches. Even then they fail three or four calibration

tests.

6.2.1 Probability of a recession

To evaluate further the accuracy of these density nowcasts we evaluate not the entire

density, as above, but the probability forecast of an event of specific interest. We rely

on graphical evaluation of these probability event forecasts, rather than formal statis-

tical tests; e.g., see Clements (2004). This is sufficient to illustrate our main findings.

Specifically, Figure 2 extracts from the EW and RW combined density nowcasts (using

both the aggregate and disaggregate indicators) the implied probability of a (one quarter)

recession. In the bottom right panel of the figure we present the outturn, as measured by

Eurostat’s first (Flash) estimate, for quarterly GDP growth. Given that we have seen that

the fit of the densities did not improve at all on receipt, at t+30 days, of the disaggregate

hard data for Belgium, Portugal and the US, we do not present the implied probability

forecasts at t+30 days; these are identical to those seen at t+15 days in Figure 2.

Figure 2 shows that the EW combination gave about a 10% chance to a recession from

2003 until 2008. The RW combination indicated less than a 10% chance of a recession

over this period of sustained economic growth, which seems better. Figure 2 also shows

that the RW combination, as we have seen because it increasingly put a high weight on

the soft data during the recession, picks up the recession earlier than the EW combination

even when the density nowcast is formed at t+0 days or earlier. But the pits tests did

indicate evidence of calibration failure for these densities as a whole. But from t+15 days,

when the RW density does appear to be well-calibrated, we again see the RW combination

picking up the recession earlier, and more confidently, than EW.

7 Conclusion

Official GDP data are published with a delay. In order to form a view about the current

state of the economy, policymakers therefore rely on a wide range of incomplete data, such

as industrial production, which ignore important sectors of the economy, like services,

disaggregate (national) rather than aggregate (EA) data, and/or subjective survey data,

which tend to be qualitative rather than quantitative. But these data can often point in

different directions, particularly at the onset of a recession, and their relative informational
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content likely depends on how far ahead of the statistical office’s estimate a view about

the economy is formed. This paper provides a formal means of assessing the utility of

these different indicator variables, and relating them to official Eurostat GDP data. The

density combination methods set out make it possible to know how much weight to place

on different indicators when forming, at various points in time before and after the end

of the quarter of interest as monthly information accumulates, a view about the current

state of the economy. The uncertainty associated with these nowcasts is acknowledged,

and subsequently evaluated, by constructing density nowcasts.

In a real-time out-of-sample application, density nowcasts for Euro-area quarterly

GDP growth are computed as within-quarter monthly “soft” and “hard” indicator data

accrues, at both the aggregate and disaggregate (country) level. Alternative tempo-

ral transformations of the monthly indicators are considered, delivering a wide range of

within-quarter indicators. A linear regression model is then computed for each indica-

tor/transformation and Student-t predictive densities are then combined using the linear

opinion pool. Our results suggest that equal-weighted combinations delivered better, but

in absolute terms poorly, calibrated densities when limited within-quarter indicator data

are available. Equal-weighted combinations were more robust to observed instabilities in

terms of the relative importance of “soft” data; the utility of such survey data increased

dramatically in the recession, but this was hard to detect in real-time and it therefore

pays to weight indicators equally. But, as within-quarter information accumulates, and

in particular when the second month of within-quarter industrial production data is pub-

lished at t+15 days, time-varying weighted combinations are more effective and deliver

well-calibrated densities. They do so by giving a higher weight in the combination to

the available monthly “hard” data. Equal weighted combinations can perform similarly

well at t+15 days onwards, but only if the bad models are eliminated prior to taking

the combination using Occam’s window, so that effectively the available monthly “hard”

data are again given a higher weight. Similarly, selecting the best model is also effective

from t+15 days onwards, given there is by then more of a consensus about the preferred

indicator(s). But earlier in the quarter, given the observed instabilities and uncertainties

about the right indicator, selection performs poorly relative to both equal and weighted

density combinations. Finally, we find that density nowcasts at t+15 days are as accurate

as those which involve waiting an additional 15 days for receipt of full-quarter “hard”

indicator data from some countries.
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Figure 1: Log-score weights on aggregate/disaggregate soft indicators (survey data) and
aggregate/disaggregate hard indicators (IP), and the weights on the aggregate (Agg)
indicators only, as within-quarter monthly data accrues (j = 1, ..., 6)
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Figure 2: Probability of negative GDP growth according to the EW and RW combination
densities
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Table 1: Number of pits tests (out of eight) which indicate correct calibration at 95
percent

t-30 days t-15 days t+0 days t+15 days t+30 days t+45 days
j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

EW 3 4 3 5 5 4
RW 2 2 3 8 8 8
Survey 4 4 5 5 5 5
IP 4 5 5 5 6 4
EW (Agg) 4 5 6 6 6 6
RW (Agg) 3 6 6 7 7 8
AR 5 4 5 4 5 5
Occam: EW 2 3 2 7 7 7
Occam: RW 2 2 3 8 8 7
Select 3 3 4 8 8 8

Notes: EW is an equal-weighted density combination of all the component models; RW takes a log
score weighted average of all of the models; (Agg) denotes combinations of aggregate component
models only. Survey is the equal-weighted density combination of those component models that use
soft data only; similarly, IP considers the hard indicators only; AR takes equal-weighted density
combinations from AR(1) models estimated using all available (multiple vintage) EA GDP growth
data. Occam denotes use of Occam’s Window. Select is that single model selected according to (10).

Table 2: Average logarithmic score: 2003q2-2010q4

EW RW Survey IP EW RW AR Occam Select
Disag Disag Agg Agg EW RW

t − 30 : j = 1 −0.73 −0.85 −0.70 −0.81 −0.71 −0.82 −0.84 −0.87 −0.90 −1.35
t − 15 : j = 2 −0.72 −0.80 −0.71 −0.77 −0.66 −0.82 −0.87 −0.87 −0.84 −1.30
t + 0 : j = 3 −0.69 −0.79 −0.70 −0.77 −0.64 −0.74 −0.87 −0.85 −0.86 −0.89
t + 15 : j = 4 −0.66 −0.50 −0.70 −0.68 −0.60 −0.61 −0.84 −0.48 −0.46 −0.54
t + 30 : j = 5 −0.66 −0.50 −0.70 −0.70 ” ” −0.84 −0.48 −0.46 −0.54
t + 45 : j = 6 −0.65 −0.48 −0.70 −0.70 −0.53 −0.46 −0.85 −0.51 −0.46 −0.43
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