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Abstract

Combined density nowcasts for quarterly Euro-area GDP growth are produced
based on the real-time performance of component models. Components are distin-
guished by their use of “hard” and “soft”, aggregate and disaggregate, indicators.
We consider the accuracy of the density nowcasts as within-quarter information on
monthly indicators accumulates. We focus on their ability to anticipate the recent
recession probabilistically. We find that the relative utility of “soft” data increased
suddenly during the recession. But as this instability was hard to detect in real-
time it helps, when producing nowcasts not knowing any within-quarter “hard”
data, to weight the different indicators equally. On receipt of at least one month
of within-quarter “hard” data better calibrated densities are obtained by giving a

higher weight in the combination to “hard” indicators.
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1 Introduction

Statistical offices publish ‘official’ GDP data at a lag. Eurostat publishes its so-called Flash
estimate of quarterly GDP growth for the Euro-area (EA) about 45 days after the end of
the quarter. This meant that Eurostat data did not indicate, for example, that the Euro-
area was in “recession” until 14th November 2008. As is common, a “recession” is defined
as two successive quarters of negative quarterly growth. Economists and policymakers
therefore had to wait 45 days to be told that the economy shrank in 2008q3 - as well as
2008q2. This was despite the fact that published qualitative survey data, as well as other
so-called indicator variables, were at the time being interpreted by some as convincing
evidence that the Euro-area economy was already in recession. But without a formal
means of assessing the utility of these qualitative survey data, and relating them to
official Eurostat GDP data, it is impossible to know how much weight to place on them
when forming a view about the current state of the economy. An accurate, but timely,
impression of the state of the economy is important for policymakers.

There is always a pressure on statistical offices to speed up the delivery of these
estimates. Inevitably, with resource constraints impeding the production of earlier /higher
frequency official quantitative surveys, this means relying increasingly on forecasting. Or,
more accurately, this should be called nowcasting - as within quarter information on
indicator variables is exploited. But there is an expected trade-off between the timeliness
and accuracy of nowcasts. Nowcasts can always be produced more quickly by exploiting
less information; but, we might expect the quality of the nowcasts to deteriorate as a
result.

In this paper we suggest a formal but computationally convenient method for estab-
lishing what role, if any, these indicator variables should play when constructing nowcasts
of current quarter GDP growth. Importantly, the uncertainty associated with the nowcast
is acknowledged, and subsequently evaluated, by constructing density nowcasts. Publica-
tion of these uncertainty estimates, alongside the central estimate, provides a means of
indicating to the user the ‘quality’ of the nowcast, as measured by the confidence associ-
ated with the nowcast. Increasingly, in fact, forecasts are being presented probabilistically,
with many central banks now publishing “fan charts”. To construct the density nowcasts
we take combinations across a large number of competing models. In this approach, model
uncertainty, in particular uncertainty about what indicator variables should be used, is
explicitly accommodated. The approach is also based on the belief that the candidate

component models are all incorrectly specified. But the components allow the modeller



to explore a wide range of uncertainties. The resulting combination reflects the model
uncertainty by taking a weighted average across many (simple) component models, with
the component models distinguished by what indicator variables they consider. The post-
data weights on the components can be time-varying and reflect the relative fit of the
individual model forecast densities. The combination becomes very flexible as the num-
ber of component models rises; and aims to approximate an unknown but likely complex
(non-linear and non-Gaussian) data-generating-process. A related approach has been ap-
plied by Jore et al. (2010) to forecast US macroeconomic aggregates. This paper considers
both how it can be used, and assesses its efficacy in an application, when nowcasting with
real-time mixed-frequency data.

While GDP growth is published at a quarterly frequency, many indicator variables
are available at a higher frequency. We consider how nowcasts of quarterly GDP can
be constructed as within quarter, monthly, information on these indicator variables ac-
crues. Thereby, our density nowcasts reflect the publication lags of each indicator variable.
Following Giannone et al. (2008), we distinguish between quantitative (“hard”) and qual-
itative (“soft”) indicator variables, with the soft indicators typically published ahead of
hard data. And we consider both EA (aggregate) and country-level (disaggregate) indi-
cators. Examination of country-level indicator data might prove efficacious if, following
Hendry & Hubrich (2011), these disaggregates contain information over and above that
in aggregate indicators. Moreover, some countries publish their hard data more quickly
than others, indeed more rapidly than Eurostat publishes the corresponding aggregate.

We then assess the ability of the combination methods to anticipate the 2008-2009 re-
cession. We assess their ability to predict the probability of a recession and more generally
examine their density nowcasts. How well did they do at flagging up the recent contraction
to GDP growth, and how far ahead did they successfully call the recession? The latter
is important, given the likely trade-off between the timeliness and accuracy of nowcasts.
We also seek to identify what, if any, indicator variables were most helpful in anticipat-
ing the recession. Thereby, this paper provides timely evidence about the performance of
nowcasts over this unusual period. It also extends previous work, such as Giannone et al.
(2008), by explicitly constructing density nowcasts. At times of heightened uncertainty
it is particularly important to quantify, in real-time, the degree of uncertainty associated
with any nowcast. Moreover, in contrast to the majority of applied studies studying the
Euro-area, we exploit real-time (aggregate and disaggregate) data made available to us
by Eurostat. This means that our out-of-sample simulations are genuinely, rather than

‘pseudo’, real-time.



The plan of the remainder of this paper is as follows. Section 2 motivates the use of
density nowcasts. Section 3 explains the importance of accommodating model uncertainty
when nowcasting by considering a set of component models rather than a single model.
Section 4 describes the component models used in our nowcasting application. Section
5 explains how our combined density nowcasts are computed and Section 6 provides the

empirical results. Section 7 concludes.

2 Density nowcasts

It has become increasingly well understood that it is not a question of this nowcast proving
to be ‘right” and that nowcast proving to be ‘wrong’. Point nowcasts, the traditional focus,
are better seen as the central points of ranges of uncertainty. A GDP growth nowcast
of, say, 2% must mean that people should not be surprised if actual growth turns out
to be a little larger or smaller than that. Moreover, perhaps, at a time of heightened
economic uncertainty, they should not be very surprised if it turns out to be much larger
or smaller. Consequently, to provide a complete description of the uncertainty associated
with the point nowcast many forecasters now publish density nowcasts/forecasts, or more
popularly “fan charts”.

More formally, density forecasts of GDP growth, say, provide an estimate of the prob-
ability distribution of its possible future values. In contrast to interval forecasts, which
give the probability that the outcome will fall within a stated interval, such as GDP
growth falling within its target range, density forecasts provide a complete description of
the uncertainty associated with a forecast. They can thus be seen to provide information
on all possible intervals.

What really matters is how nowcasts, or indeed forecasts, affect decisions. The ‘better’
nowcasts are those that deliver ‘better’ decisions. On this basis it is argued that the ap-
propriate way of evaluating nowcasts is not to use some arbitrary statistical loss function,
but the appropriate economic loss function; e.g. see Granger & Pesaran (2000). Only
when the nowcast user has a symmetric, quadratic loss function, and the constraints (if
relevant) are linear, is it correct to focus on the point nowcast alone. This is what text-
book’s call “certainty equivalence”. In the more general case, the degree of uncertainty
matters. Users are not indifferent to the degree of uncertainty about the point forecast.
Uncertainty is expected to attenuate responses to the point nowcast.

The importance of publishing density nowcasts then follows from the fact that we tend,



in reality, not to know users’ loss functions. But we should not expect these (unknown
to us) functions to be quadratic. For example, we should expect the range of uncertainty
to matter. When the user’s loss function is asymmetric, such that positive and negative
forecasting errors have differing costs, the user’s “optimal” forecast need not equal the
conditional mean; e.g., see Zellner (1986). By publishing the whole density nowcast for
GDP growth the statistics office, the putative producer of the densities in our application,
ensures the user is free to extract from the density any feature of concern to them. This
feature might be the conditional mean. But interest often focuses in tail events, which
require an explicit statement about the uncertainty associated with the nowcast. Users of
growth forecasts may be concerned about the probability of recession. These probability
event forecasts can readily be extracted from the density forecast.

The trend towards forecasters publishing density forecasts is also explained by the
obvious advantages they bring when communicating with the public. It reminds them
that the statisticians/forecasters themselves expect the point forecasts to be ‘wrong’. It

also lets users assess the balance of risks associated with the nowcast.

3 Combination forecasts - and nowcasts

Bayesian Model Averaging (BMA) offers a conceptually elegant means of dealing with
‘model uncertainty’. BMA forecasts condition not on a single ‘best’ model but take a
weighted average over a range of candidate models; see Hoeting et al. (1999). This follows
from appreciation of the fact that, although one model may be ‘better’ than the others,
we may not select it with probability one. We may not be sure that it is the best forecast.
Therefore, if we considered this single forecast alone, we would be overstating its precision.

Similarly in practical macroeconomic forecasting exercises, whether within a Bayesian
context or not, it is a stylised fact that combination forecasts are hard to beat. The
estimated parameters of a single forecasting model are commonly found to exhibit insta-
bilities and these can be difficult to identify in real-time. In the presence of these so-called
‘uncertain instabilities’ it can be helpful to combine the evidence from many models. For
example, Clark & McCracken (2010) examine the scope for taking linear combinations of
point forecasts in real time, motivated by the desire to circumvent the uncertain insta-
bilities in any particular specification. In a series of influential papers, Stock & Watson
(2004) have documented the robust performance of point forecast combinations using var-

ious types of models for numerous economic and financial variables. Selecting a single



model has little appeal under ‘uncertain instabilities’” when the single best model suffers
from instability. This might happen either if the ‘true’ model is not within the model
space considered by the modeller, or if the model selection process performs poorly on
short macroeconomic samples. We may better approximate the truth, and account for
the uncertainty in model selection, by combining forecasts.

While methods for combining point forecasts are well established and much exploited,
less direct attention has been given in econometrics to the combination of density fore-
castsﬂ Although, as Wallis (2005) has noted, density forecasts, in fact, have been com-
bined in the ASA-NBER Survey of Professional Forecasters since 1969. The forecasters’
densities are combined by taking a linear average, a so-called “linear opinion pool”, as
in BMA. Mitchell & Hall (2005) and Hall & Mitchell (2007) used this combination rule
(but non-Bayesian weights) to combine and then analyse density forecasts from the Bank
of England and the National Institute of Economic and Social Research. They consid-
ered how, in practice, the densities in the combination might be weighted, considering
alternatives to equal weights. Jore et al. (2010) examine linear combinations of densities
from VAR models, and Bache et al. (2011) take a linear combination of VAR and DSGE
densities. Alternatives include consideration of logarithmic pooling rules; see Kascha &
Ravazzolo (2010) and Wallis (2011). Using several examples, and theoretical analysis,
Geweke & Amisano (2011) demonstrate the scope for pooled forecast densities to produce
superior predictions, even if the set of components to be combined excludes the ‘true’
model - namely, when there is an ‘incomplete model space’.

In this paper we follow in the spirit of this forecasting literature and use the linear
opinion pool to combine density nowcasts. The design of the model space and the number
of components to be considered needs to be specified; and we describe this below. We
then produce density forecasts from a large set of component models, which differ in terms
of the indicators variables, and transformations thereof, they consider. We suggest the
use of simple regression based methods. Density forecasts from the component models are

then produced analytically. This means that our approach is easy to apply.

!Outside the econometrics literature, the benefits of producing density forecasts by combining infor-
mation across different models have been recognised for some time. For a review see Genest & Zidek
(1986).



4 Nowcasting component models

The nowcasts are produced by statistical models. These statistical models by construction,
and unlike structural or economic models, are reduced-form. They seek to explain and
then nowcast GDP growth by exploiting information on indicator variables. These are
variables which are meant to have a close relationship with GDP but are made available
more promptly than the data for which they stand as a proxy; moreover, often these
indicators are published at a higher frequency (e.g. monthly) than GDP itself, which is
typically published on a quarterly basis only.

But there is uncertainty about what indicator variable or variables to use; in practice
there is a large number to choose from. Following Giannone et al. (2008), we distinguish
between quantitative (“hard”) and qualitative (“soft”) indicator variables, with the soft
indicators typically published ahead of hard data. But the cost of that timeliness is
their qualitative nature. These surveys typically ask respondents to provide qualitative
categorical answers to a number of questions including what has happened to their output
in the recent past and what they expect to happen to their output in the near future.
Respondents say whether output has fallen, stayed the same or risen and which of the three
they anticipate over some specified future period. The difference between the proportion
of those expecting or reporting a rise and those expecting or reporting a fall is then related
to GDP growth.

The set of indicator variables increases further when, as possible indicators, we consider
variables not directly related to GDP but presumed to have some indirect relationship. For
example, interest rates or exchange rates might be considered as they might help predict
GDP growth. Our proposed combination approach provides a way of accommodating
uncertainty about what indicator(s) to use.

Different nowcasting models involve different ways of linking the indicator variables
to GDP. This can be done at a quarterly, monthly or mixed frequency. It is an empirical
question which is most sensible. Appealing to Occam’s razor, we focus on simple compo-
nent models; we estimate a linear regression of quarterly GDP growth on a single indicator

variable. We then combine the component density nowcasts using the linear opinion pool.

4.1 Indicator variables: aggregate and disaggregate

To illustrate use of the density forecast combination method we focus on a widely con-

sidered set of soft and hard indicator variables, generically denoted z(;, , and zj .,



respectively, where m = 1,2,3 denotes the month in quarter ¢. As soft indicators, we
consider the Economic Sentiment Indicator (ESI) and the spread between short term and
10 year Euro interest rates (available from the ECB). The ESI, published by the Euro-
pean Commission, is a widely used composite indicator. It combines various information
from qualitative business tendency surveys, including expectations questions, into a single
cyclical confidence indicator. As hard indicators we consider real-time monthly industrial
production (IP) data.

As well as considering these data at the Euro-area aggregate, EA(12), level, we exam-
ine them at the disaggregate (national) level for each of the twelve Euro-area countries.
The EA(12) comprise Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal and Spain. Again real-time data (vintages) are used
for these national data. We consider the three monthly releases of national IP, but use only
the first release values of national GDP, rather than the three within quarter estimates
produced by Eurostat for the EA; this reflects variability across the European countries in
terms of their publication of within quarter GDP data. We supplement the national quali-
tative survey data published by the European Commission (except for Greece and Ireland
where data are unavailable) with additional business survey data for Germany, from Ifo,
on the business climate, situation and expectations, given it is the largest economy in the
EA. Use of these disaggregate data considerably increases the set of indications available;
and allows for the possibility that a specific data series from a given country may help
explain the aggregate over and above the aggregate information itself. Examination of
hard country-level data can also prove efficacious given that some countries, as discussed
below, publish their hard data more quickly than others and indeed more quickly than
Eurostat publishes the corresponding aggregate. These disaggregate data can therefore
be exploited when nowcasting the aggregate; cf. Hendry & Hubrich (2011).

The soft variables are published at the end of the month to which they refer. The hard
variables for month m tend to be published, both for the Euro-area aggregate and most
countries, around the middle of month m + 2 (i.e. at about t+45 days). The Quarterly
National Accounts, which include the GDP data, are also updated around the middle of
each month.

But there are some differences across countries in terms of how quickly they publish
their data, and this must be reflected when producing nowcasts to different timescales.
Portugal publishes its monthly industrial production data at the end of month m + 1;
similarly Belgium publishes its quarterly GDP data at the end of month m + 1 (i.e.,

at t+30 days); therefore, below, we will introduce a nowcast of the Euro-area aggregate



(7 = 5, below) which exploits these dataE] In fact, given the putative role of globalisation,
we also condition this nowcast on the advance quarterly GDP data for the US, given that
they are published at t+30 days too. Specifically, we use US real-time GDP vintage data
from the Federal Reserve Bank of Philadelphia.

In principle, one could add further to our set of indicator variables, especially to the set
of soft indicator variables. One could follow Giannone et al. (2008) and extract common
factors from a panel data containing information on many indicators and regress GDP
on them (‘bridging with factors’) in an additional component model. This could then be
added to our existing set of models. We mention these possible extensions, like others

previously, simply to illustrate the generality of our approach.

4.2 The trade-off between the timeliness and accuracy of now-

casts

We focus on producing nowcasts of quarterly GDP growth for the EA(12) to six timescales:
t-30, t-15, t40, t+15, t+30 and t+45 days. ¢ denotes quarter, so that t-30, for example,
means that a nowcast for quarter ¢ is produced 30 days before the end of the quarter for
which we want a quarterly GDP estimate. In contrast, the nowcast produced at t-+45 is
produced 45 days after the end of the quarter of interest.

At all six timescales we know the value of GDP in the previous quarter. But this (t-1)
estimate may be measured by the first (Flash), second or third release from Eurostat.
Eurostat’s Flash GDP estimate for the current quarter is released at about t+45 days. So
our nowcast computed at t+45 is produced to the same timescale and therefore provides
a benchmark for these official Eurostat estimates. By producing a density nowcast we are
also able to characterise the uncertainty at t+45 days.

Since a monthly indicator, by construction, is released three times a quarter, following
Kitchen & Monaco (2003), we estimate, in principle when the full quarter’s data are
available, three component models for each indicator. These involve relating quarterly
GDP growth, Ay, to 2, (m = 1,2,3; t = 1,...,T). 3, denotes the k-th indicator
variable drawn from the information set Q{ where j (j = 1,...,6) denotes the first, second,
third, fourth, fifth and sixth nowcast formed at t-30, t-15, t+0, t+15, t+30 and t+45

days, respectively. Each successive nowcast exploits an ever larger information set. This

2Spain also recently began production of an earlier GDP estimate, at t+30 days. Once a sufficient
number of vintages are available one could exploit these data too in out-of-sample simulations of the type
undertaken in Section 6 below.



reflects the fact that with the passage of time more and more (aggregate and disaggregate)

indicator data become available. Specifically, the component models take the form:

Ayt:60+ﬁlxﬁt+€t; (m:17273>7 (]‘>

where e, is assumed to be normally distributed. Let x;; denote the quarterly analogue of
Ty

As an alternative to this approach of Kitchen & Monaco (2003), one could relate
quarterly GDP growth directly to x;,, with monthly “bridge equations” used to forecast
any missing monthly indicator data prior to aggregating to the quarterly estimate zy,
which is then regressed against Ay; e.g. see Baffigi et al. (2004). Our combination
approach could also be employed if we adopted a related approach and, following Clements
& Galvao (2008), used MIDAS regressions, say, to produce the component forecastsﬁ
MIDAS regressions also provide a means of running regressions that allow the regressand

and regressors (indicators) to be sampled at different frequencies.

4.2.1 The information set as within-quarter data accrues

The information set available at t-30, t-15, t+0, t+15, t+30 and t+45 accumulates as

follows, where :

1. j=1. t-30: 30 days before the end of the quarter.

Q% = ({Igft,t}inzl ) {J:hmd,t_z}fil , {Ayt—z}f;> @

N; = no of elements of Q}. p; and py denote the number of lags of the quarterly
variables x; (kK = hard) and Ay,. We do not consider lagged quarterly values
of the soft data; this seems reasonable, since when the nowcasts are produced we
always have in our information set at least two months of within-quarter information
on the soft indicators. But, to accommodate dynamics, we do consider previous
quarter information about the hard indicators and GDP growth itself, given that
these variables are published at a greater lag. In particular, for previous quarter
GDP growth, Ay;_1, we consider all three EA national accounts (vintage) estimates

ending with (7"— 1) information; plus we consider lagged values of the GDP vintage

3 Alternatively, monthly GDP estimates could be estimated using mixed-frequency regression, VAR or
factor based methods; these impose an aggregation constraint so that monthly GDP is consistent with
the published quarterly values (e.g., see Mitchell et al. (2005), Mariano & Murasawa (2003) and Angelini
et al. (2010)).
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containing the first release of GDP for data up to quarter 7' (since this is available
at about t+45 days, it has been known for about 15 days at j=1). Simultaneous
consideration of multiple vintages means that, implicitly without modelling, the
revisions process to GDP is accommodated; our density combination exercise does
not simply use only the most recent vintage. In sum, means §2! includes two
months of within-quarter soft data, as well as previous quarter hard indicator data
and lagged GDP data. €} is then related to Ay;, as measured by the first release
of GDP growth, via ().

2. j=2. t-15: 15 days before the end of the quarter.

2
QtZ B ({w?éftvt}mzl 7$flla7"d,t> {mhard,t—l}fil , {Aytfl}ﬁl> (3)

Ny = no of elements of Q2. This means Q2 now includes the first month of within-
quarter hard data, as well as Q}. Q2 is related to Ay, as measured by the second
release of GDP growth data.

3. j=3. t+0: 0 days after the end of the quarter.

3
Q? = ({xzz;ft,t}m:l 71‘}Lard,t7 {xhard,t—l}fil ) {Ayt—l}fi1> (4>

N3 = no of elements of Q2. Q2 now includes the final month of within-quarter soft
data, as well as Q2. In practice, given that we use the same GDP release as at j=2
to measure Ay, to avoid duplicating component forecasts we do not re-consider
indicators already used at j=2. This means the only new component forecast at j=3

involves regressing x3,;,, on Ay;.

4. j=4. t+15: 15 days after the end of the quarter.

m 13 m 12
Q? = <{xsoft,t}m:1 ) {xhard,t}mzl ) {xhw’d,t—l}fil ) {Ayt—l}fil> (5>

N, = no of elements of Q}. Qf now includes the second month of within-quarter
hard data, as well as Q3. Qf is related to Ay,, as measured by the third release of
GDP growth data.

5. j=bH. t+30: 30 days after the end of the quarter.

3 2 3,P Bel,US
o = ({xzj)ft,t}mil , {‘rhmard,t}mzl s Thard,ps {Phardt—1 Yoy > DY ’{Ayt’l}ﬁJ (6)
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N5 = no of elements of Q2. Q2 now includes full quarter hard data for Belgium (for
GDP), Portugal (for IP) and the US (for GDP), as well as Qf. 2 is related to Ay,
as measured by the third release of GDP growth dataﬁ

6. j=6. t+45: 45 days after the end of the quarter.

m 3 m 3
Q? = <{‘rsoft,t}m:1 ) {xh(zrd,t}mzl ) {th‘d,t—l}gil ) {Ayt—l}fil) (7>

Ng = no of elements of QF. We ignore the fact that we know, at t+45, Eurostat’s
Flash estimate for GDP growth in quarter ¢t and now use all three months of within-
quarter information on the monthly hard indicator data. At t+45 quarterly GDP
data are also available for some of the Euro-area countries, but again we ignore these

as a means of isolating the informational content of the monthly indicator data.

In each case (j = 1,...,6), each element (i.e. indicator) from €} is related to Ay, via
fort =1,...,T. We then use this model, and its estimated coefficients from the sample
t=1,...,T, and the quarter 7"+ 1 values of the indicator variables, {27,1, to nowcast.
Recall that the quarter 7"+ 1 values of the indicator variables are published ahead of
the quarter T+ 1 values for Ay, and can therefore be exploited when nowcasting. The
nowcasts can be evaluated when Ay, is subsequently published.

We set py = 1 and py = 1. These lag length assumptions rule out processes with
lengthy lags in exogenous variables. We believe this is plausible when nowcasting, in
particular. It is difficult for a statistics office to defend a situation where GDP is sharply
influenced, for example, by movements in some indicator variable more than three months
ago. (A professional forecaster, on the other hand, may have no difficulties in explaining
the economic transmission mechanism.) Our assumption is designed to comply with the
criterion that the models used to produce nowcasts should be credible to policymakers
and other non-statisticians. The role of forecasting, as opposed to nowcasting, should be
minimised. In practice, empirically we did experiment with the use of longer lags. These
did not improve the accuracy of the density nowcasts. Unsurprisingly, within-quarter data

is more informative.

4We did also consider the use of retail trade data, since they are published at t+30 days. But these data
are available over a restricted sample period, which limited the scope of the out-of-sample simulations,
and were in any case not found to improve accuracy.
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4.2.2 Temporal transformation of indicator variables

When relating the monthly variables zy;, ,, and 2}, , to quarterly GDP growth Ay,
via , there is an issue about how these monthly data should be transformed. Rather
than a priori or a posteriori selecting one particular transformation, our approach is to
consider simultaneously various transformations of a given indicator variable x7", and then
essentially treat these as additional component models (and nowcasts).

The qualitative survey data are considered in both monthly first-differences and quar-
terly differences. The quarterly transformation of the monthly survey data involves trans-
forming 7", in a manner consistent with the quarterly variable Ay, (which represents
quarterly growth at a quarterly rate). This is achieved, for example, following Mariano &
Murasawa (2003). Consider the monthly variable & in levels (rather than log differences)
2y, where again the subscript ¢ indicates the particular quarter and m the month within

that quarter, m =1,2,3,t =1,...,T. Then, by some simple arithmetic,

Tt = log 2z —log 211 = %A log Zi’,t—i—gA log z; ;+Alog z,;t—i-%A log z,?;tl—l—%A log 24,4
(8)
where Alog z;Z”t is monthly growth. The monthly qualitative survey data zj’, are also
considered in (monthly) levels and quarterly levels, with the quarterly transformation
again involving smoothing as in but without application of the logarithmic first differ-
ence. Consideration of these four transformations of z}?, accommodates uncertainty: (i)
about whether the soft data, in levels, are stationary and (ii) whether the informational
content of these data is higher when a first or quarterly difference is taken. This means
inference does not depend on application of some unit root test. This is attractive, given
that unit root tests are well known to suffer from low power in macroeconomic samples.
The interest rate spread, which we believe to be stationary, is considered in monthly and
quarterly levels only. The hard data, which unlike these survey data we believe to be
integrated of order one, are considered in both monthly log first-differences and quarterly
differences. Given how we treat xj; ,., when defining Tpards 1 (e.g. in 1} we again
consider each monthly release separately (for each transformation) rather than aggregate
Thuras 1, across m = 1,2, 3, to obtain a single lagged quarterly series.
Given these assumptions, and the availability of the aggregate and disaggregate data,
N; = 214; Ny = 293; N3 = 351; Ny = 430; Ny = 438 and Ny = 444.
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5 The linear opinion pool

We formalise density combination in a way that extends the commonly-adopted convex
mix of point forecasts by utilising the linear opinion pool approach.
Given 7 = 1,..., N; component models, the combination densities for GDP growth

are given by the linear opinion pool:

N;

PAY) = wir;g(Ay. |QL),  T=1,....7 (9)

i=1
where N; (j = 1,...,6) where N;11 > Ny; g(Ay,p, | Q2) are the nowcast forecast densities
from component model ¢, ¢ = 1,..., N; of Ay, each conditional on one element (indica-
tor/transformation) from the information set /. These densities, as we discuss below,
are obtained having estimated . The non-negative weights, w; - ;, in this finite mixture
sum to unity.E| Furthermore, the weights may change with each recursion in the evaluation
period T=71,...,T.

The predictive densities for Ay, (with non-informative priors), g(Ay, | ©4), allowing
for small sample issues, are Student-t; see Zellner (1971). Since each component model,
, considered produces a forecast density that is ¢, the combined density defined by
equation @ will be a mixture —accommodating skewness and kurtosis. That is, the
combination delivers a more flexible distribution than each of the individual densities
from which it was derived. As N, increases, the combined density becomes more and
more flexible, with the potential to approximate non-linear specifications.

We construct the weights w; ; ; in two ways.

First, we consider equal weights (EW). The EW strategy attaches equal (prior) weight
to each model with no updating of the weights through the recursive analysis: w; ,; =
w;; = 1/N;. We present results for the EW strategy without (prior) truncation of the
set of models to be included, although we do experiment below with different groupings

of the models. The EW strategy is often recommended when combining point forecasts,

>The restriction that each weight is positive could be relaxed; for discussion see Genest & Zidek (1986).
Note that in @ the only unknown parameters to be estimated are the w; , ;. The N component densities
are taken as given. Somewhat confusingly, in “mixture models” these weights are interpreted on the basis
of a latent binary random variable, which is often assumed to have a Markov structure; see Geweke &
Amisano (2011) and Mitchell & Wallis (2011). But in these models the parameters of the component
models are often estimated simultaneously with w; ; ;. In so-called BMA for ensemble forecasting models
(see Raftery et al. (1995)), the component densities g(.) are centered on the point forecasts from the
competing component models, but the variance of the component density forecasts is assumed common
across N and estimated simultaneously with w; r ;.
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although its effectiveness for density forecasts has been questioned (see Jore et al. (2010)
and Garratt et al. (2011)).

Secondly, we construct the weights w;,; based on the fit of the individual model
forecast densities: the Recursive Weight (RW) strategy. Following Jore et al. (2010), we
use the logarithmic score to measure density fit for each model through the evaluation
period. The logarithmic scoring rule is intuitively appealing as it gives a high score to
a density forecast that assigns a high probability to the realised value[f| Specifically, the

recursive weights for the nowcast densities take the form:

exp | Y7t lng(Ay, | )]
S exp | St ng(Ay, | )]

where the 7 — 8 to 7 comprises a two-year training period, since we employ quarterly data,

wiym‘ = T:I,...,F (10)

used to initialise the weights. Computation of these weights is feasible even for large N;.
Given the uncertain instabilities problem, the recursive weights should be expected to
vary across 7.

From a Bayesian perspective, density combination based on recursive logarithmic score
weights has many similarities with an approximate predictive likelihood approach (see
Eklund & Karlsson (2007)). Given our definition of density fit, the model densities are
combined using Bayes’ rule with equal (prior) weight on each model-—which a Bayesian
would term non-informative priors. Hall & Mitchell (2007) and Geweke & Amisano (2011)
consider iterative algorithms to select weights that maximise the logarithmic score. Nev-
ertheless, there are important differences with (predictive) BMA as Geweke & Amisano
(2011) explain. When the component models are assumed to constitute an incomplete
model space, the conventional Bayesian interpretation of the weights as reflecting the pos-
terior probabilities of the components is inappropriate. We note that instead of looking
at fit over the entire density, with a larger out-of-sample window than available in our
application the component models could be scored according to their ability to forecast

specific probability events of interest.

5.1 Occam’s Window: excluding bad component models

There is always a question about how one should choose the set of models over which one

combines. We start by employing an uninformative prior on all component models and

6The logarithmic score of the density forecast, Ing(Ay, | Q2), is the logarithm of the probability
density function g(. | Q2), evaluated at the outturn Ay, .
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use the data (Bayes’ rule) to update the weight on each model as evidence accumulates.
But we also consider whether there are empirical benefits to excluding some bad models,
prior to taking the combination.

Madigan & Raftery (1994) propose the use of Occam’s Window, under which one
averages over a subset of preferred models, treating all the worst fitting models outside
this subset as having zero posterior probability. We select the preferred, better fitting,
models using w;,; as computed in . Specifically, model i is discarded from the
combination if it predicts far less well according to the logarithmic score than the best

model, i.e. if:

max{w;  ;}

> c (11)

Wi,r,j

where ¢ is a constant; following Madigan & Raftery (1994) (and Hoeting et al. (1999))
we set ¢ at 20 in analogy with the 0.05 cutoff used for P-values. In principle, one might
think of alternative means of excluding bad or uninformative models, e.g. based on
subjecting component models to specification tests or dropping those component models
where the indicator (on an in-sample basis) is poorly correlated with Ay,. But here we
rely on Occam’s window, given both its Bayesian pedigree and its use of an out-of-sample
measure of fit (namely w; , ; via ), which we might hope offers protection against data
mining (or snooping or over-fitting). Having used Occam’s window to discard the bad
models, both equal and recursive weight combinations of the remaining densities are then
taken. As an alternative to the combination-based density nowcasts, we also consider the
performance of that model which is recursively selected as the best single model, according
to w;-; as estimated in (10]).

5.2 Evaluation of nowcast densities

In constructing the combined densities using the linear opinion pool, we evaluate the
density forecasts using the logarithmic score at each recursion. These weights provide
an indication of whether the support for the component models is similar, or not, based
on the score of the individual densities. A finding of similar weights across component
models would be consistent with the equal-weight strategy.

A common approach to forecast density evaluation provides statistics suitable for tests
of (absolute) forecast accuracy, relative to the “true” but unobserved density. A popular

method evaluates using the probability integral transforms (pits) of the realisation of
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the variable with respect to the forecast densities. See Mitchell & Wallis (2011) for
a review. A density forecast can be considered optimal (regardless of the user’s loss

function) if the model for the density is correctly conditionally calibrated. We gauge

Ayr
calibration by examining whether the pits z,, where z, = / p(u)du, are uniform and

independently and identically distributed. In practice, therefo?é, density evaluation with
the pits requires application of tests for goodness-of-fit and independence at the end of
the evaluation periodﬂ Mitchell & Wallis (2011) refer to this two component condition as
“complete calibration”. In the face of alternative goodness-of-fit and independence tests,
and in order to build up a robust impression of how well calibrated the densities are, we
undertake a battery of tests widely used in the literature.

The eight goodness-of-fit tests employed on the pits include, firstly, the Likelihood
Ratio (LR) test proposed by Berkowitz (2001). We use a three degrees-of-freedom variant
with a test for independence, where under the alternative z, follows an AR(1) process.
Secondly, and thirdly, we follow Berkowitz (2001) and report a censored LR test which
focuses on the 10% top and bottom tails of the forecast densities. Fourthly, we consider
the Anderson-Darling (AD) test for uniformity, a modification of the Kolmogorov-Smirnov
test, intended to give more weight to the tails. Fifthly, we follow Wallis (2003) and employ
a Pearson chi-squared test which divides the range of the z, into eight equiprobable
classes and tests whether the resulting histogram is uniform. The remaining three tests
are for independence of the pits; we use a Ljung-Box (LB) test, based on autocorrelation
coefficients up to four. To investigate possible higher order dependence we undertake tests

in the first, second and third powers of the pits.

6 Application nowcasting Euro-Area GDP growth

We compare the accuracy of density nowcasts of Euro-area GDP growth at the six horizons
(j = 1,..,6) in recursive out-of-sample experiments using real-time data. The evaluation
period is 2003q2-2010q4 (Eurostat published its first Flash estimate for GDP growth for
2003q2). Specifically, we use the real-time data triangles for real GDP and industrial
production, for the EA aggregate and the twelve countries, available from Eurostat’s real-
time (EuroIND) database. The qualitative survey data are not revised (in a significant

manner at least). Models are estimated on data vintages back to 2001 with data back to

“Given the large number of component densities under consideration, we do not allow for estimation
(parameter) uncertainty when evaluating the pits. Corradi & Swanson (2006) review pits tests compu-
tationally feasible for small V;.
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1991ql. Seasonally adjusted data are used. It is important to use real-time data, namely
data available at the time rather than the latest release, given data are revised.

The nowcasts are evaluated by defining the ‘outturn’ as the first (Flash) GDP growth
estimate from Eurostat. The exercise could be repeated for different definitions of the
outturn, say the second or third QNA release. But as our primary interest is in acceler-
ating delivery of national accounts data, the first estimate does appear to be the natural
benchmark.

We break our results into two parts: the RW weights on the soft indicators, the hard
indicators and lagged GDP growth derived from the logarithmic score of the component
forecast densities; and, the evaluations of the recursive weight, RW, and equal weight, EW,
strategies for combination. We also consider strategies that focus only on (equal-weighted)

combinations formed using the soft and hard data only.

6.1 Weights on the components

Figure 1 presents the Recursive Weights on the soft indicators (i.e., ESI survey data and
the interest rate spread), hard indicators (i.e., IP) and lagged values of GDP growth
for the six nowcast horizons, ;7 = 1,...,6. The interest rate spread, in fact, received
little or no weight and henceforth we equate the soft data with the (qualitative) survey
data. Note that these weights, on a given type of indicator, say the survey data or IP,
involve summing the weights on all of the component models estimated using various
transformations of the given indicator. For the hard indicators (i.e., IP and GDP growth)
it also involves summation of the weights given to component models which use lagged
instead of contemporaneous values. To identify the relative informational content of the
aggregate versus the disaggregate indicators, we also plot the weights when aggregate
indicators only are considered; when the aggregate indicators receive a high weight the
two lines, for a given indicator, will be close.

We draw out four features from Figure 1. First, comparison of the six panels indicates
that the weight on IP increases as j increases; as more hard data become available they
get a higher weight in the combination, since the data suggests that their consideration
improves (out-of-sample) density fit. In particular, at t-15 days, when the first month
of within-quarter IP data become available, the weight on IP increases dramatically,
relative to the (soft) survey data. The weight on the IP indicator data further increases,
particularly towards the end of the evaluation period when it approaches one, on receipt,
at t+15 days, of the second month of within-quarter IP data.
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Secondly, the fact that the weights on the component models change over time is
consistent with the uncertain instabilities literature referred to above. In particular,
during the recession, no doubt thanks to their forward-looking nature, the weight on the
soft data dramatically and suddenly increases at t-30, t-15, and t-0 days. Indeed, during
the depth of the recession the weight on these soft data became close to unity. In turn,
the weight on IP declined rapidly during the recession, but rose as it ended. But when
two months of within-quarter IP data are available, i.e. if one is willing to wait until t+15
days, the weight remains high on the IP data even over the recessionary period.

Thirdly, we see that the disaggregate indicators are more informative than the aggre-
gate ones, except at t+45 days when all the weight is given to aggregate indicators. For
the three nowcasts produced earlier than t+15 days, prior to receipt of the second month
of within quarter IP data, Figure 1 shows that the disaggregate indicators dominate. At
t+0 days, Spanish qualitative survey data account for much of the increased weight given
to the disaggregate survey data during the recessionary period. But at t+15 and t+30
days, we see that it is the aggregate IP data that account for the majority of the increasing
weight given to IP components. From 2009 the utility of the aggregate IP data decreases
dramatically in favour of disaggregate IP indicators.

Fourthly, consistent with the stylised fact that it is hard to beat an auto-regressive
(AR) model when point forecasting, by deduction from Figure 1 we can infer that the
weight on the AR components in the combination is small but non-negligible (since the
weights on the soft and hard indicators sum to more than 0.9 but often less than unity).
Although, close inspection reveals that the weight on the AR components does decline
as within-quarter information accumulates. By t+45 days the AR components receive
less than a third of the weight received at t-30 days; on average a weight of about 2.5%
rather than 8%. Importantly, we also see the utility of the AR models, as we should
expect given that they adjust to change only with a lag, decline during the recessionary
period. Once the evaluation period is extended to include the recession the autoregressive
nowcasts are clearly beaten by the indicator-based nowcasts, which adapt more quickly to
the recessionary “regime”. The utility of constructing nowcasts using indicator variables
increased over the recessionary period. The weight on that sub-component AR model
which constructs the forecast using only the most recent GDP data (the most recent
column of data) is quite small, less than 0.01 (or 1%). This indicates that there is
informational content in previous, as well as the latest, EA GDP release(s).

There is always an issue about how one should choose the length of the training period
to calibrate the weights in . There is a trade-off involved. The shorter the length of
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the training period the more quickly the combined density can adjust to changes over
time in the performance of the different models. But the longer the length of the training
period the better the combination weights are estimated. In (10]), and in Figure 1, an
increasing window of data is used. Experimentation with rolling windows did not indicate
any gains in density fit, as we summarise below. Alternatives, for future research and for
datasets where 7 — 7 spans more than one recession, are to let the weights follow a Markov-
switching process such that they vary across regimes (cf. Waggoner & Zha (2012)); or,
following the suggestion of a referee, condition the weights on a threshold. For example,
when the soft data indicate a high probability of recession (negative GDP growth), the
combination weights could be estimated not over all 7, as in , but based only on

observations from previous recessions.

6.2 Evaluating the nowcast densities

Table 1 summarises the results of the eight pits tests, for different j, employed on ten
forecasting strategies. These are the EW and RW density combinations, and equal-
weighted density averages from those component models which use only survey, IP or
lagged GDP (AR) data. EW and RW combinations are also considered when aggregate
indicator data only are used, as a means of isolating the relative informational content
of the disaggregate indicator dataﬁ Finally, AR, Occam’s window and model selection
densities are examined. To avoid presenting evaluations for each pits test separately (see
the working paper version of this paper for full details), we follow the pragmatic approach
of weighting all eight pits tests equally. Table 1 reports how many of these eight tests
indicate that the density forecast is correctly calibrated at a 95% significance level—that
is, when we cannot reject the null hypothesis that the densities are correctly calibrated
on the basis of each individual testﬂ Table 2 presents, again for j = 1,...,6, the average

logarithmic score of each density over the evaluation period.

8These EW combinations, taken across all of the component models, effectively give a higher weight to
those indicators, in particular the ESI, which are transformed in more ways; e.g. the ESI is considered in
quarterly and monthly levels and differences. We found that this implicit weighting is not innocuous. We
experimented with EW combinations which group the different indicators (IP, ESI, the interest rate spread
and lagged GDP growth) so that, across transformations of a given indicator, the four different indicators
have the same weight. Across the board we found that this latter strategy led to less accurate density
nowcasts. On average, across j, it led to the average logarithmic score falling by 0.05 units compared
with Table 2 below. We eschew formal tests of equal predictive performance given our small-samples.

9To control the joint size of the eight evaluation tests, at a 95% significance level, would require the
use of a stricter p-value for each individual test than the 5% value we use. The Bonferroni correction
indicates a p-value threshold, for a 95% significance level, of (100% — 95%)/8 = 0.6% rather than 5%.
Table 1 can therefore be seen to offer a conservative impression of calibration.
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Table 1 shows that, in general across the ten different forecasting strategies, the cal-
ibration of the density nowcasts improves as we accumulate within-quarter information.
Similarly, Table 2 indicates that the density nowcasts become sharper, and produce a
higher log score, as within-quarter information accrues. It is also worth remarking (de-
tailed results are again in the working paper version of this paper) that the story is
essentially the same if we look at point forecast accuracy, as measured by root mean
squared error. Similarly, we note that experimentation with rolling instead of expanding
windows to estimate the weights in RW combinations, via (10]), did not deliver clear gains
and in some instances led to obvious losses. For example, use of a two-year rolling window
led to modest increases in the average log score of “RW Disag” at j = 1,2,3 (-0.854 to
-0.796, -0.804 to -0.796 and -0.791 to 0.789) but more substantial decreases (losses) at
Jj =4,5,6 (-0.495 to -0.634, -0.496 to -0.635 and -0.483 to -0.607).

By t+45 days, only one combination strategy (RW) has a correct calibration ratio
of 8/8. This is the case whether one considers either the aggregate and disaggregate
indicator data jointly or the aggregate data alone. But model selection and the use of
Occam’s window, even with equal weights, also both deliver calibration ratios of 8/8 at
t+45 days and similar log scores to RW (Table 2), precisely because, like RW, they pick
up the aggregate IP indicator data, now available for all three months of the quarter.
Recall from Figure 1 that at t445 days these aggregate IP indicators are by far the most
informative indicators. Indeed, as a result, by the end of the evaluation period, as the
evidence has accumulated, Occam’s window in fact eliminates from the combination all
but two of the 444 models considered by the RW and EW combinations. This explains
the comparable performance of equal and weighted combinations having eliminated bad
models (indicators/transformations).

In contrast, Table 1 shows that all ten strategies produce poorly calibrated densities
according to at least four of the pits tests at t-30 days - when no within quarter IP data
are available. From t-15 days onwards, when the first month of IP data is published,
there is some evidence that calibration improves for the EW and RW combinations which
focus exclusively on the aggregate indicators. Indeed the EW combination of aggregate
indicators only produces the highest log score at t-15 days. At t4-0 days, Table 1 indicates
that calibration further improves, with two or three fewer pits tests failed for EW and
RW combinations using aggregate indicators, relative to Occam’s window and selection.
Therefore, while later in the quarter the informational content of specific indicators is
strong and stable enough for either selection or Occam’s window to work, earlier in the

quarter one is better off taking a combination, given the additional instabilities. Table
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2 shows that selection and Occam’s window, relative to the other strategies, do partic-
ularly poorly on the basis of the log score until t+15 days. Until t+15 days, the EW
combination produces the highest, or amongst the highest, log scores in Table 2. Indeed,
it is only marginally beaten by survey-based combinations in one instance at t-30 days.
Only with the arrival of the second month of within-quarter IP data is there enough sta-
bility (i.e. consensus over the preferred indicator(s); cf. Figure 1) for Occam’s window
and selection to work. Otherwise, as seen in Figure 1, since the evidence in favour of
particular component models changed abruptly over the recessionary period - with the
relative informational content of the survey data increasing - one is better off weighting
each component model equally. The RW strategy is not as effective as EW, although
far preferable to model selection certainly when aggregate indicators only are combined.
Nevertheless, the RW combination struggles keep up with the pace of change this early
in the quarter. It is only later in the quarter that RW pays off, due to the increased
informational content of the IP data.

On receipt of the second month of within-quarter IP data, at t+15 days, we see
in Tables 1 and 2 a marked improvement in calibration and density fit, with the RW
combination, of aggregate and disaggregate indicators, now having a correct calibration
ratio of 8/8. The EW strategy now performs noticeably worse than RW), failing three
more pits tests, unless Occam’s window is used. This failure is again because EW does
not weight highly enough the IP data. The gains associated with the RW combined density
at t+15 days are much weaker when only the aggregate indicators are considered, with
the average logarithmic score rising from -0.74 to -0.61 rather than -0.79 to -0.50. In
fact, looking at the RW weights, it is the latest Spanish IP data that appear particularly
helpful in improving density fit. When one considers only the aggregate indicators, the
EW combination in fact performs slightly better than the RW combination even at t+15
days. This demonstrates the gains from consideration of the disaggregate IP data.

It does not appear to be worth waiting an additional 15 days for receipt, at t+30 days,
of the Portuguese IP data, the Belgian GDP data and the US GDP data. Consideration
of these indicators, despite the fact that they are known for the whole quarter, does not
improve calibration (Table 1) or density fit (as measured in Table 2). This is consistent
with the view that Belgium and Portugal are too small, relative to the EA aggregate,
for their data to offer a reliable guide as to likely movements in the aggregate; similarly,
while the US economy may influence the European economy at a lag, receipt of the latest
US data does not appear to help when nowcasting.

Finally, from Tables 1 and 2 we see that both the survey-based and AR densities do
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not improve in accuracy as time passes. Only when produced very early are these densities
competitive relative to the other approaches. Even then they fail three or four calibration

tests.

6.2.1 Probability of a recession

To evaluate further the accuracy of these density nowcasts we evaluate not the entire
density, as above, but the probability forecast of an event of specific interest. We rely
on graphical evaluation of these probability event forecasts, rather than formal statis-
tical tests; e.g., see Clements (2004). This is sufficient to illustrate our main findings.
Specifically, Figure 2 extracts from the EW and RW combined density nowcasts (using
both the aggregate and disaggregate indicators) the implied probability of a (one quarter)
recession. In the bottom right panel of the figure we present the outturn, as measured by
Eurostat’s first (Flash) estimate, for quarterly GDP growth. Given that we have seen that
the fit of the densities did not improve at all on receipt, at t+30 days, of the disaggregate
hard data for Belgium, Portugal and the US, we do not present the implied probability
forecasts at t430 days; these are identical to those seen at t+15 days in Figure 2.
Figure 2 shows that the EW combination gave about a 10% chance to a recession from
2003 until 2008. The RW combination indicated less than a 10% chance of a recession
over this period of sustained economic growth, which seems better. Figure 2 also shows
that the RW combination, as we have seen because it increasingly put a high weight on
the soft data during the recession, picks up the recession earlier than the EW combination
even when the density nowcast is formed at t+0 days or earlier. But the pits tests did
indicate evidence of calibration failure for these densities as a whole. But from t+15 days,
when the RW density does appear to be well-calibrated, we again see the RW combination

picking up the recession earlier, and more confidently, than EW.

7 Conclusion

Official GDP data are published with a delay. In order to form a view about the current
state of the economy, policymakers therefore rely on a wide range of incomplete data, such
as industrial production, which ignore important sectors of the economy, like services,
disaggregate (national) rather than aggregate (EA) data, and/or subjective survey data,
which tend to be qualitative rather than quantitative. But these data can often point in

different directions, particularly at the onset of a recession, and their relative informational
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content likely depends on how far ahead of the statistical office’s estimate a view about
the economy is formed. This paper provides a formal means of assessing the utility of
these different indicator variables, and relating them to official Eurostat GDP data. The
density combination methods set out make it possible to know how much weight to place
on different indicators when forming, at various points in time before and after the end
of the quarter of interest as monthly information accumulates, a view about the current
state of the economy. The uncertainty associated with these nowcasts is acknowledged,
and subsequently evaluated, by constructing density nowcasts.

In a real-time out-of-sample application, density nowcasts for Euro-area quarterly
GDP growth are computed as within-quarter monthly “soft” and “hard” indicator data
accrues, at both the aggregate and disaggregate (country) level. Alternative tempo-
ral transformations of the monthly indicators are considered, delivering a wide range of
within-quarter indicators. A linear regression model is then computed for each indica-
tor /transformation and Student-t predictive densities are then combined using the linear
opinion pool. Our results suggest that equal-weighted combinations delivered better, but
in absolute terms poorly, calibrated densities when limited within-quarter indicator data
are available. Equal-weighted combinations were more robust to observed instabilities in
terms of the relative importance of “soft” data; the utility of such survey data increased
dramatically in the recession, but this was hard to detect in real-time and it therefore
pays to weight indicators equally. But, as within-quarter information accumulates, and
in particular when the second month of within-quarter industrial production data is pub-
lished at t+15 days, time-varying weighted combinations are more effective and deliver
well-calibrated densities. They do so by giving a higher weight in the combination to
the available monthly “hard” data. Equal weighted combinations can perform similarly
well at t+15 days onwards, but only if the bad models are eliminated prior to taking
the combination using Occam’s window, so that effectively the available monthly “hard”
data are again given a higher weight. Similarly, selecting the best model is also effective
from t+15 days onwards, given there is by then more of a consensus about the preferred
indicator(s). But earlier in the quarter, given the observed instabilities and uncertainties
about the right indicator, selection performs poorly relative to both equal and weighted
density combinations. Finally, we find that density nowcasts at t+15 days are as accurate
as those which involve waiting an additional 15 days for receipt of full-quarter “hard”

indicator data from some countries.
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Figure 1: Log-score weights on aggregate/disaggregate soft indicators (survey data) and
aggregate/disaggregate hard indicators (IP), and the weights on the aggregate (Agg)
indicators only, as within-quarter monthly data accrues (j =1, ...,6)
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Figure 2: Probability of negative GDP growth according to the EW and RW combination
densities
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Table 1: Number of pits tests (out of eight) which indicate correct calibration at 95

percent
t-30 days t-15 days t+0 days t+15 days t+4+30 days t+45 days
Jj=1 Jj=2 Jj=3 J=4 J=5 J=206
EW 3 4 3 5 5 4
RW 2 2 3 8 8 8
Survey 4 4 5 5 ) >
IP 4 5 5 5 6 4
EW (Agg) 4 5 6 6 6 6
RW (Agg) 3 6 6 7 7 8
AR 5 4 5 4 5 5
Occam: EW 2 3 2 7 7 7
Occam: RW 2 2 3 8 8 7
Select 3 3 4 8 8 8

Notes: EW is an equal-weighted density combination of all the component models; RW takes a log

score weighted average of all of the models; (Agg) denotes combinations of aggregate component

models only. Survey is the equal-weighted density combination of those component models that use

soft data only; similarly, IP considers the hard indicators only; AR takes equal-weighted density

combinations from AR(1) models estimated using all available (multiple vintage) EA GDP growth

data. Occam denotes use of Occam’s Window. Select is that single model selected according to (10).

Table 2: Average logarithmic score: 2003q2-2010q4

EW RW  Survey IP EW RW AR Occam Select

Disag Disag Agg Agg EW RW
t—30:5=1 -073 -0.85 -0.70 -0.81 -0.71 —-0.82 —-0.84 —-0.87 —-0.90 -1.35
t—15:57=2 -0.72 -0.80 -0.71 -0.77 —-0.66 —0.82 —0.87 —-0.87 —-0.84 —-1.30
t+0:5=3 -069 -0.79 -0.70 -0.77 —-0.64 —-0.74 —-0.87 —-0.85 —0.86 —0.89
t+15:5=4 -0.66 -0.50 —-0.70 -0.68 —-0.60 —0.61 —0.84 —-048 —-0.46 —0.54
t+30:5=5 —-0.66 —-0.50 —0.70 —0.70 K K —0.84 —-0.48 —0.46 —0.54
t+45:5=6 -065 —-048 —-0.70 -0.70 —-0.53 —0.46 —-0.85 —-0.51 —0.46 —0.43
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