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Abstract:

The evaluation of multi-step-ahead density forecasts is complicated by the serial

correlation of the corresponding probability integral transforms. In the litera-

ture, three testing approaches can be found which take this problem into account.

However, these approaches can be computationally burdensome, ignore important

information and therefore lack power, or suffer from size distortions even asymptot-

ically. In this work, a fourth testing approach based on raw moments is proposed.

It is easy to implement, uses standard critical values, can include all moments

regarded as important, and has correct asymptotic size. It is found to have good

size and power properties if it is based directly on the (standardized) probability

integral transforms.

Keywords: Density forecast evaluation; normality tests

JEL-Classification: C12, C52, C53



Non-technical Summary

Today, predictions are often made in the form of density forecasts. An increas-

ing number of central banks publishes density forecasts, which are displayed by

fan charts. Compared to point forecasts, density forecasts contain additional in-

formation. From density forecasts for inflation, for example, it is possible to infer

the probability of deflation or the probability of inflation being higher than the

central bank’s target.

Point forecasts can be evaluated according to properties like bias or efficiency.

Similarly, density forecasts can also be evaluated. A forecast density should co-

incide with the true density of the variable under study. If this is the case, the

density forecast is said to be correctly calibrated. However, if, for instance, over

a certain period of time the realizations of the variable under study always occur

within a very narrow interval around the means of the forecast densities, this would

be a strong indication for incorrect calibration. The forecast densities probably

have a too large width in this case.

If density forecasts for more than one period ahead are to be evaluated, this

evaluation is complicated by the serial correlation of the outcomes with respect to

the density forecasts. Suppose, for example, that one density forecast for inflation

is made in January for July, and the next forecast is made in February for August.

Then, if inflation in July turns out to be much higher than the mean of January’s

density forecast, it is very likely that inflation in August will also be considerably

higher than the mean of February’s density forecast.

One can distinguish three evaluation approaches that are used or suggested in

the literature for these situations. However, each of them has certain disadvantages



with respect to the ability to detect incorrect calibration, to the possibility of

falsely concluding that the density forecasts have incorrect calibration although

it is actually correct, or to the ease of use. Therefore, an alternative evaluation

approach, which does not suffer from any of these drawbacks, is suggested in this

paper. In simulations, this new approach is found to yield good results and, thus,

to be a viable alternative to the existing approaches.



Nicht-technische Zusammenfassung

Vorhersagen werden heutzutage oft in Form von Dichteprognosen gemacht.

Auch Zentralbanken veröffentlichen in zunehmendem Maße Dichteprognosen, die

als Fächerdiagramme (Fan Charts) dargestellt werden. Im Vergleich zu Punktprog-

nosen enthalten Dichteprognosen zusätzliche Informationen. Aus Dichteprognosen

für die Inflation ist zum Beispiel ersichtlich, wie hoch die Wahrscheinlichkeit für

eine Deflation ist oder wie wahrscheinlich es ist, dass die Inflation über der Ziel-

marke der Zentralbank liegt.

Punktprognosen können bezüglich verschiedener Eigenschaften, wie Verzerrung

oder Effizienz, beurteilt werden. In ähnlicher Weise ist auch die Beurteilung von

Dichteprognosen möglich. Eine Prognosedichte sollte mit der wahren Dichte der

untersuchten Variable übereinstimmen. Falls dies der Fall ist, spricht man von

einer korrekt kalibrierten Dichteprognose. Wenn jedoch zum Beispiel die Realisa-

tionen der untersuchten Variable über einen längeren Zeitraum hinweg immer in

einem sehr engen Intervall um die Mittelwerte der Prognosedichten liegen, so würde

dies auf eine fehlerhafte Kalibrierung hindeuten. Die Prognosedichten würden in

diesem Fall wahrscheinlich eine zu große Breite besitzen.

Falls Dichteprognosen für mehr als eine Periode im Voraus beurteilt werden

sollen, so wird eine Beurteilung dadurch erschwert, dass die Realisationen in Bezug

auf die Dichteprognosen autokorreliert sind. Man könnte beispielhaft den Fall von

zwei Dichteprognosen für die Inflation betrachten, von denen eine im Januar für

Juli und eine im Februar für August erstellt wird. Falls die Inflation im Juli

deutlich über dem Mittelwert der Prognosedichte vom Januar liegt, dann ist es

sehr wahrscheinlich, dass die Inflation im August ebenfalls beträchtlich über dem



Mittelwert der Prognosedichte vom Februar liegt.

Man kann im Wesentlichen drei Ansätze für die Beurteilung von Dichteprog-

nosen in solchen Situationen unterscheiden, die in der Literatur verwendet oder

vorgeschlagen werden. Allerdings besitzt jeder dieser Ansätze gewisse Nachteile

in Bezug auf die Möglichkeit, fehlerhafte Kalibrierungen zu identifizieren, korrekt

kalibrierte Prognosen fälschlicherweise als fehlerhaft zu klassifizieren oder in Bezug

auf die Komplexität des Verfahrens. Daher wird in diesem Papier ein alternatives

Bewertungsverfahren vorgeschlagen, das über keinen dieser Nachteile verfügt. In

Simulationsstudien zeigt sich, dass der neue Ansatz gute Ergebnisse liefert und

daher eine brauchbare Alternative zu den bestehenden Verfahren darstellt.
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Evaluating the Calibration of Multi-Step-Ahead
Density Forecasts Using Raw Moments1

1 Introduction

Today, predictions are often made in the form of density forecasts. Tay and Wallis

(2000) give a survey of the use of density forecasts in macroeconomics and fi-

nance. In contrast to point forecasts, density forecasts contain information about

the probability of outcomes. In general, optimal decision-making requires these

probabilities in order to minimize expected losses.

Just like point forecasts, density forecasts should be evaluated in order to in-

vestigate whether they are correctly specified. Point forecasts, for example, can

be tested for bias. Density forecasts, in general, are tested for correct calibration.

Correct calibration means that the density forecast coincides with the true density

of the predicted variable. If, for example, the observed realizations always occur

within a range of only one standard error of the forecast density around the mean

forecast, the forecast density is probably too dispersed. A test would be likely to

reject the hypothesis of correct calibration in such a situation.

This work is concerned with the question, how an evaluation of density forecasts

can be conducted if the percentiles of the realizations, calculated according to the

forecast densities, are serially correlated. That is, the situation is studied where,

for example, it is very likely that the next realization exceeds the median of the

1Author: Malte Knüppel, Deutsche Bundesbank, Research Centre, Wilhelm-Epstein-Straße
14, D-60431 Frankfurt am Main, Germany. E-mail address: malte.knueppel@bundesbank.de
The author would like to thank Jörg Breitung and Karl-Heinz Tödter for helpful comments and
suggestions. This paper represents the author’s personal opinion and does not necessarily reflect
the views of the Deutsche Bundesbank.
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forecast density for the next period if the current realization exceeds the median of

the forecast density for the current period. Serial correlation of forecast errors, and,

thus, of the percentiles of the realizations, is a typical feature of multi-step-ahead

forecasts.2

The evaluation of density forecasts frequently rests on the transformation of

the realizations to percentiles according to the forecast density, as described above.

To be more precise, if the density forecasts are calibrated correctly, the probability

integral transforms (henceforth PITs) of the realizations should yield the correct

percentiles of the realizations, which then are uniformly distributed over the inter-

val (0, 1), as noted by Dawid (1984) and Diebold et al. (1998). The original idea

for this evaluation approach dates back at least to Rosenblatt (1952). If the PITs

are independent, they can be used directly for testing the calibration of density

forecasts, employing, for example, the Kolmogorov—Smirnov test. Applying an in-

verse normal transformation to the PITs yields, in the case of correctly-calibrated

density forecasts, a variable with standard normal distribution (henceforth the

INTs, i.e. the inverse normal transforms). This second transformation is often

employed, because “there are more tests available for normality, it is easier to test

autocorrelation under normality than uniformity, and the normal likelihood can

be used to construct likelihood ratio tests.” (Wallis, 2007, p. 39).

For one-step-ahead forecasts, the PITs, in addition to uniformity, should dis-

play independence.3 This implies that the PITs, and, consequently, the INTs

2The evaluation approaches investigated in this work can of course also be applied to one-
step-ahead density forecasts. However, in these cases one often prefers to use tests which simul-
taneously check for correct calibration of the forecast densities and independence (and, thus, no
serial correlation) of the percentiles.

3In the words of Mitchell and Wallis (2011), the density forecasts are completely calibrated if
both conditions are fulfilled.
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should not be autocorrelated. The likelihood ratio test proposed by Berkowitz

(2001) can be applied to the INTs in order to test simultaneously for zero mean,

unit variance, and zero autocorrelation based on a first-order autoregressive model

(henceforth AR(1)-model) for the INTs. The approach of Berkowitz (2001), how-

ever, does not allow to test for departures from normality. Bao et al. (2007)

consider an extension which can accomplish this task.

For multi-step-ahead forecasts, even optimal forecasts produce serially corre-

lated forecast errors, and, thus, serially correlated PITs and INTs. The evaluation

of multi-step-ahead forecasts found in the literature, mostly therefore, focuses on

correct calibration only.4 Basically, three approaches can be distinguished.

One approach, proposed by Corradi and Swanson (2006a), uses Kolmogorov-

type tests that account for the serial correlation of the data. However, for these

tests, critical values are data dependent and therefore, have to be determined

individually for each sample under study employing a block bootstrap method.

Another approach rests on normality tests for the INTs which are valid in the

presence of serial correlation. Mitchell and Wallis (2011) mention the skewness-

and kurtosis-based normality tests proposed by Bai and Ng (2005). Corradi and

Swanson (2006b) also suggest, inter alia, the tests proposed by Bai and Ng (2005),

and related GMM type tests introduced by Bontemps and Meddahib (2005, 2007).

Another test for the normality of time series was proposed by Lobato and Velasco

(2004). The tests of Bai and Ng (2005) are, for example, employed by D’Agostino

4If an h-step-ahead density forecast is optimal (“Optimal” here means “completely cali-
brated”. More on this follows in Section 3.2.), then its INT at time t are independent of the
INTs at time t ± (h+ i) with i = 0, 1, .... While this independence property could in principle
be tested as well, in practice this is apparently never done. As argued by Corradi and Swanson
(2006a), it is important to know whether the density forecast is correctly calibrated, even if the
forecasts are not optimal, thereby possibly causing dependence of the INTs.
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et al. (forthcoming) for the evaluation of their density forecasts.5

Finally, in several applications like those by Clements (2004), Mitchell and Hall

(2005), Jore et al. (2010), Bache et al. (2011), and Aastveit et al. (2011) one finds

a variant of the test by Berkowitz (2001) adapted to the case of serially correlated

INTs. Instead of testing for zero mean, unit variance and zero autocorrelation,

only the first two hypotheses enter the test. Thus, no restriction is placed on the

autoregressive coefficient of the AR(1)-model.6

Unfortunately, each of these approaches has certain disadvantages. The tests

by Corradi and Swanson (2006a) are computationally burdensome. Therefore, in

practice these tests are hardly applied. Concerning the normality tests proposed

above, none of them was originally derived in order to evaluate density forecasts.

Therefore, these tests are based on skewness and kurtosis, but ignore the infor-

mation contained in first and second moments. Since the INTs have a standard

normal distribution under the null hypothesis of correct calibration, large power

gains can, of course, be achieved by considering those moments. Finally, the test

by Berkowitz (2001) is based on the assumption of an AR(1)-process. If this as-

sumption is incorrect, as would be expected in the case of, for example, optimal

multi-step-ahead forecasts, the standard critical values are not valid, so that the

test does not have the correct asymptotic size. Moreover, information from higher-

order moments is ignored. It should be noted that, as in the case of the normality

tests, the evaluation of multi-step-ahead forecasts is not the intended use of the

5To be more precise, D’Agostino et al. (forthcoming) use separate tests for zero skewness and
zero excess kurtosis proposed by Bai and Ng (2005), instead of their normality test which uses
both moments jointly.

6Interestingly, in several studies mentioned in this paragraph, one can also find p-values of
additional tests which actually assume serial independence of the PITs and the INTs. Since the
actual size of these tests is unknown in the presence of serial correlation, the information content
of these p-values remains rather unclear.
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test by Berkowitz (2001).

The tests that are proposed in this work do not suffer from any of the disad-

vantages mentioned, as they use standard critical values, can employ all moments

regarded as important, and have correct asymptotic size. Actually, they are closely

related to the normality tests mentioned above. Most likely, the skewness- and

kurtosis-based tests by Bai and Ng (2005), Bontemps and Meddahib (2005), and

Lobato and Velasco (2004) could easily be modified such that hypotheses about

lower-order moments are included. However, it seems more obvious to directly

consider the raw moments instead of standardized moments for several reasons.

Firstly, certain kinds of misspecifications are more likely to be discovered when

tests for raw moments are used. For example, if the forecast density and the

true density are normal, but the forecast density has an incorrect variance, this

misspecification will show up in the fourth raw moment, but not in the kurtosis.

Moreover, the tests based on raw moments are much simpler, because raw moments

do not rely on estimates of mean and variance.7 Finally, the estimators of skewness

and kurtosis can be severely biased in small samples, even in the absence of serial

correlation, whereas the estimators of raw moments are unbiased.

It should be noted that the effects of parameter estimation uncertainty for the

parameters of the forecasting model on the evaluation of density forecasts is not

addressed in this work. An excellent treatment of this issue can be found in Chen
7Since skewness and kurtosis use these estimates, for example, Bai and Ng (2005) have to

estimate a four-dimensional long-run covariance matrix for their normality tests. Bontemps and
Meddahib (2005) instead use transformations of the variable under study known as Hermite
polynomials. Finally, Lobato and Velasco (2004) derive analytic formulas for the variance of
skewness and kurtosis which take the estimation uncertainty for mean and variance into account.
In contrast to that, with raw moments, the two-dimensional long-run covariance matrix of the

third and fourth moment could be used directly.

5



(2011).8

2 Calibration Tests for Density Forecasts

Let the variable of interest be denoted by xt and the forecast density for this

variable in period t by f̂ (xt), where the forecast was made in period t− h, and h
is a positive integer. The PIT proposed by Rosenblatt (1952) is given by

ut = F̂ (xt) =

∫ xt

−∞
f̂ (q) dq

where F̂ (xt) denotes the forecast distribution function associated with f̂ (xt). If

the forecast density f̂ (xt) is equal to the true density g (xt),9 then ut is uniformly

distributed over the interval (0, 1). The INT used by Berkowitz (2001) yields

zt = Φ
−1 (ut) = Φ−1

(
F̂ (xt)

)

where Φ−1 is the inverse of the standard normal distribution function. As stated

in Berkowitz (2001), the density of zt is given by

p (zt) =
g (xt)

f̂ (xt)
φ (zt)

8Using the formulas (34) and (35) given in Chen (2011), which are based on West and Mc-
Cracken (1998), it should be fairly easy to adapt the raw-moments tests proposed in what follows
to the case where a forecasting model with estimated parameters is to be evaluated according to
its out-of-sample density forecasts.

9Note that there might be more than one true density, depending on the conditioning infor-
mation. Gneiting et al. (2007) give the example of a random variablemt that equalsmt = nt+εt.
Let N

(
μ, σ2

)
denote the normal distribution with mean μ and variance σ2. If nt and εt are inde-

pendently N (0, 1) distributed, then N (0, 2) and N (nt, 1) are both true densities of mt. N (0, 2)
is the unconditional density and N (nt, 1) the density conditional on nt. So, both, N (0, 2) and
N (nt, 1), could serve as correctly-calibrated density forecasts for mt.
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where φ (·) denotes the standard normal density function and xt = F̂−1 (Φ (zt)).

In the following, I will describe the two tests typically used in empirical macroeco-

nomic applications and an alternative approach based on raw moments.

2.1 The Test of Berkowitz (2001)

Berkowitz (2001) suggests estimating the equation

zt = μ+ ρzt−1 + εt

with t = 1, 2, . . . , T and εt ∼ N (0, σ2), so that the log-likelihood function is given
by

lnL = c (T )− 1
2
ln

(
σ2

1− ρ2
)
−
(
z1 − μ

1− ρ
)2(

1− ρ2
2σ2

)

−T − 1
2

ln
(
σ2
)− T∑

t=2

(
(zt − μ− ρzt−1)2

2σ2

)
.10

Denoting the maximum-likelihood estimates with a hat, a joint test of correct

calibration and independence of the INTs can be conducted using the likelihood

ratio test statistic

β̂
ind

12 = 2 (lnL (μ̂, σ̂, ρ̂)− lnL (0, 1, 0))

which converges to a χ2 (3)-distribution under the null hypothesis. For multi-step-

ahead forecasts, instead, the test statistic

β̂12 = 2

(
lnL (μ̂, σ̂, ρ̂)− lnL

(
0,

√
1− ρ̂2, ρ̂

))
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and, correspondingly, a χ2 (2)-distribution are used by practitioners in order to

test for correct calibration.11 As mentioned above, this test is frequently employed,

probably not least because of its simplicity. Henceforth, we will refer to this test

as the β̂12 test.

2.2 The Test of Bai and Ng (2005)

Bai and Ng (2005) actually propose two similar tests for the normality of time

series which are based on the skewness and kurtosis of zt. I will focus on the

test that Bai and Ng (2005) appear to prefer because of higher power, and that,

consequently, they use in their empirical application.12 The test is based on the

statistic

μ̂34 = â
′
(
Ψ̂Ξ̂Ψ̂

′)−1
â

where â is the vector given by

â =

⎡
⎢⎣ 1√

T

∑T
t=1 (zt − z̄)3

1√
T

∑T
t=1

(
(zt − z̄)4 − 3

(
σ̂2
)2)
⎤
⎥⎦ ,

11Of course, the values of the parameters will depend on the forecast horizon h under study.
12There is a typing error in Tables 4 and 5 in Bai and Ng (2005). While in their article, one

reads that “The μ̂34 test is generally more powerful than the π̂34 test” (Bai and Ng, 2005, p.
55), Table 4 apparently shows that the π̂34 test tends to reject more often than the μ̂34 test, and
for the empirical application in Table 5, only the π̂34 test is used. When replicating parts of Bai
and Ng’s (2005) Monte Carlo simulations and empirical applications, it turns out that the typing
error occurred in the tables, not in the text. So as stated in their text, the μ̂34 test rejects more
often than the π̂34 test, and it is actually the μ̂34 test which is used in the empirical application.
Although Bai and Ng (2005) prefer the μ̂34 test because of power reasons, it should be noted

that this test tends to overreject under the null hypothesis, whereas the π̂34 test tends to under-
reject. So the π̂34 test could actually be superior in terms of size-adjusted power.
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with z̄ and σ̂2 being consistent estimates of mean and variance of zt, respectively.

Ψ̂ is given by

Ψ̂ =

⎡
⎢⎣ −3σ̂2 0 1 0

0 −6σ̂2 0 1

⎤
⎥⎦

and Ξ̂ is the long-run covariance matrix of the vector series b̂t defined by

b̂t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

zt − z̄
(zt − z̄)2 − σ̂2

(zt − z̄)3

(zt − z̄)4 − 3σ̂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The long-run covariance matrix Ξ̂ can be consistently estimated using the ap-

proaches of Newey and West (1987) and Andrews (1991). μ̂34 converges to a

χ2 (2)-distribution under the null hypothesis. In what follows, the test by Bai and

Ng (2005) will be referred to as the μ̂34 test.

2.3 Alternative Tests Based on Raw Moments

The major complications when testing higher-order moments as in the case of Bai

and Ng (2005) arise from the fact that the lower-order moments are unknown.

Therefore, a four-dimensional covariance matrix is needed for a joint test of only

two moments, skewness and kurtosis. When testing for standard normality, how-

ever, also the lower-order moments are known under the null hypothesis. There-

fore, one does not need to consider standardized moments like skewness and kurto-

sis. It is not even necessary to employ central moments like the variance. Instead,

non-standardized, non-central moments, i.e. the raw moments can be used, so that

9



tests can be constructed very easily.

Actually, the tests do not have to be based on the standard normal distribution,

but any suitable transformation of the PITs can be used. Denote the transformed

variables by

yt = H (ut)

where H (ut) = Φ−1 (ut) would yield standard normally distributed variables yt.

Let the r−th raw moment of yt be denoted as

mr = E [y
r
t ]

and define the vector D̂r1r2...rN of the difference between the N empirical raw mo-

ments of interest (m̂r1 , m̂r2 , . . . , m̂rN ) and the corresponding expected rawmoments

of yt = H (ut) if ut is uniformly distributed (mr1 ,mr2 , . . . ,mrN ) as

D̂r1r2...rN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m̂r1 −mr1

m̂r2 −mr2

...

m̂rN −mrN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where m̂ri is simply given by the sample mean m̂ri =
1
T

∑T
t=1 y

ri
t for i = 1, 2, . . . , N .

For convenience, I assume that the moments are ordered such that r1 < r2 < . . . <

rN . Then a test for the distributional assumption for yt can be based on the

statistic

α̂r1r2...rN = T D̂
′
r1r2...rN

Ω̂−1r1r2...rN D̂r1r2...rN (1)

10



where Ω̂r1r2...rN is the long-run covariance matrix of the vector series

dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yr1t −mr1

yr2t −mr2

...

yrNt −mrN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Supposing that the central limit theorem holds for dt,13 the test statistic α̂r1r2...rN

converges to a χ2 (N) distribution under the null.

If the transformation yt = Φ−1 (ut) is employed, under the null hypothesis this

test is asymptotically equivalent to the μ̂34 test if one chooses to use r1 = 3 and

r2 = rN = 4, so that dt =
[
y3t , y

4
t − 3

]′
and the test statistic α̂34 is obtained.

However, important differences in power are to be expected. For example, if

yt ∼ N (0, σ2) with σ2 �= 1, μ̂34 converges to a χ2 (2)-distribution while α̂34 does
not, because E [y4t ] = 3σ4 continues to hold, whereas E [y4t ] = 3 does not. In

addition, the common estimators for skewness and kurtosis as used for the μ̂34 test

can be strongly biased in small samples, whereas the ri-th raw moment is estimated

unbiasedly by m̂ri. Note that, for the test based on α̂34, only a two-dimensional

covariance matrix Ω̂34 has to be estimated.

If the transformation yt = Φ−1 (ut) and r1 = 1 and r2 = rN = 2 are employed,

so that dt =
[
yt, y

2
t − 1

]′
, the test is similar to the β̂12 test, because both tests

are based on the first and second moment of the INTs. Yet, the β̂12 test assumes

an AR(1)-process for zt, whereas the α̂12 test accounts for general forms of serial

13So, it is assumed that the moments of zt are finite up to order 2rN which is unproblematic if,
for example, H (ut) = Φ−1 (ut) or H (ut) = ut. The asymptotic normality of the first four sample
raw moments, if applied to linear processes with normal disturbances, is shown by Lomnicki
(1961, Section 4).
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correlation. The tests will, of course, have different power properties. Berkowitz

(2001) mentions that the likelihood ratio test is the optimal test against one-sided

alternatives in the case of independent observations, so that its power is known to

be larger at least in certain situations.

In addition to allowing for general forms of serial correlation, another advantage

of the tests proposed here is that the moments can be chosen flexibly according to

the given circumstances. For example, if only a small sample of density forecasts

is available, it is rather unlikely that the inclusion of higher-order moments is

helpful, because they can increase size distortions and decrease power. In very

small samples, one might actually just want to set r1 = rN = 1. One could also

imagine situations where only certain moments are of interest, for example r1 = 1

and r2 = 3.14 In larger samples, an obvious choice might be ri = i with i = 1, 2, 3, 4,

although, of course, moments of even higher order could also be included.

If the transformed variables yt = H (ut) have a density that is symmetric

around 0, there is an alternative approach that, asymptotically, leads to the same

results as the tests described above, but might behave differently in small samples.

This approach is based on the fact that the long-run covariance of yrit −mri and

y
rj
t −mrj equals 0 if yt is symmetrically distributed around 0 and if ri+ rj is odd.

A proof of this property is given in Appendix A.

Based on this property, one can construct an alternative test statistic α̂0r1r2...rN

as the sum of two test statistics

α̂0r1r2...rN = α̂
odd
r1r2...rN

+ α̂evenr1r2...rN
(2)

14This might, for example, be the case if the forecast densities are normal. In this case, a test
using r1 = 1 and r2 = 3 could be employed to check whether the true densities are symmetric
and have the same means as the forecast densities.
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where α̂oddr1r2...rN uses all odd raw moments and α̂
even
r1r2...rN

all even raw moments from

the set of sample moments {m̂ri} which are considered for the test. α̂oddr1r2...rN and
α̂evenr1r2...rN

are calculated in the same way as the test statistic α̂r1r2...rN in (1) , but

only using the odd and even moments, respectively.15 α̂0r1r2...rN converges to a

χ2 (N) distribution under the null.

So, if at least one even and at least one odd moment are involved in the test,

two alternative test statistics can be used. If, for example, the first and second

moment are to be used, so that r1 = 1 and r2 = rN = 2, and these moments equal

E [yt] = 0 and E [y2t ] = 1, the test statistics

α̂12 = T

⎛
⎜⎝ 1

T

∑T
t=1 yt

1
T

∑T
t=1 (y

2
t − 1)

⎞
⎟⎠
′ ⎡
⎢⎣ σ̂2yt σ̂yt,y2t−1

σ̂yt,y2t−1 σ̂2y2t−1

⎤
⎥⎦
−1⎛
⎜⎝ 1

T

∑T
t=1 yt

1
T

∑T
t=1 (y

2
t − 1)

⎞
⎟⎠

and

α̂012 =
T

σ̂2yt

(
1

T

T∑
t=1

yt

)2
+

T

σ̂2y2t−1

(
1

T

T∑
t=1

(
y2t − 1

))2

are obtained, where σ̂2x denotes the sample long-run variance of x, and σ̂x,y denotes

the sample long-run covariance of x and y. Both test statistics have the same

asymptotic distribution (the χ2 (2)-distribution) under the null, because σ̂yt,y2t−1

converges to 0.16

15Alternatively, one could simply set the respective elements of Ω̂r1r2...rN in (1) to zero if the
truncation lag for the long-run covariance matrix is fixed a priori. However, with an automatic
truncation lag selection procedure, the latter approach might be problematic.
16Actually, in Bai and Ng (2005), the test statistics π̂34 and μ̂34 share a similar relation

as α̂0r1r2...rN and α̂r1r2...rN . In contrast to the calculation of μ̂34, for the calculation of π̂34,
information about asymptotic covariances equal to zero is used.

13



3 Monte Carlo Simulation Setup

3.1 The Densities

In order to assess the size and power properties of the tests presented, Monte Carlo

simulations are used, where it is assumed that the density of the variable

xt ∼ N (0, 1)

is to be predicted. The xt’s are identically, but not necessarily independently

distributed, so that, in general, φ (xt |xt−1 ) �= φ (xt) holds.
For the misspecified density forecasts, we consider normal, two-piece-normal,

Student’s t and normal mixture distributions. The normal distribution is employed

to create correctly calibrated density forecasts, or forecasts whose expectation or

variance differ from the true values of 0 and 1, respectively. The two-piece normal

distribution is employed to construct density forecasts with correct expectation and

variance, but with incorrect skewness and kurtosis.17 In order to construct density

forecasts with correct expectation, variance and skewness, but incorrect kurtosis,

Student’s t distribution is employed. Finally, the normal mixture distribution

is set up such that its first four moments are identical to those of a standard

normal distribution while the shapes of both densities differ markedly. Note that

all densities except for the normal ones are standardized such that they have an

expectation of 0 and a variance of 1. In what follows, the densities are described in

more detail. Unless otherwise mentioned, the skewness of the densities presented

equals 0 and their kurtosis equals 3.

17The two-piece-normal density is a relatively popular forecast density among central banks.
For a survey, see Knüppel and Schultefrankenfeld (forthcoming).
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The normal density forecast is given by

f̂ (xt) =
1

σ
φ

(
xt − μ
σ

)

where μ is the forecast mean and σ the forecast standard deviation of xt. Of,

course, with μ = 0 and σ = 1, the standard normal density is obtained.

The two-piece normal distribution, as described, for example, in Wallis (2004,

p. 66), is defined by

f̂ (xt) =

⎧⎪⎨
⎪⎩
A exp

(
− (xt−m)2

2σ21

)
if xt ≤ m

A exp
(
− (xt−m)2

2σ22

)
if xt > m,

with

A =
2√

2π (σ1 + σ2)

and the forecast moments

E [xt] = μ = m+

√
2

π
(σ2 − σ1)

E
[
(xt − μ)2

]
= μ2 =

(
1− 2

π

)
(σ2 − σ1)2 + σ1σ2.

So, setting the mode m to

m =

√
2

π
(σ1 − σ2)
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guarantees that the forecast mean equals 0. Moreover, choosing

σ1 =

√(
1− 3

8
π

)
γ2 + 1− γ

√
1

8
π

σ2 =

√(
1− 3

8
π

)
γ2 + 1 + γ

√
1

8
π

with

γ = μ−m

makes the forecast variance equal to 1, and the forecast density then only de-

pends on γ.18 The parameter γ controls the asymmetry of the density and repre-

sents the mean-mode difference.19 Its possible values are restricted to the interval[
−
√

2
π−2 ,
√

2
π−2

]
. A positive value of γ corresponds to a positively-skewed random

variable xt. Skewness and kurtosis of the standardized two-piece normal distribu-

tion are given by

s = E
[
x3t
]
=
(
(3− π) γ2 + 1) γ

k = E
[
x4t
]
= ((22− 3π) π − 40) γ

4

4
+ (3π − 8) γ

2

2
+ 3.

With γ = 0, f̂ (xt) becomes the standard normal density.

Let τ (xt, v) denote the density function of the t-distribution with v degrees of

freedom, where I assume that v > 4 holds. Using this density, the forecast variance

18In order to see that the variance equals 1, simply insert the expressions for σ1 and σ2 into

the expression for the variance E
[
(xt − μ)2

]
.

19Since the variance equals μ2 = 1, γ is also equal to the Pearson mode skewness defined by
(μ−m) /√μ2.
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μ2 would equal

μ2 =
v

v − 2 .

In order to obtain a forecast density with unit variance, the scaled forecast density

given by

f̂ (xt) =

(
v

v − 2
)− 1

2

τ

(
xt

(
v

v − 2
)− 1

2

, v

)

is employed. The kurtosis of xt equals

k =
3v − 6
v − 4 .

When v approaches infinity, f̂ (xt) converges to the standard normal density.

Finally, the normal mixture density considered is given by

f̂ (xt) =
1

6σ
φ

(
xt +m

σ

)
+
4

6σ
φ
(xt
σ

)
+
1

6σ
φ

(
xt −m
σ

)

with

m =
√
3 (1− σ2),

and with σ ∈ (0, 1].20 The standard normal density emerges if σ = 1. This density
becomes trimodal if σ is sufficiently small.

It should be noted that differences between the moments of the true standard

normal density and the forecast density, in general, do not translate one-to-one into

differences between a standard normal density and the density of the INTs. For

example, while the forecast density based on the t-distribution has a unit variance,

the variance of the corresponding INTs can differ from 1. Yet, if the true density

20Actually, the condition on m only serves to obtain a unit variance. Even if m is chosen
arbitrarily, the skewness and kurtosis of xt continue to equal 0 and 3, respectively.
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and the forecast density are symmetric and have the same expectation, the density

of the INTs is also symmetric.

3.2 The Simulation Environment

It is well known that optimal h-step-ahead point forecasts lead to forecast errors

following a moving-average process of order h−1 (henceforth MA(h−1)-process).21

Similarly, if an h-step-ahead density forecast for xt is correctly calibrated and uses

all the information relevant for the determination of xt, i.e. if it is completely

calibrated according to the terminology of Mitchell and Wallis (2011), it must

hold that

f (yt |yt−i )

⎧⎪⎨
⎪⎩
�= f (yt) i = 1, 2, . . . , h− 1
= f (yt) i = h, h+ 1, . . .

. (3)

where f (•) denotes the density of yt. Formula (3) and the fact that yt has a
Wold representation suggest that, in the case of completely calibrated h-step-

ahead density forecasts, the yt’s follow an MA(h − 1)-process. For example, in
the case of completely calibrated h-step-ahead density forecasts for the linear and

normal process

xt =

∞∑
i=0

biεt−i

with εt ∼ N (0, σ2), the INTs are actually described by the MA(h− 1)-process

yt = zt =
1

σ
√∑h−1

i=0 b
2
i

h−1∑
i=0

biεt−i.22

21See, for example, Diebold (1998, p. 341). Optimality here refers to the minimization of the
mean squared forecast error.
22Yet, for example in the case of the PITs, it is not clear how the shocks of yt are related to

the shocks of the process for xt.
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Therefore, in what follows, an MA(1)-process is used in order to generate de-

pendent standard normal variables xt, so that xt evolves according to

xt = εt + ρεt−1

with εt ∼ N
(
0, (1 + ρ2)

−1
)
for t = 1, 2, . . . T . However, an AR(1)-process is also

considered. In this case, xt is determined by

xt = ρxt−1 + εt

with εt ∼ N (0, 1− ρ2).
If the forecast density is standard normal, the MA(1)-process leads to yt’s

which correspond to those of completely calibrated 2-step-ahead density forecasts,

whereas the AR(1)-process produces yt’s which are closely related to completely

calibrated h-step-ahead density forecasts only if h is sufficiently large and if the

data-generating process is an AR(1)-process.

The tests considered are the β̂12 test, the μ̂34 test, and various raw-moments

tests based on α̂r1r2...rN and α̂
0
r1r2...rN

.23 The parameters for the β̂12 test are esti-

mated by maximum likelihood. For the μ̂34 and the raw-moments tests, the co-

variance matrices Ξ̂ and Ω̂r1r2...rN are estimated under the null hypothesis. That

is, the covariances are determined without subtracting the estimated means of the

vector series b̂t and dt, which both have an expectation of 0 under the null. With

this approach we follow Bai and Ng (2005).24 Subtracting the empirical mean

23It should be noted that the data-generating AR(1)-process corresponds to the assumption
used by the β̂12 test, so that this test is expected to perform well in the corresponding simulation
studies.
24This is not evident from the article itself, but becomes clear from the GAUSS codes provided
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would tend to increase the size distortions of the tests, but also improve their

size-adjusted power.

Concerning the raw-moments tests, the most parsimonious test is only based on

the first moment. Tests with power against more types of density misspecification

are obtained by consecutively adding higher moments. Wherever it is possible,

both test statistics, α̂r1r2...rN and α̂0r1r2...rN , are employed. The largest moment

order considered is four. This yields the seven test statistics α̂1, α̂
0
12, α̂12, α̂

0
123,

α̂123, α̂
0
1234, and α̂1234.

The raw-moments tests could be applied to any transformation of ut yielding

random variables with a distribution that is symmetric around 0. Natural can-

didates are the INTs and a standardized version of the PITs. The standardized

PITs (henceforth S-PITs) are obtained as

yt =
√
12

(
ut − 1

2

)
.

In the case of correctly calibrated density forecasts, the S-PIT is a standard uni-

formly distributed random variable, i.e. a uniformly distributed variable with an

expectation of 0 and a variance of 1. Moreover, its skewness and kurtosis continue

to equal 0 and 1.8, respectively. Hence, the third and fourth raw moment also

equal 0 and 1.8, respectively. The density of yt is given by

f (yt) =

⎧⎪⎨
⎪⎩

1√
12

−√3 ≤ yt ≤
√
3

0 else

in the case of correctly calibrated density forecasts. Otherwise, f (yt) will differ

by the authors.

20



from this functional form, but positive values of the density will, of course, continue

to be restricted to the interval −√3 ≤ yt ≤
√
3. Other potential transformations

of ut will be discussed in Section 5.

In order to facilitate meaningful comparisons between the test statistics, above

all between the test statistics α̂0r1r2...rN and α̂r1r2...rN , the size-adjusted power of

the tests will be reported. This requires a reasonably precise estimation of their

actual sizes. The 95% interval for the rate of the type I error δ̂ estimated from

the simulations has an approximate width of 1.96
√

δ(1−δ)
N
, where N is the number

of Monte Carlo simulations and δ is the true rate of the type I error. Setting

N = 200, 000 yields an accuracy that appears satisfactory for the given purpose.

With a nominal significance level of δ∗ = 5%, if the size distortions are not too

severe, the 95% interval then has a width of about 0.001.25 The critical value of the

test statistics which is used for the power computations is determined by the 95%

quantile of the 200, 000 test statistics computed under the null hypothesis. For the

power computations, the number of Monte Carlo simulations is set to 10, 000 which

corresponds to a maximal width of the 95% interval for the estimated rejection

probability λ̂ equal to 0.01.26

The sample sizes T considered are 50, 100, 200, 500, and 1000. The autore-

gressive and moving-average parameters ρ take on the values 0, 0.5, and 0.9. As

suggested by Andrews (1991), the quadratic spectral kernel is used for the es-

timation of the long-run covariance matrix.27 The truncation lag is also chosen

25The largest possible width equals 0.002. This value is attained if δ = 0.5, i.e. in the rather
extreme situation where, given a nominal significance level of δ∗ = 5%, the test suffers from
strong size distortions and rejects ten times more often than expected under the null.
26Of course, this value is attained if the true power equals λ = 0.5. In the calculation of the

width, the uncertainty concerning the simulated critical values is ignored.
27Employing the Bartlett kernel as suggested by Newey and West (1987) instead of the

quadratic spectral kernel tends to produce only slightly larger size distortions. Results are
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according to Andrews (1991).28

The first misspecified normal forecast density considered has an expectation

of μ = −0.5 and unit variance. The next two misspecified normal forecast densi-
ties have expectations of 0, but their standard deviations

√
μ2 = σ equal 2

3
and

3
2
, respectively. The mean-mode difference γ of the following standardized two-

piece normal forecast density is equal to 0.8. The standardized density of the t-

distribution has 5 degrees of freedom.29 Finally, the standardized normal mixture

density uses the parameter value σ = 0.4. All densities employed, their corre-

sponding INTs, and standard normal densities are displayed in Figure 1. Plots of

the S-PITs can be found in Figure 2. In the case of correctly-calibrated density

forecasts, the density of the S-PITs would be flat and attain a value of about

0.3 ≈ 1/√12.
Assuming normality of the error terms and the (potential) non-normality of the

forecast densities instead of the opposite (non-normal errors and normal forecast

densities) has two advantages.30 Firstly, the normality of the error terms has

the convenient implication that the unconditional distribution of the data, i.e. of

xt, is always normal and does not change with the serial correlation. Secondly,

computational problems are more likely if the forecast densities are normal. Such

available upon request.
28Prewhitening as suggested in Andrews and Monahan (1992) is not used due to the fact that

the yt’s have a moving average representation of order h− 1 in the case of complete calibration,
whereas standard prewhitening procedures employ autoregressive processes.
29This value is chosen arbitrarily. It is the smallest integer value for which the fourth moment

exists. Yet, the existence of moments is not required for the forecast density.
30Actually, the opposite case, i.e. normal forecast densities and non-normal error terms is

probably more relevant from an empirical point of view. However, apart from the serial corre-
lation the test results only depend on the densities of the INTs and SPITs. Hence, it does not
matter whether, for example, the densities of the INTs and SPITs are the result of a two-piece
normal forecast density and a normally distributed variable, or whether the same densities arise
from a normal forecast density and a corresponding non-normal variable.
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Figure 1: Misspecified forecast densities, the true standard normal forecast densi-
ties, and the corresponding INTs (i.e. the inverse normal transforms of the prob-
ability integral transforms)
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Figure 2: Misspecified forecast densities, the true standard normal forecast den-
sities, and the corresponding S-PITs (i.e. the standardized probability integral
transforms)
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problems can arise if realizations occur in regions where the forecast density implies

virtually zero probability. In the case of the the thin-tailed normal distribution

as a forecast density, for example, the very small or very large random numbers

coming from a t-distribution are likely to lead to values of yt, i.e. of the PITs, which

are so close to 0 or 1 that the computer rounds them to exactly 0 or 1, respectively.

In these cases, a following inverse normal transformation is not feasible.31

4 Simulation Results

4.1 Size

If a standard normal forecast density is used, so that the densities are correctly

calibrated, the actual size of the tests under study should be equal to the nominal

size asymptotically. Yet, in small samples, both quantities can differ markedly.

In Tables 1 and 2, the actual sizes of the β̂12 test, the μ̂34 test, and the α̂
0
r1r2...rN

as well as the α̂r1r2...rN tests can be found. Table 1 contains the results for the

raw-moments tests being based on the INTs, whereas Table 2 contains the results

if the S-PITs are used. The following statements concerning the size distortions

refer to the absolute differences between the nominal and the actual size, unless

31Interestingly, the computer’s floating point system for representing real numbers also implies
a second form of potential problems. The computer’s (absolute) accuracy decreases the more a
number differs from 0. Thus, the PITs are more ‘strongly’ rounded near 1 than near 0. This has
the effect that especially the INTs can appear asymmetric (to be more precise, skewed to the
left), although forecast and true density are actually symmetric around their identical expected
values. In the setup chosen here, this effect could be observed if the symmetric normal mixture
density was used with σ being very small. For example, with σ = 0.2, the third raw moment of
the INTs calculated by Monte Carlo simulations equals −0.17 instead of its true value of 0.
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otherwise mentioned.32

The most notable observation concerning the actual sizes is given by the some-

times large size distortions of the raw-moments tests if they are based on the INTs.

It is well-known that, for example, the distribution of the sample kurtosis estima-

tor is far from normal even for relatively large sample sizes.33 Table 1 shows that

for many raw-moments tests, the size distortions can become relatively large. Even

with the α̂012 test, i.e. if only the first and second raw moment are considered, and

the zero-long-run covariance property is used, the actual size can reach almost 10

percent if 200 observations are available and the persistence is strong (i.e. in the

case of an AR(1)-process with ρ = 0.9). The α̂0123 test performs slightly better

in most cases, but still has an actual size of almost 8 percent in the case of 500

observations and strong persistence.34 If fourth moments are employed, the size

distortions can become huge. If 200 observations are available, the actual sizes of

the α̂1234 test and the α̂
0
1234 test range from 13 to 35 percent, depending on the

persistence parameter ρ.

The size distortions of the raw-moments tests based on the S-PITs, in contrast,

are fairly contained according to Table 2. As in the case of the INTs, the size

distortions are, in general, smaller if the α̂0r1r2...rN tests are used instead of the

α̂r1r2...rN tests. In this case, the largest negative size distortions are observed for

the case of 50 observations and strong persistence with actual sizes often being

below 1 percent. The largest positive size distortion is again recorded for 200

32That is, for example, an actual size of 0.01 is considered a size distortion equal to 4 percentage
points, thereby being larger than the size distortion associated with an actual size of 0.08, which
is equal to 3 percentage points.
33Moreover, sample skewness and sample kurtosis of normal variables are uncorrelated, but not

independent in small samples. For more details, see, for example, Doornik and Hansen (2008)
and the references therein.
34The actual size slightly exceeds 8 percent, for example, if ρ = 0.9 and 250 ≤ T ≤ 450.
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observations and strong persistence, where the α̂01234 test has an actual size of 7.3

percent.35 Therefore, in what follows only the raw-moments tests based on the

S-PITs will be considered.

For all tests considered, in general, the size distortions increase with ρ and

decrease with T . There can be exceptions to this rule when tests, for example, are

undersized in small samples and oversized in larger samples. In these cases, there

appears to be an intermediate sample size where size distortions can be close to 0.

If the forecast variable follows an AR(1)-process with no or only moderate

persistence, in general, the β̂12 test yields the smallest size distortions. In small

samples with strong persistence, however, even this test has an actual size of more

than 9 percent. Given an MA(1)-process, the β̂12 test suffers from size distortions

which do not vanish asymptotically. With ρ = 0.9, its actual asymptotic size

equals 2.3 percent, and its size distortions exceed those of all raw-moments tests

for T ≥ 100. The μ̂34 test hardly ever rejects in the case of strong persistence

unless the sample size is large. However, even with 1000 observations and without

serial correlation, the μ̂34 test can suffer from notable size distortions. In general,

the smallest size distortions of the raw-moments test are obtained with the α̂012

test.

Summing up, neither the raw-moments tests based on the S-PITs, nor the β̂12

test, nor the μ̂34 test can guarantee small size distortions in all circumstances.

However, the α̂0r1r2...rN tests always perform well in the case of MA(1)-processes.

In the case of AR(1)-processes, they are undersized in small samples with strong

35Additional simulations not reported in the tables suggest that this appears to be the largest
positive size distortion among all sample sizes given the AR(1)-process with ρ = 0.9 and the
α̂0r1r2...rN tests considered. With T = 150, the actual size of the α̂01234 test equals about 6.9
percent. With T = 250, it reaches 7.2 percent.
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persistence, but one could argue that this is preferable to overrejecting as ob-

served for the β̂12 test. The use of the μ̂34 test and the α̂r1r2...rN tests cannot be

recommended.

The latter conclusions are uniquely motivated by size considerations. However,

it should be noted that these considerations are of paramount importance for most

practitioners, because they tend to rely on the critical values derived from the χ2-

distribution.

4.2 Size-Adjusted Power

The size-adjusted power (henceforth simply referred to as power) of the tests de-

pends crucially on the sample moments of the S-PITs and INTs. Therefore, these

moments are displayed in Table 3 for three sample sizes (T = 50, T = 200,

T = 1000) and the case of no (ρ = 0) and strong (ρ = 0.9, AR(1)-process) persis-

tence. Obviously, the expected sample raw moments do not depend on the sample

size or persistence. Differences between the sample raw moments for a specific

forecast density are only caused by the Monte Carlo error. The sample raw mo-

ments are only reported for the S-PITs, but all statements also apply to the sample

raw moments of the INTs.

In contrast to the sample raw moments, the sample moment estimators for

central and standardized moments can be severely biased. The sample variance,

denoted by μ̂2, is biased only if the data are serially correlated. The sample

skewness estimator and, especially, the sample kurtosis estimator can be strongly

biased even without serial correlation, unless the sample size is very large, as also
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found by Bai and Ng (2005).36

It is evident that misspecifications of the forecast density that lead to raw

moments of the S-PITs (and INTs) different from those under the null of correct

specification do not necessarily have the same effect on central or standardized

moments. For example, all raw moments of the S-PITs corresponding to the nor-

mal forecast density with expectation μ = −0.5 are different from their standard

uniform counterparts, whereas variance, skewness and kurtosis of the the INTs

are not. If the variance of the normal forecast density is misspecified, this mis-

specification causes the fourth raw moment of the S-PITs to differ from 1.8 (and

the fourth raw of the INTs to differ from 3), whereas the kurtosis of the INTs

continues to equal 3.

Several other observations are noteworthy as well. For example, the moments

of INTs associated with the two-piece normal forecast density all deviate from

those of a standard normal variable, but the sample mean is very close to 0.37 The

sample mean of the S-PITs is not too far from 0, either. In the same case, the

second sample raw moment of the S-PITs only slightly differs from 1. Hence, it

is not always obvious which moments of the transformed variables will indicate

a certain type of misspecification. Concerning the sample kurtosis, values larger

than 3, i.e. positive values of the sample excess kurtosis only appear in the case

of the two-piece normal and the normal mixture forecast density. Interestingly,

in the latter case, the sign of the sample excess kurtosis actually depends on the

sample size and persistence. This property will be important for understanding

36The common sample skewness and sample kurtosis estimators, ŝ =
1
T

∑T
t=1(zt−z̄)3

( 1T
∑T

t=1(zt−z̄)2)
3
2
and

k̂ =
1
T

∑T
t=1(zt−z̄)4

( 1T
∑T

t=1(zt−z̄)2)
2 , are used. For alternative estimators see Joanes and Gill (1998).

37This property does not depend on the specific value of γ chosen here.
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the results of the μ̂34 test.

In what follows, the results for the individual forecast densities are presented.

Remember that the size-adjusted power is reported, i.e. the critical values are

simulated and can thus differ from the asymptotic critical values.

Normal forecast density with misspecified expectation (μ = −0.5)
In the case of the normal forecast density with misspecified expectation, the

results in Table 4 suggest that the most powerful tests are the β̂12 test and the α̂1

test, where the β̂12 test works better in small samples with strong persistence. In

general, the tests using zero-covariance properties, i.e. the α̂0r1r2...rN tests have more

power than the corresponding α̂r1r2...rN tests. Therefore, and because of the better

size properties, in the following we will only focus on the former.38 The α̂012 test,

which is the raw-moment test corresponding most closely to the β̂12 test, does not

have higher power than the latter in any of the settings considered. Additionally

considering the third moment and fourth raw moment leads to power losses. The

μ̂34 test has power equal to size. Finally, in the setting with T = 50 and an AR(1)-

process with ρ = 0.9, even the most powerful test, the β̂12 test, rejects in only 11%

of the cases.

Normal forecast density with too small variance (σ = 2/3)

The results displayed in Table 5 show that the β̂12 test has the largest power in

all settings. Interestingly, the tests based on α̂012 and α̂
0
123 have relatively similar

power properties, although the expectation of the third raw moment equals 0. The

inclusion of the fourth raw moment causes more pronounced power losses. The

power of the μ̂34 test and the α̂1 test, as expected, is about equal to size. In the

38The superior power of the α̂0r1r2...rN tests was also observed for all subsequent misspecifi-
cations. Results for the α̂r1r2...rN tests for the subsequent misspecifications are available upon
request.
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case of an AR(1)-process with ρ = 0.9 the tests based on α̂012 and α̂
0
123 need more

than 100 observations for their power to differ pronouncedly from size. For the

α̂01234 test, more than 200 observations are needed for this.

Normal forecast density with too large variance (σ = 3/2)

The results for the case that the forecast standard deviation exceeds the true

value are shown in Table 6. In general, again the β̂12 test has the largest power.

However, there are cases where the power of the α̂012 and the α̂
0
123 test attain slightly

higher values. So this is one of the situations which illustrate that the likelihood-

ratio test is not the uniformly most powerful test here.39 The other statements

made for the case with σ = 2/3 continue to apply.

Two-piece normal forecast density (γ = 0.8)

The misspecifications implied by the two-piece normal forecast density are, in

general, most successfully discovered by the μ̂34 test and the α̂
0
123 test, as shown

in Table 7. The β̂12 test attains a similar power only if T = 50. The power of

the α̂01234 test is comparable to that of the α̂
0
123 test. The α̂1 test and the α̂

0
12 have

rather low power, which does not seem surprising, because the mean of the S-PITs

is close to 0, and the second raw moment is close to 1.40

t-distributed forecast density (5 degrees of freedom)

As can be seen from Table 8, if the forecast density has a t-distribution with 5

degrees of freedom, the μ̂34 test delivers the best power results. This result is note-

worthy because Bai and Ng (2005) state that their normality tests derive hardly

any power from the kurtosis component. However, here the INTs are symmetric,

39According to Berkowitz (2001), such a test does not exist for the null hypothesis μ = 0, σ2 =
1.
40However, such considerations can be misleading, as will be seen in the case of the normal

mixture density.
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so that the skewness equals 0. Thus, the test here, actually, derives all its power

from the non-zero sample excess kurtosis. The fact that the μ̂34 test has better

properties than claimed by its developers is apparently related to the sign of the

excess kurtosis. Bai and Ng (2005) almost exclusively study the power for random

variables with positive excess kurtosis, and their kurtosis and normality tests in-

deed have very low power in these cases. However, in the case of negative excess

kurtosis, their kurtosis and normality tests perform well in terms of size-adjusted

power even in small samples.41

Concerning the tests based on raw moments, the α̂012 test, the α̂
0
123 test and the

α̂01234 test again attain similar power which here clearly exceeds the power of the

β̂12 test whenever power exceeds size.

Normal mixture forecast density (σ = 0.4)

The behavior of the μ̂34 test observed here appears counterintuitive at first

sight. Considering first the results for MA(1)-process, which are easier to explain,

the power is around 0.25 for T = 50, but then decreases with the the sample

size until T = 1000, where power is down to 0.03. These results are caused by the

asymmetric power properties with respect to excess kurtosis, the bias of the sample

kurtosis estimator, and the fact that the sample kurtosis estimator yields values

around 3 in most settings.42 In the small samples, the sample kurtosis estimator is

strongly biased downwards, attaining values close to 3 or even below. For a given

sample size, in every simulation with an estimate of the sample kurtosis lower than

3, the μ̂34 test is much more likely to reject than with an estimate exceeding 3 by

the same amount. So the sample size here has two effects on power. Firstly, a

41This result was also confirmed in additional Monte Carlo studies not reported here.
42See Table 3.
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larger sample size implies a larger sample kurtosis, reducing power if the sample

kurtosis is in the neighborhood of 3. Secondly, a larger sample size, of course,

implies more precise estimates, increasing power if the kurtosis does not equal 3.

For sample sizes up to T = 1000, here the first effect dominates. For very large

sample sizes, of course, the second effect would dominate. With strong persistence,

the issue is further complicated by the fact that persistence also has two opposite

effects. Firstly, it amplifies the small sample bias, hence further reduces the sample

kurtosis, thereby leading to more rejections. Secondly, it makes inference more

difficult, resulting in lower power. All effects described give rise to the behavior

observed for ρ = 0.9 in the case of the AR(1)-process, where the power increases

from T = 50 to T = 200 and then decreases for T = 500 to T = 1000, attaining

only 0.13 in the latter case. If even larger sample sizes were considered, the power,

of course, would eventually increase again.

The highest power, in general, is attained by the α̂01234 test. Only in the case

of small samples and strong persistence, the μ̂34 test delivers better results. The

high power of the α̂01234 test compared to all other raw-moments tests is surprising

insofar as, according to Table 3, the fourth raw sample moment is virtually equal to

1.8, its value under the null hypothesis. Additional simulations not reported here

reveal that, indeed, a test that only uses the fourth raw moment, i.e. the α̂4 test,

has power essentially equal to size. Further simulations show that, interestingly,

the high power of the α̂01234 test stems from the joint consideration of the second,

third and fourth raw moment. If one of these moments does not enter the test,

the power decreases considerably. Apparently, the joint distribution of these three

sample moments is such that, usually, at least one of the moments is likely to signal
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departures from the standard uniform distribution.43 Hence, this example shows

that it can even be beneficial to include moments whose marginal distributions, at

first sight, suggest that they cannot contribute to the power of the test.

4.3 Summary

From the Monte Carlo simulations conducted above, several conclusion can be

drawn. Raw-moments tests should not be based on the INTs due to size distortions.

Instead, the tests should be based on the S-PITs. Moreover, the α̂0r1r2...rN tests

yield better results than the α̂r1r2...rN tests in terms of size and power. Among the

α̂0r1r2...rN tests, the α̂
0
12 test often gives the smallest size distortions. However, the

α̂01234 test has power against more types of misspecification, while its size distortions

are still fairly contained.

Concerning the choice among the β̂12 test, the μ̂34 test and the α̂
0
r1r2...rN

tests,

the μ̂34 test often has the largest size distortions, it cannot detect misspecifications

which affect first and second moments of the INTs only, and its power depends in

complex ways on sample size and persistence. Therefore, this test does not appear

to be well-suited for the evaluation of density forecasts. The β̂12 test has very

good size properties if the underlying AR(1)-process assumption is correct, but

otherwise suffers from size distortions which do not vanish asymptotically.44 The

size distortions are moderate in the setting chosen here, but could be larger in other

43That, is if, for example, the third and fourth sample moments are close to 0 and 1.8, respec-
tively, the second sample moment is likely to differ significantly from 1. If the second and third
sample moments are close to 0 and 1, respectively, the fourth is likely to differ significantly from
1.8. Finally, if the second and the fourth sample moments are close to 1 and 1.8, respectively,
the third is likely to differ significantly from 0.
44If there is evidence against an AR(1)-process, one could try to employ a different process, but

should be aware of the potential problems due to pre-testing and increased parameter estimation
uncertainty.
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situations. The β̂12 test is usually the best choice if the sample size is small, and

the data is very persistent. Nevertheless, it should be noted that the test is also

likely to overreject in these situations, even if the data follow an AR(1)-process.

If the misspecifications of the forecast density are restricted to third and fourth

moments, the β̂12 test can nonetheless be useful for detecting miscalibration, be-

cause the mentioned misspecifications will usually translate into INTs with non-

zero mean or at least a variance not equal to 1. However, tests considering higher

moments, of course, tend to have larger power in these situations. If the sample is

not too small, or if persistence is only moderate, as one would expect in the case

of h being not too large, the α̂01234 test appears to be a good option with power

against many types of misspecification.

5 Extensions

In the previous simulations, raw-moments tests were investigated for only two

types of transformations, the INTs and the S-PITs. However, any other symmetry-

preserving transformation might be a candidate with potentially better size and

power properties. The uniform distribution, for example, is a special case of the

beta distribution with parameters α = β = 1. If α = β holds, this distribution is

symmetric, and choosing, for example α = β = 1
2
gives the U-shaped arcsine dis-

tribution function, whereas α = β = 2 yields a concave distribution function. Just

like the uniform distribution, these beta distributions can easily be transformed

such that they are symmetric around 0 and have a variance of 1. However, Monte

Carlo simulations suggest that none of these distributions consistently leads to bet-

ter size or power properties than the standardized uniform distribution. Choosing
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α = β = 2 actually rather tends to lead to lower power and larger size distortions

in the AR(1)-case, whereas with α = β = 1
2
the size distortions in the MA(1)-case

slightly increase.45

Another possibility is given by the consideration of orthogonal functions instead

of moments. That is, instead of the first four raw moments, one could use, for

example, the first four Legendre or Chebyshev polynomials for the transformed

variable yt = 2
(
ut − 1

2

)
with positive density over the interval [−1, 1]. In the case

of the Legendre polynomials, for example, this would give the vector

D̂1234 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
T

(∑T
t=1 yt

)
1
T

(∑T
t=1

1
2
(3y2t − 1)

)
1
T

(∑T
t=1

1
2
(5y3t − 3yt)

)
1
T

(∑T
t=1

1
8
(35y4t − 30y2t + 3)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the corresponding vector series

dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

yt

1
2
(3y2t − 1)

1
2
(5y3t − 3yt)

1
8
(35y4t − 30y2t + 3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

With this approach, all elements of dt have contemporaneous covariances equal

to 0, but this does not hold for the lagged covariances, and, hence, the long-run

45However, if a certain raw-moments test is chosen, the transformations considered could
be used to limit size distortions. For example, the size of the α̂01234 strongly depends on the
convergence of the raw fourth sample moment to normality. If yt has a uniform distribution
with expectation 0, y4t has a positively skewed distribution with mode at 0. The more peaked the
distribution of yt is at 0, the more skewed is y4t . With a U-shaped distribution of yt, however, the
skewness of y4t decreases. Therefore, transforming ut such that the resulting yt has an arcsine
distribution under the null tends to decrease the size distortions of the α̂01234 test.
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covariances. Only the long-run covariances of odd and even polynomials are equal

to 0, as in the case of odd and even moments. It turns out that, again, neither

Legendre nor Chebyshev polynomials yield consistently better results in terms of

size and power than obtained with the approach based on raw moments and the

standardized uniform distribution. Moreover, results based on these polynomials

are probably more difficult to interpret.

Finally, one could modify the approach based on the INTs by using knowl-

edge about the long-run covariance matrix under the null. According to Lomnicki

(1961), the long-run covariance matrix of the raw moments of the INTs, Ω1234, is

given by

Ω1234 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
i=−∞

Ri 0 3R0
∞∑

i=−∞
Ri 0

2
∞∑

i=−∞
R2i 0 12R0

∞∑
i=−∞

R2i

3R0
∞∑

i=−∞
Ri 0

∞∑
i=−∞

(9R20Ri + 6R
3
i ) 0

0 12R0
∞∑

i=−∞
R2i 0

∞∑
i=−∞

(72R20R
2
i + 24R

4
i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Ri denotes the autocovariance of yt at lag i. Thus, the matrix Ω̂1234 can

be constructed by choosing a cutoff value for i and estimating the sample auto-

covariances. However, with this approach, the size and power properties of the

raw-moments tests based on the INTs improve only marginally, so that using the

S-PITs continues to yield clearly better results.

In summary, none of the extensions considered appears to be clearly preferable

to the approach based on the raw moments and the S-PITs.
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Figure 3: Monthly Swiss Francs / U.S. Dollar exchange

6 Empirical Application

In order to illustrate the usefulness of the tests based on raw moments, in what

follows, out-of-sample density forecasts for the monthly Swiss Francs / U.S. Dollar

exchange rate are investigated. The data cover the period from January 1971 to

June 2011 and are displayed in Figure 3. I consider h-step-ahead forecasts with h

ranging from 2 to 5 months. In light of the results of Meese and Rogoff (1983), the

exchange rate is assumed to follow a random walk without drift, so that simple

no-change forecasts are used. For each forecast horizon, the first 96 forecast errors

available, corresponding to 8 years of data, are used to determine the type of

forecast density and the initial estimates of the required parameters. This setup

is used mainly because it is very easy to implement.

The μ̂34 test does not reject the normality assumption of the forecast errors
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for any forecast horizon considered, so that the forecast densities are assumed to

be normal.46 Thus, the only parameter that needs to be estimated for the density

forecasts is the variance. It is determined separately for each horizon, using a

rolling window of 8 years. For the largest forecast horizon h = 5, this approach

yields T = 385 density forecasts that can be evaluated. In order to obtain a

balanced sample of density forecasts with T = 385 for every horizon h, for the

smaller forecast horizons h = 2, 3, 4, the last 5− h density forecasts are ignored.47

The PITs of the resulting density forecast are shown as histograms in Figure 4. The

dashed line indicates the expected height of the bars if the density forecasts were

calibrated correctly. For the horizons h = 2 and h = 3, the most notable deviations

from this line occur for the PITs in the interval (0.9, 1.0), because pronouncedly

less large positive forecast errors occur than expected.

Before evaluating the density forecasts, it is instructive to take a look at the

autocorrelations and partial autocorrelations of the 385 INTs. These are displayed

in Figure 5. Obviously, the assumption of an AR(1)-process would be rather

problematic above all for the smaller forecast horizons. Actually, the dynamics

of the INTs associated with the h-step-ahead density forecasts seem to be fairly

well described by MA(h − 1)-processes. Consequently, persistence increases with
the forecast horizon. The autocorrelations and partial autocorrelations of the PITs

shown in Figure 6 are very similar to those of the INTs, so that the same statements

apply.

In order to check for miscalibration, the α̂01234 test is employed. The β̂12 test

46The p-values range from 0.46 to 0.60. Nevertheless, according to the Monte Carlo results
reported above, the μ̂34 test is likely to be undersized and to have low power here, so that the
normality assumption might not be without problems.
47So for the horizon h = 4, the density forecast for June 2011 is not used. For h = 3, the

density forecasts for May and June 2011 are not used, etc.
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Figure 4: PITs of the density forecasts for the exchange rate at different forecast
horizons h. The dashed line indicates the expected height of the bars if the density
forecasts are calibrated correctly.
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Figure 5: Autocorrelation functions of the INTs for the monthly Swiss Francs
/ U.S. Dollar exchange rate for different forecast horizons h based on no-change
forecasts. Dashed lines indicate 95% confidence bounds, calculated as ±2/√T .
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Figure 6: Autocorrelation functions of the PITs for the monthly Swiss Francs /
U.S. Dollar exchange rate for different forecast horizons h based on no-change
forecasts. Dashed lines indicate 95% confidence bounds, calculated as ±2/√T .
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and the α̂012 test are also used for the sake of comparisons. In Table 10, in addition

to the test results, the first four sample raw moments of the S-PITs as well as

the sample mean and sample variance μ̂2 of the INTs are shown. For all forecast

horizons, the sample means of the S-PITs and INTs are negative, and the second

raw moments of the S-PITs and the variance of the INTs are smaller than 1. These

results suggest that the density forecasts assign too much probability to positive

forecast errors and to forecast errors that are large in absolute value. The fact

that all third raw moments of the S-PITs are negative, and that all fourth raw

moments of the S-PITs are smaller than 1.8 tend to support these conclusions.

Based on the raw moments of the S-PITs, the α̂01234 test rejects the null hy-

pothesis of correct calibration for the forecast horizons h = 2 and h = 3 at the

conventional significance level of 5%. For h = 4 and h = 5, no rejection occurs.

In contrast to these results, the β̂12 test and the α̂
0
12 test do not reject the null

hypothesis for any horizon. Since the β̂12 test and the α̂
0
12 test do not make use

of higher-order moments, it appears likely that the differences in the test results

are caused by the differences in the moments considered.48 The fact that the α̂01234

test does not reject for the larger horizons could be caused by the power losses due

to stronger persistence.

7 Conclusion and Outlook

In this work, two existing tests for the calibration of multi-step-ahead density

forecasts are compared to new tests based on raw moments. The existing tests use

48Moreover, the β̂12 test is undersized in the presence of an MA(1)-process. This property
could, of course, also hold for higher-order MA-processes of the forms suggested by Figure 5.
This would be another reason why the β̂12 test is less likely to reject than the α̂

0
1234 test.
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the inverse normal transforms (INTs) of the probability integral transforms (PITs).

The raw-moments tests can, in principle, be based on any transformation which

yields a symmetric zero-mean distribution function under the null hypothesis of

correct calibration. In the present study, the raw-moments tests are based on the

INTs and standardized PITs (S-PITs). Despite of the autocorrelation of the INTs

and S-PITs, all tests considered here rely on standard critical values and, therefore,

are attractive for practitioners in the first place. The third existing test for the

calibration of multi-step-ahead density forecasts proposed by Corradi and Swanson

(2006a) is not included in this study because its critical values are data dependent,

their derivation is burdensome, and the test appears to be hardly applied.

We find that one of the existing tests, the μ̂34 test of Bai and Ng (2005),

cannot be recommended for the evaluation of density forecasts due to potentially

large size distortions, complicated power properties, and, more importantly, not

using important information contained in the first and second moments of the

INTs. The second existing test, the β̂12 test, due to its relatively large power

especially in small samples with strong persistence, can be very useful for the

evaluation of density forecasts if the dynamics of the INTs correspond to the

assumption used in the test. Otherwise, however, size distortions occur which do

not vanish asymptotically. Moreover, the test does not use information contained

in higher-order moments. It should be noted that both tests mentioned were not

designed for the evaluation of multi-step-ahead density forecasts, but are applied

or recommended for this purpose in the literature.

The raw-moments tests presented do not suffer from the drawbacks of the other

tests mentioned above. Tests based on the S-PITs are found to have good size and

power properties, and can therefore, and because of their simplicity, be a very
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useful tool for the evaluation of density forecasts. In contrast, raw-moments tests

based on the INTs are subject to large size distortions. Raw-moments tests which

use the fact that under the null, odd and even moments are uncorrelated perform

better in terms of size and power than their counterparts which do not employ the

zero-correlation property.

The α̂012 test based on the S-PITs has very good size properties in all set-

tings investigated in this study. The size distortions of the α̂01234 test, in general,

are slightly larger, but still fairly contained, and the test has considerable power

against many alternatives. Therefore, the latter test, which uses the first four

raw moments of the S-PITs appears to be the most recommendable raw-moments

test. However, it should be noted that this test tends to have low power in small

samples with strong persistence, so that the β̂12 test can be a better choice in such

situations.

In an empirical application, the α̂01234 test is applied to density forecasts of the

monthly Swiss Francs / U.S. Dollar exchange rate, where the density forecasts

are based on a random-walk model and the assumption of normally distributed

forecast errors. The null hypothesis of correct calibration is rejected for the 2- and

3- month-ahead forecasts, but not for the 4- and 5- month-ahead forecasts.

The testing approach presented here can easily be extended in order to test

other hypotheses of interest. For example, instead of only regressing yrit − mri

on a constant, one could include yrit−h − mri as an additional regressor. Based

on this setup, it would be possible to test for complete calibration by including

the hypothesis that all coefficients equal zero. Moreover, one could easily test

for the correct calibration for several forecast horizons jointly by considering the

respective elements yrit −mri of the distinct forecast horizons in dt. Of course, the
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size and power properties of these approaches remain to be investigated.

Finally, it might be interesting to note that the serial correlation of the PITs

is not only a feature of horizon-specific multi-step-ahead density forecasts. It also

emerges if path density forecasts are evaluated. Path density forecasts are given

by the forecasts of the joint density for several forecast horizons as considered in

Jorda and Marcellino (2010).
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A Appendix: Proof

The following proof shows that the long-run covariance of yrit −mri and y
rj
t −mrj

equals 0 if yt is symmetrically distributed around 0 and if ri + rj is odd. As a

starting point, consider the inverse normal transform zt = Φ−1 (ut) which yields

zero-mean variables, and denote other symmetry-preserving transformations by

yt = S (zt) . Symmetry of the random variable yt is obtained if S (zt) is an odd

function, that is, if

S (−zt) = −S (zt)

holds. A simple example is given by the function S (zt) = zt. The symmetric

density of yt will be denoted by f (yt).

Suppose that ri is odd and rj is even. Then, for the contemporaneous covariance

of yrit and y
rj
t , we have that

E
[
yrit

(
y
rj
t −my

rj

)]
= E
[
y
ri+rj
t

]
− E [yrit ]my

rj

where my
rj
denotes the expectation E

[
y
rj
t

]
. In order to show that the contempo-

raneous covariance of yrit and y
rj
t is 0, it is thus enough to show that E [y

r
t ] equals

0 if r is odd. For the normally distributed zero-mean variable zt, the expectation

E [zrt ] equals

E [zrt ] =

∫ 0

−∞
zrtφ (zt) dzt +

∫ ∞

0

zrtφ (zt) dzt = 0,

because the facts that the normal density φ (zt) is an even function and that zrt

is an odd function imply that the product zrtφ (zt) is an odd function and, hence,
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that ∫ 0

−∞
zrtφ (zt) dzt = −

∫ ∞

0

zrtφ (zt) dzt.

holds. Thus, the expectation E [yrt ] equals

E [yrt ] =

∫ 0

−∞
yrt f (yt) dyt +

∫ ∞

0

yrt f (yt) dyt

= 0

because, like zrt , y
r
t is an odd function, and, like φ (zt), f (yt) is an even function.

For the non-contemporaneous covariance of yrit and y
rj
t−v with v ∈ Z one obtains

E
[
yrit

(
y
rj
t−v −my

rj

)]
= E

[
yrit y

rj
t−v
]− E [yrit ]my

rj

= E
[
yrit y

rj
t−v
]
.

Again starting with the normally distributed zero-mean variables, the latter

expectation can be rewritten as

E
[
zrit z

rj
t−v
]
=

∫ ∞

0

∫ ∞

0

zrit z
rj
t−vφ (zt, zt−v) dztdzt−v

+

∫ ∞

0

∫ 0

−∞
zrit z

rj
t−vφ (zt, zt−v) dztdzt−v

+

∫ 0

−∞

∫ ∞

0

zrit z
rj
t−vφ (zt, zt−v) dztdzt−v

+

∫ 0

−∞

∫ 0

−∞
zrit z

rj
t−vφ (zt, zt−v) dztdzt−v

where φ (zt, zt−v) denotes the joint normal density of zt and zt−v. Here it holds
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that

∫ ∞

0

∫ ∞

0

zrit z
rj
t−vφ (zt, zt−v) dztdzt−v

= −
∫ 0

−∞

∫ 0

−∞
zrit z

rj
t−vφ (zt, zt−v) dztdzt−v

because zrjt−v is an even function, z
ri
t is an odd function and φ (zt, zt−v) = φ (−zt,−zt−v)

holds. Moreover, since φ (zt,−zt−v) = φ (−zt, zt−v), we have that

∫ ∞

0

∫ 0

−∞
zrit z

rj
t−vφ (zt, zt−v) dztdzt−v

= −
∫ 0

−∞

∫ ∞

0

zrit z
rj
t−vφ (zt, zt−v) dztdzt−v

holds, so that

E
[
zrit z

rj
t−v
]
= 0.

As above, considering yrit and yrjt instead of the odd function zrit and the even

function zrjt leads to the same result, because, firstly, yrit also is an odd func-

tion and yrjt also is an even function, and secondly, f (yt, yt−v) = f (−yt,−yt−v)
and f (yt,−yt−v) = f (−yt, yt−v) must hold because yt = S (zt) is a symmetry-

preserving transformation. Therefore,

E
[
yrit y

rj
t−v
]
= 0

holds for all v ∈ Z, implying that the long-run covariance of an odd and an even
raw moment equals 0 if yt = H (ut) follows a distribution which is symmetric

around 0.
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂12 α̂0123 α̂123 α̂01234 α̂1234

MA(1)-process
50 0.0 0.049 0.024 0.039 0.052 0.071 0.038 0.132 0.169 0.321
50 0.5 0.035 0.016 0.032 0.055 0.072 0.040 0.111 0.161 0.272
50 0.9 0.025 0.012 0.026 0.051 0.052 0.035 0.079 0.147 0.213

100 0.0 0.051 0.059 0.046 0.054 0.067 0.045 0.113 0.162 0.296
100 0.5 0.033 0.039 0.042 0.060 0.077 0.049 0.124 0.178 0.323
100 0.9 0.024 0.032 0.040 0.059 0.073 0.047 0.120 0.183 0.328

200 0.0 0.051 0.089 0.047 0.053 0.061 0.047 0.089 0.128 0.221
200 0.5 0.033 0.070 0.047 0.059 0.069 0.051 0.106 0.142 0.254
200 0.9 0.023 0.064 0.045 0.057 0.067 0.048 0.106 0.147 0.264

500 0.0 0.051 0.095 0.050 0.052 0.056 0.049 0.071 0.095 0.149
500 0.5 0.032 0.088 0.050 0.055 0.059 0.050 0.079 0.104 0.170
500 0.9 0.024 0.086 0.049 0.055 0.060 0.050 0.082 0.107 0.179

1000 0.0 0.050 0.085 0.049 0.051 0.053 0.049 0.061 0.078 0.111
1000 0.5 0.031 0.084 0.049 0.053 0.055 0.050 0.067 0.084 0.126
1000 0.9 0.023 0.085 0.049 0.052 0.055 0.050 0.068 0.087 0.133

AR(1)-process
50 0.0 0.050 0.024 0.039 0.053 0.072 0.040 0.132 0.169 0.319
50 0.5 0.058 0.012 0.035 0.069 0.091 0.052 0.127 0.167 0.265
50 0.9 0.094 0.002 0.001 0.017 0.000 0.003 0.000 0.012 0.000

100 0.0 0.051 0.059 0.045 0.055 0.067 0.045 0.113 0.163 0.297
100 0.5 0.054 0.029 0.050 0.074 0.106 0.063 0.162 0.201 0.369
100 0.9 0.075 0.001 0.006 0.072 0.012 0.041 0.002 0.143 0.011

200 0.0 0.050 0.090 0.047 0.053 0.060 0.047 0.090 0.128 0.222
200 0.5 0.052 0.058 0.055 0.069 0.091 0.062 0.137 0.162 0.299
200 0.9 0.064 0.006 0.027 0.098 0.094 0.079 0.140 0.292 0.353

500 0.0 0.050 0.095 0.049 0.052 0.055 0.049 0.070 0.095 0.149
500 0.5 0.051 0.082 0.055 0.063 0.073 0.059 0.102 0.119 0.206
500 0.9 0.055 0.018 0.053 0.088 0.128 0.079 0.211 0.248 0.449

1000 0.0 0.050 0.084 0.050 0.051 0.053 0.049 0.061 0.077 0.109
1000 0.5 0.052 0.083 0.055 0.060 0.066 0.058 0.083 0.096 0.154
1000 0.9 0.052 0.041 0.057 0.080 0.106 0.074 0.172 0.198 0.363

Note: Actual sizes when the nominal size equals 0.05.

Table 1: Size distortions of tests, raw-moments tests based on INTs
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂12 α̂0123 α̂123 α̂01234 α̂1234

MA(1)-process
50 0.0 0.051 0.023 0.040 0.036 0.039 0.030 0.041 0.034 0.048
50 0.5 0.035 0.015 0.034 0.033 0.034 0.021 0.023 0.030 0.024
50 0.9 0.024 0.013 0.027 0.029 0.022 0.017 0.011 0.026 0.010

100 0.0 0.051 0.060 0.045 0.043 0.046 0.040 0.048 0.044 0.054
100 0.5 0.034 0.039 0.043 0.044 0.046 0.034 0.043 0.041 0.049
100 0.9 0.024 0.033 0.040 0.040 0.040 0.030 0.035 0.038 0.040

200 0.0 0.050 0.090 0.048 0.046 0.048 0.045 0.049 0.046 0.052
200 0.5 0.032 0.071 0.047 0.048 0.048 0.043 0.048 0.046 0.052
200 0.9 0.023 0.064 0.046 0.047 0.046 0.040 0.045 0.044 0.049

500 0.0 0.050 0.095 0.049 0.048 0.049 0.048 0.050 0.049 0.051
500 0.5 0.032 0.088 0.050 0.050 0.050 0.048 0.050 0.049 0.051
500 0.9 0.024 0.087 0.049 0.050 0.048 0.047 0.048 0.048 0.050

1000 0.0 0.050 0.084 0.049 0.049 0.049 0.049 0.049 0.048 0.050
1000 0.5 0.031 0.085 0.049 0.050 0.050 0.049 0.049 0.049 0.050
1000 0.9 0.023 0.085 0.050 0.051 0.050 0.048 0.049 0.050 0.051

AR(1)-process
50 0.0 0.050 0.023 0.040 0.036 0.039 0.029 0.041 0.034 0.048
50 0.5 0.057 0.012 0.039 0.040 0.046 0.024 0.026 0.034 0.025
50 0.9 0.094 0.002 0.001 0.018 0.000 0.006 0.000 0.004 0.000

100 0.0 0.051 0.059 0.045 0.043 0.046 0.040 0.048 0.043 0.054
100 0.5 0.054 0.029 0.052 0.052 0.063 0.038 0.057 0.047 0.065
100 0.9 0.075 0.002 0.007 0.045 0.014 0.026 0.002 0.044 0.000

200 0.0 0.051 0.091 0.048 0.047 0.048 0.045 0.049 0.047 0.053
200 0.5 0.052 0.057 0.056 0.056 0.061 0.047 0.061 0.051 0.068
200 0.9 0.063 0.006 0.033 0.055 0.053 0.037 0.031 0.073 0.032

500 0.0 0.050 0.095 0.049 0.049 0.050 0.048 0.050 0.049 0.051
500 0.5 0.051 0.083 0.056 0.057 0.058 0.052 0.058 0.053 0.062
500 0.9 0.056 0.018 0.057 0.064 0.081 0.047 0.090 0.068 0.116

1000 0.0 0.051 0.084 0.050 0.050 0.050 0.049 0.050 0.050 0.051
1000 0.5 0.050 0.082 0.055 0.056 0.057 0.054 0.056 0.054 0.058
1000 0.9 0.052 0.041 0.059 0.065 0.073 0.054 0.084 0.065 0.104

Note: Actual sizes when the nominal size equals 0.05.

Table 2: Size distortions of tests, raw-moments tests based on S-PITs
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S-PITs INTs
T ρ m̂1 m̂2 m̂3 m̂4 m̂1 μ̂2 ŝ k̂

standard normal forecast density
∞ 0.00 1.00 0.00 1.80 0.00 1.00 0.00 3.00

normal forecast density, μ = −0.5
50 0.0 0.48 1.13 0.96 2.19 0.50 1.00 0.00 2.88
50 0.9 0.48 1.14 0.95 2.20 0.49 0.71 0.00 2.52
200 0.0 0.48 1.13 0.96 2.19 0.50 1.00 0.00 2.97
200 0.9 0.47 1.13 0.94 2.17 0.50 0.92 0.00 2.78
1000 0.0 0.48 1.13 0.96 2.19 0.50 1.00 0.00 3.00
1000 0.9 0.48 1.13 0.96 2.19 0.50 0.98 0.00 2.95

normal forecast density, σ = 2/3
50 0.0 0.00 1.46 0.00 3.26 0.00 2.26 0.00 2.88
50 0.9 0.00 1.46 0.00 3.25 −0.01 1.59 −0.01 2.53
200 0.0 0.00 1.46 0.00 3.25 0.00 2.25 0.00 2.97
200 0.9 0.00 1.46 −0.01 3.27 0.00 2.06 0.00 2.79
1000 0.0 0.00 1.46 0.00 3.25 0.00 2.25 0.00 2.99
1000 0.9 0.00 1.46 0.00 3.25 0.00 2.21 0.00 2.95

normal forecast density, σ = 3/2
50 0.0 0.00 0.60 0.00 0.76 0.00 0.44 0.00 2.88
50 0.9 −0.01 0.60 0.00 0.76 0.00 0.31 0.00 2.53
200 0.0 0.00 0.60 0.00 0.76 0.00 0.44 0.00 2.97
200 0.9 0.00 0.60 0.00 0.76 0.00 0.41 0.00 2.78
1000 0.0 0.00 0.60 0.00 0.76 0.00 0.44 0.00 3.00
1000 0.9 0.00 0.60 0.00 0.76 0.00 0.44 0.00 2.95

two-piece normal forecast density, γ = 0.8
50 0.0 0.06 1.01 −0.09 1.90 −0.03 1.30 −0.93 4.33
50 0.9 0.06 1.02 −0.10 1.91 −0.02 0.93 −0.52 3.07
200 0.0 0.06 1.01 −0.09 1.91 −0.03 1.29 −1.05 4.91
200 0.9 0.07 1.02 −0.09 1.91 −0.03 1.19 −0.84 4.05
1000 0.0 0.07 1.02 −0.09 1.91 −0.03 1.30 −1.09 5.12
1000 0.9 0.06 1.02 −0.09 1.91 −0.03 1.28 −1.03 4.82

t-distributed forecast density, 5 degrees of freedom
50 0.0 0.00 1.14 0.00 2.13 0.00 1.11 0.00 2.29
50 0.9 −0.01 1.14 −0.01 2.13 0.02 0.78 0.00 2.34
200 0.0 0.00 1.14 0.00 2.12 0.00 1.11 0.00 2.29
200 0.9 0.01 1.14 0.01 2.13 0.00 1.02 0.00 2.31
1000 0.0 0.00 1.14 0.00 2.13 0.00 1.11 0.00 2.29
1000 0.9 0.00 1.14 0.00 2.13 0.00 1.09 0.00 2.29

normal mixture forecast density, σ = 0.4
50 0.0 0.00 1.10 0.00 1.79 0.00 1.09 0.00 3.22
50 0.9 0.01 1.10 0.01 1.79 0.00 0.78 −0.01 2.63
200 0.0 0.00 1.10 0.00 1.80 0.00 1.09 0.00 3.72
200 0.9 0.01 1.10 0.01 1.80 0.00 1.00 −0.01 3.01
1000 0.0 0.00 1.10 0.00 1.80 0.00 1.09 0.00 3.89
1000 0.9 0.00 1.10 0.00 1.80 0.00 1.08 0.00 3.66

Note: m̂i denotes i-th raw moment, μ̂2 variance, ŝ skewness, k̂ kurtosis.

Table 3: Raw sample moments of S-PITs and sample moments of INTs for all
forecast densities
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂12 α̂0123 α̂123 α̂01234 α̂1234

MA(1)-process
50 0.0 0.87 0.05 0.90 0.81 0.76 0.71 0.60 0.58 0.43
50 0.5 0.57 0.05 0.60 0.42 0.25 0.30 0.13 0.17 0.07
50 0.9 0.51 0.05 0.52 0.34 0.19 0.23 0.10 0.13 0.06

100 0.0 0.99 0.05 1.00 0.99 0.99 0.98 0.98 0.97 0.95
100 0.5 0.89 0.05 0.93 0.85 0.79 0.77 0.65 0.64 0.49
100 0.9 0.85 0.05 0.89 0.79 0.71 0.68 0.54 0.52 0.34

200 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 0.5 1.00 0.05 1.00 1.00 0.99 0.99 0.99 0.98 0.97
200 0.9 0.99 0.06 1.00 0.99 0.99 0.98 0.96 0.96 0.93

500 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.5 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.9 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.5 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.9 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AR(1)-process
50 0.0 0.86 0.05 0.90 0.81 0.75 0.71 0.59 0.59 0.42
50 0.5 0.41 0.05 0.33 0.24 0.10 0.17 0.06 0.09 0.04
50 0.9 0.11 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04

100 0.0 1.00 0.05 1.00 0.99 0.99 0.99 0.98 0.97 0.95
100 0.5 0.72 0.05 0.74 0.61 0.45 0.50 0.31 0.35 0.18
100 0.9 0.15 0.05 0.07 0.03 0.03 0.03 0.03 0.04 0.03

200 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 0.5 0.96 0.05 0.97 0.94 0.90 0.90 0.83 0.85 0.75
200 0.9 0.28 0.05 0.17 0.08 0.04 0.06 0.03 0.03 0.03

500 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.5 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.9 0.63 0.06 0.63 0.48 0.29 0.41 0.19 0.19 0.10

1000 0.0 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.5 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.9 0.91 0.05 0.93 0.87 0.78 0.82 0.66 0.71 0.53

Note: Raw-moments tests are based on S-PITs.

Table 4: Size-adjusted power, normal forecast density with μ = −0.5
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂0123 α̂01234

MA(1)-process
50 0.0 0.96 0.05 0.05 0.67 0.57 0.43
50 0.5 0.93 0.05 0.05 0.58 0.53 0.32
50 0.9 0.91 0.05 0.05 0.53 0.49 0.26

100 0.0 1.00 0.05 0.05 0.97 0.94 0.92
100 0.5 1.00 0.05 0.05 0.93 0.90 0.82
100 0.9 1.00 0.05 0.05 0.90 0.87 0.74

200 0.0 1.00 0.05 0.05 1.00 1.00 1.00
200 0.5 1.00 0.05 0.05 1.00 1.00 1.00
200 0.9 1.00 0.05 0.05 1.00 1.00 0.99

500 0.0 1.00 0.05 0.05 1.00 1.00 1.00
500 0.5 1.00 0.05 0.05 1.00 1.00 1.00
500 0.9 1.00 0.05 0.05 1.00 1.00 1.00

1000 0.0 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.5 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.9 1.00 0.05 0.05 1.00 1.00 1.00

AR(1)-process
50 0.0 0.96 0.05 0.05 0.68 0.58 0.43
50 0.5 0.88 0.05 0.05 0.46 0.43 0.21
50 0.9 0.33 0.07 0.06 0.03 0.02 0.02

100 0.0 1.00 0.05 0.05 0.97 0.94 0.92
100 0.5 0.99 0.05 0.05 0.87 0.83 0.67
100 0.9 0.55 0.06 0.06 0.07 0.06 0.01

200 0.0 1.00 0.05 0.05 1.00 1.00 1.00
200 0.5 1.00 0.05 0.05 1.00 1.00 0.99
200 0.9 0.83 0.06 0.06 0.34 0.32 0.04

500 0.0 1.00 0.05 0.05 1.00 1.00 1.00
500 0.5 1.00 0.05 0.05 1.00 1.00 1.00
500 0.9 0.99 0.06 0.05 0.92 0.90 0.62

1000 0.0 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.5 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.9 1.00 0.06 0.05 1.00 1.00 0.99

Note: Raw-moments tests are based on S-PITs.

Table 5: Size-adjusted power, normal forecast density with σ = 2/3
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂0123 α̂01234

MA(1)-process
50 0.0 0.93 0.05 0.05 0.88 0.77 0.51
50 0.5 0.73 0.05 0.05 0.73 0.65 0.34
50 0.9 0.65 0.04 0.05 0.64 0.58 0.27

100 0.0 1.00 0.05 0.05 1.00 1.00 0.98
100 0.5 0.99 0.05 0.05 0.99 0.98 0.92
100 0.9 0.97 0.04 0.05 0.98 0.96 0.85

200 0.0 1.00 0.05 0.05 1.00 1.00 1.00
200 0.5 1.00 0.05 0.05 1.00 1.00 1.00
200 0.9 1.00 0.04 0.06 1.00 1.00 1.00

500 0.0 1.00 0.05 0.05 1.00 1.00 1.00
500 0.5 1.00 0.05 0.05 1.00 1.00 1.00
500 0.9 1.00 0.05 0.05 1.00 1.00 1.00

1000 0.0 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.5 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.9 1.00 0.05 0.05 1.00 1.00 1.00

AR(1)-process
50 0.0 0.94 0.05 0.06 0.88 0.79 0.52
50 0.5 0.51 0.05 0.05 0.56 0.53 0.24
50 0.9 0.09 0.03 0.05 0.03 0.01 0.00

100 0.0 1.00 0.05 0.05 1.00 1.00 0.98
100 0.5 0.89 0.05 0.05 0.94 0.92 0.79
100 0.9 0.16 0.03 0.05 0.10 0.09 0.01

200 0.0 1.00 0.05 0.05 1.00 1.00 1.00
200 0.5 1.00 0.04 0.05 1.00 1.00 1.00
200 0.9 0.33 0.04 0.04 0.40 0.38 0.07

500 0.0 1.00 0.05 0.05 1.00 1.00 1.00
500 0.5 1.00 0.04 0.05 1.00 1.00 1.00
500 0.9 0.81 0.04 0.05 0.90 0.88 0.79

1000 0.0 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.5 1.00 0.05 0.05 1.00 1.00 1.00
1000 0.9 0.99 0.04 0.05 1.00 1.00 0.99

Note: Raw-moments tests are based on S-PITs.

Table 6: Size-adjusted power of tests, normal forecast density with σ = 3/2

58



T ρ β̂12 μ̂34 α̂1 α̂012 α̂0123 α̂01234

MA(1)-process
50 0.0 0.27 0.24 0.07 0.07 0.26 0.23
50 0.5 0.25 0.24 0.07 0.06 0.19 0.14
50 0.9 0.26 0.23 0.07 0.06 0.16 0.12

100 0.0 0.41 0.59 0.10 0.08 0.56 0.52
100 0.5 0.37 0.56 0.08 0.06 0.45 0.40
100 0.9 0.36 0.50 0.08 0.07 0.40 0.34

200 0.0 0.58 0.94 0.15 0.12 0.89 0.88
200 0.5 0.55 0.91 0.11 0.09 0.82 0.81
200 0.9 0.52 0.87 0.10 0.08 0.79 0.77

500 0.0 0.89 1.00 0.30 0.24 1.00 1.00
500 0.5 0.84 1.00 0.19 0.15 1.00 1.00
500 0.9 0.81 1.00 0.17 0.14 1.00 1.00

1000 0.0 0.99 1.00 0.53 0.46 1.00 1.00
1000 0.5 0.98 1.00 0.34 0.28 1.00 1.00
1000 0.9 0.97 1.00 0.30 0.24 1.00 1.00

AR(1)-process
50 0.0 0.27 0.24 0.08 0.07 0.27 0.24
50 0.5 0.22 0.24 0.06 0.05 0.13 0.10
50 0.9 0.14 0.13 0.05 0.05 0.06 0.05

100 0.0 0.39 0.58 0.10 0.09 0.55 0.52
100 0.5 0.32 0.54 0.06 0.05 0.37 0.31
100 0.9 0.17 0.20 0.06 0.05 0.07 0.06

200 0.0 0.58 0.94 0.15 0.12 0.89 0.88
200 0.5 0.46 0.88 0.09 0.07 0.77 0.75
200 0.9 0.22 0.37 0.06 0.05 0.11 0.07

500 0.0 0.89 1.00 0.31 0.24 1.00 1.00
500 0.5 0.76 1.00 0.14 0.11 1.00 1.00
500 0.9 0.30 0.73 0.06 0.06 0.43 0.30

1000 0.0 0.99 1.00 0.53 0.45 1.00 1.00
1000 0.5 0.95 1.00 0.23 0.18 1.00 1.00
1000 0.9 0.45 0.95 0.08 0.06 0.87 0.85

Note: Raw-moments tests are based on S-PITs.

Table 7: Size-adjusted power, two-piece normal forecast density with γ = 0.8
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂0123 α̂01234

MA(1)-process
50 0.0 0.04 0.22 0.05 0.13 0.11 0.10
50 0.5 0.04 0.17 0.05 0.10 0.09 0.08
50 0.9 0.04 0.15 0.06 0.09 0.10 0.08

100 0.0 0.06 0.47 0.05 0.23 0.20 0.18
100 0.5 0.05 0.39 0.05 0.18 0.17 0.16
100 0.9 0.05 0.35 0.05 0.17 0.15 0.15

200 0.0 0.10 0.86 0.05 0.48 0.41 0.40
200 0.5 0.09 0.80 0.05 0.39 0.34 0.34
200 0.9 0.08 0.75 0.05 0.35 0.30 0.32

500 0.0 0.26 1.00 0.05 0.89 0.85 0.85
500 0.5 0.21 1.00 0.05 0.81 0.76 0.79
500 0.9 0.20 1.00 0.05 0.76 0.70 0.75

1000 0.0 0.54 1.00 0.05 1.00 0.99 0.99
1000 0.5 0.47 1.00 0.05 0.99 0.97 0.99
1000 0.9 0.42 1.00 0.05 0.98 0.96 0.98

AR(1)-process
50 0.0 0.04 0.22 0.05 0.12 0.11 0.10
50 0.5 0.04 0.16 0.05 0.08 0.08 0.07
50 0.9 0.05 0.06 0.05 0.03 0.03 0.06

100 0.0 0.06 0.48 0.05 0.23 0.20 0.19
100 0.5 0.04 0.36 0.05 0.14 0.13 0.13
100 0.9 0.04 0.08 0.06 0.03 0.03 0.05

200 0.0 0.09 0.85 0.05 0.46 0.40 0.39
200 0.5 0.07 0.75 0.05 0.31 0.27 0.28
200 0.9 0.04 0.13 0.06 0.04 0.04 0.05

500 0.0 0.25 1.00 0.05 0.89 0.84 0.84
500 0.5 0.15 1.00 0.05 0.72 0.65 0.72
500 0.9 0.04 0.44 0.05 0.12 0.12 0.16

1000 0.0 0.53 1.00 0.05 1.00 0.99 0.99
1000 0.5 0.34 1.00 0.06 0.97 0.94 0.97
1000 0.9 0.06 0.84 0.05 0.28 0.25 0.42

Note: Raw-moments tests are based on S-PITs.

Table 8: Size adjusted power, t-distributed forecast density with 5 degrees of
freedom
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T ρ β̂12 μ̂34 α̂1 α̂012 α̂0123 α̂01234

MA(1)-process
50 0.0 0.10 0.27 0.05 0.09 0.08 0.48
50 0.5 0.10 0.25 0.05 0.08 0.07 0.46
50 0.9 0.10 0.24 0.06 0.07 0.07 0.44

100 0.0 0.12 0.21 0.05 0.16 0.14 0.82
100 0.5 0.12 0.21 0.05 0.13 0.12 0.80
100 0.9 0.12 0.22 0.05 0.12 0.11 0.77

200 0.0 0.16 0.12 0.05 0.32 0.27 0.99
200 0.5 0.15 0.12 0.05 0.25 0.22 0.99
200 0.9 0.15 0.14 0.05 0.23 0.20 0.98

500 0.0 0.26 0.04 0.05 0.71 0.64 1.00
500 0.5 0.24 0.04 0.05 0.61 0.55 1.00
500 0.9 0.24 0.05 0.05 0.54 0.48 1.00

1000 0.0 0.43 0.03 0.05 0.96 0.93 1.00
1000 0.5 0.38 0.03 0.05 0.91 0.87 1.00
1000 0.9 0.35 0.03 0.05 0.87 0.82 1.00

AR(1)-process
50 0.0 0.10 0.25 0.05 0.09 0.08 0.47
50 0.5 0.09 0.26 0.05 0.06 0.06 0.41
50 0.9 0.10 0.15 0.07 0.05 0.04 0.10

100 0.0 0.12 0.21 0.05 0.16 0.14 0.82
100 0.5 0.11 0.22 0.05 0.10 0.09 0.75
100 0.9 0.08 0.22 0.07 0.03 0.03 0.16

200 0.0 0.16 0.11 0.05 0.32 0.27 0.99
200 0.5 0.14 0.14 0.05 0.20 0.18 0.98
200 0.9 0.10 0.27 0.06 0.04 0.03 0.32

500 0.0 0.26 0.04 0.05 0.71 0.64 1.00
500 0.5 0.20 0.05 0.05 0.50 0.44 1.00
500 0.9 0.12 0.21 0.05 0.08 0.07 0.89

1000 0.0 0.42 0.03 0.05 0.96 0.93 1.00
1000 0.5 0.31 0.03 0.05 0.84 0.78 1.00
1000 0.9 0.15 0.13 0.05 0.17 0.15 1.00

Note: Raw-moments tests are based on S-PITs.

Table 9: Size-adjusted power, normal mixture forecast density with σ = 0.4
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moments p-values
S-PITs INTs

m̂1 m̂2 m̂3 m̂4 m̂1 μ̂2 α̂01234 α̂012 β̂12
h = 2 −0.04 0.88 −0.15 1.42 −0.06 0.78 0.027 0.073 0.085
h = 3 −0.07 0.88 −0.17 1.42 −0.07 0.77 0.039 0.175 0.191
h = 4 −0.09 0.89 −0.18 1.45 −0.09 0.77 0.197 0.233 0.286
h = 5 −0.10 0.91 −0.19 1.47 −0.10 0.77 0.166 0.351 0.380

Note: Raw-moments tests are based on S-PITs. Sample sizes equal T = 385. m̂i denotes the i-th raw moment,

μ̂2 the variance.

Table 10: Moments of SPITs and INTs and test results for calibration of density
forecasts for monthly Swiss Francs / U.S. Dollar exchange rate
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