

Workshop on

"The Costs and Benefits of International Banking"

Eltville, 18 October 2010

Ricardo Correa

Federal Reserve Board

Presentation to

"International banks and the cross-border transmission of

business cycles"

www.bundesbank.de

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
			00000 00		

International Banks and the Cross-Border Transmission of Business Cycles¹

Ricardo Correa Horacio Sapriza Andrei Zlate Federal Reserve Board

Workshop on "The Cost and Benefits of International Banking" October 18, 2011

¹These slides and associated remarks represent only the authors' current opinions, not those of the Board of Governors or the Federal Reserve System. $\langle \cdot \cdot \rangle = \langle \cdot \cdot \rangle$

Introduction ●○○	Empirical Investigation	Model	Calibration	Conclusion O	Additional slides
Motivati	on				

- Disruptions in credit markets in 2007 led the Fed and other central banks to implement non-conventional policies (for example, the Term Auction Facility).
- Important involvement of large U.S. and European banks global banks.
- Relevant role of funding via the interbank market and cross-border intrabank transactions through foreign bank branches.
- Foreign bank branches: 20 percent of all assets held by commercial banks in the United States in 2008.

Introduction O • O	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Objectiv	е				

Objectives:

- Study the link between the cross-border funding activities of global banks and the international transmission of business cycles.
- Highlight the effects of regulatory changes on global banks' ability to transform domestic deposits into loans abroad.

Methodology:

1. Empirical analysis

- Cyclical behavior of net positions between the U.S.-based branches of foreign banks (Western Europe, emerging Asia) and their parent banks (novel dataset).
- The pattern of lending by U.S.-based subsidiaries of foreign banks to large and small U.S. firms.

2. Model

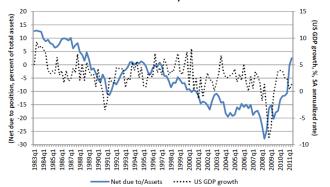
• Two-country DSGE framework with global banks (that can transform foreign deposits into local loans) and heterogeneous firms.

Introduction ○○●	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Related	l Literature				

- Bank funding and liquidity management: CGFS (2010), Canales-Kriljenko, Coulibaly and Kamil (2010), McGuire and von Peter (2009), Cetorelli and Goldberg (2011)
- DSGE models with banks: Brunnermeier and Sannikov (2010), De Blas and Russ (2010), Gertler and Kiyotaki (2010), lacoviello (2011), Kalemli-Ozcan, Papaioannou, and Perri (2011), Kollman, Enders, and Muller (2011), Stebunovs (2006)
- **DSGE models with heterogeneous agents:** Ghironi and Melitz (2005)
- Firm financing: Neumeyer and Perri (2005), Russ and Valderrama (2009)

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Data					

- Branches of foreign banks in the United States: FFIEC 002 report.
- Subsidiaries of foreign banks in the United States: FFIEC 031 report.
- Macro data:
 - INTL/CEIC (real GDP growth);
 - Federal Reserve System (effective FF rate);
 - International Financial Statistics.
- "Net due to" position relative to related depository institutions (for example, relative to the parent bank) =


- = Gross due to related depository institutions (liability of the branch) -
- Gross due from related depository institutions (asset of the branch)

Assets	Q4 2006	Q4 2008	Q2 2011	Liabilities	Q4 2006	Q4 2008	Q2 2011
Cash	4%	11%	39%	Deposits	53%	52%	52%
Fed Funds Sold	1%	0%	0%	Fed Funds Purchased	6%	1%	2%
Resale Agreements	15%	3%	5%	Repurchase Agreements	8%	3%	5%
U.S. Gov. Securities	2%	2%	4%	Trading Liabilities	6%	9%	5%
Other Securities	21%	25%	13%	Other Liabilities	18%	30%	17%
Loans	24%	27%	22%				
Other Assets	2%	2%	2%				
Total Claims on Non-Related Parties	69%	70%	85%	Total Liabilities to Non-Related Parties	91%	95%	81%
Net Due from Related Depository Institutions	31%	30%	15%	Net Due to Related Depository Institutions	9%	5%	19%
Total Assets (\$ millions)	1,193,532	1,402,416	1,328,310	Total Liabilities (\$ millions)	1,193,532	1,402,416	1,328,310

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Aggregate net due to positions (with non-U.S. offices) of U.S. branches of European banks(% of assets)

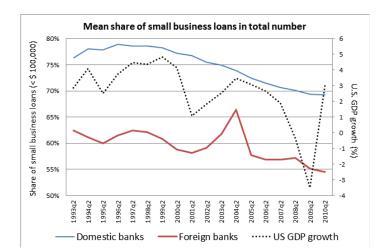
IntroductionEmpirical InvestigationModelCalibrationConclusionAdditional slides000<00</td>000000000000000000000Stylized Fact 1 - Net positions and macro factors(U.S. branches of European banks)

$$\begin{aligned} \frac{NDT_{ijt}}{TA_{ijt}} &= \alpha + \beta_1 \text{US GDP Growth}_t + \beta_2 \text{Foreign GDP Growth}_t + \\ &+ \beta_3 \text{Real Interest Rate Differential}_t + \beta_4 \text{Log Assets}_{ijt} + \\ &+ \theta_{ij} + \mu_q + \varphi_t + \epsilon_{ijt} \end{aligned}$$

- Bank branch *i*, country of origin *j*;
- μ_q = seasonal quarterly dummy;
- $\theta_{ij} = \text{bank fixed effect}$
- $\varphi_t = \text{time fixed effect}$

Stylized Fact 1 - Net positions and macro factors (U.S. branches of European banks)

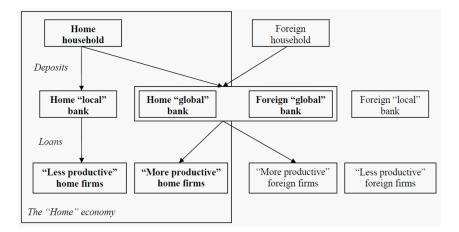
Dependent variable:	Net due to /	Gross due to	Gross due from
	Assets	/Assets	/ Assets
	(1)	(2)	(3)
U.S. GDP Growth	1.167**	-0.106	-1.273***
	[0.536]	[0.326]	[0.342]
Foreign GDP Growth	0.029	0.024	-0.005
	[0.124]	[0.073]	[0.083]
Real Interest Rate Differential	-1.377	-1.218*	0.159
	[1.019]	[0.662]	[0.557]
Log of Claims on Nonrelated Parties	3.852	-2.106	-5.958***
	[2.443]	[1.416]	[1.281]
Constant	-41.740**	50.994***	92.734***
	[20.651]	[12.018]	[10.844]
Branch Fixed Effects	Yes	Yes	Yes
Time Fixed Effects	Yes	Yes	Yes
	Yes	Yes	Yes
Quarterly Dummies	ies	Tes	res
Observations	4,514	4,514	4,514
Number of Branches	136	136	136


*** p<0.01, ** p<0.05, * p<0.1

 Introduction
 Empirical Investigation
 Model
 Calibration
 Conclusion
 Additional slides

 000
 000000
 00000000000
 0
 0
 000000

 Stylized
 Fact 2 - Firm size and bank lending


 Domestic vs. foreign banks

	Empirical Investigation	Model ●○○○○○○○○○	Calibration	Conclusion	Additional slides
Model As	ssumptions				

- Two-country (Home and Foreign), RBC model with:
 - (1) One representative household that provides bank deposits.
 - (2) Continuum of monopolistically-competitive firms, heterogeneous in productivity, borrow working capital from banks.
 - (3) Two types of banks in each country: local and global.
- The global bank, in addition to domestic operations, also collects foreign deposits and issues loans to foreign firms.
- Production by heterogeneous firms:
 - function of labor, country-specific, and firm-specific productivity.
- Each firm can borrow either from the local or from the global banks:
 - Borrowing from the global banks has the advantage of a lower interest rate, but requires a per-period fixed cost.
 - Only the larger, more productive firms access international loans; their fraction changes over time.

Introduction	Empirical Investigation	Model ○●○○○○○○○○	Calibration 000	Conclusion	Additional slides
Model As	ssumptions				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Empirical Investigation	Model ○○●○○○○○○○	Calibration	Conclusion	Additional slides
Represen	tative house	hold			

• Maximize expected lifetime utility:

$$\max_{\{D_t, x_t\}} \left[E_t \sum_{s=t}^{\infty} \beta^{s-t} \frac{C_s^{1-\gamma}}{1-\gamma} \right],$$

• subject to:

$$(\tilde{v}_t + \tilde{\pi}_t)N_t x_{t-1} + (1+r_t)D_{t-1} + w_t L \ge \tilde{v}_t (N_t + N_{E,t})x_t + D_t + \frac{\xi}{2} (D_t)^2 + C_t$$

• FOCs:

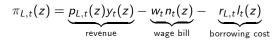
$$1 + \xi D_t = \beta E_t \left[(1 + r_{t+1}) \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} \right],$$

$$\widetilde{v}_t = \beta (1 - \delta) E_t \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} (\widetilde{v}_{t+1} + \widetilde{\pi}_{t+1}) \right]$$

• Consumption basket C_t is a CES aggregate of country-specific goods (described later).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Empirical Investigation	Model ○○○●○○○○	Calibration	Conclusion	Additional slides
Firms:	production				


- Following entry, each firm draws productivity factor z from a common distribution G(z) with support on [z_{min},∞);
- Production:

$$y_t(z) = Z_t z n_t(z)$$
, with unit $\cot \frac{W_t}{Z_t z}$

- Firms must pay fraction ϕ of the wage bill before producing.
- Need working capital two choices:
 - (1) Borrow from the local bank;
 - (2) Use an aggregate loan provided by the global banks (home and foreign).

Introduction	Empirical Investigation	Model ○○○●○○	Calibration	Conclusion	Additional slides
Firms: p	rices and pr	ofits			

- (1) Firms borrowing from local banks
 - Profit maximization:

• subject to:

$$y_t(z) = p_{L,t}(z)^{- heta} C_t,$$

 $I_t(z) \ge \phi rac{W_t}{Z_t z} y_t(z).$

• Equilibrium price and profit:

$$p_{L,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t z} (1 + \phi r_{L,t})$$
$$\pi_{L,t}(z) = \frac{1}{\theta} p_{L,t}(z)^{1-\theta} C_t.$$

Introduction	Empirical Investigation	Model ○○○○○●○	Calibration	Conclusion	Additional slides
Firms: p	prices and pr	ofits			

(2) Firms borrowing from global banks

• Profit maximization:

$$\pi_{G,t}(z) = p_t(z)y_t(z) - w_t n_t(z) - r_{S,t}I_t(z) - f_G \frac{w_t}{Z_t}.$$

• subject to:

$$y_t(z) = p_{G,t}(z)^{-\theta} C_t,$$

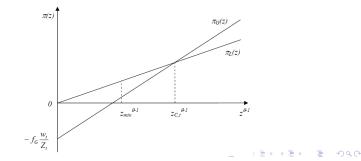
 $l_t(z) \ge \phi \frac{W_t}{Z_t z} y_t(z).$

• Equilibrium price and profit:

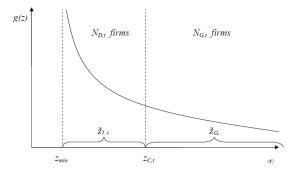
$$p_{G,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t z} (1 + \phi r_{S,t}).$$

$$\pi_{G,t}(z) = \frac{1}{\theta} p_{G,t}(z)^{1-\theta} C_t - f_G \frac{w_t}{Z_t}$$

٠


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Write the firm profits as functions of productivity factor $z^{\theta-1}$:


$$\pi_{L,t}(z) = \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t} (1 + \phi r_{L,t}) \right]^{1-\theta} C_t z^{\theta - 1};$$

$$\pi_{G,t}(z) = \underbrace{\frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t} (1 + \phi r_{S,t}) \right]^{1-\theta} C_t z^{\theta - 1}}_{\text{slope}} - \underbrace{\frac{f_G \frac{w_t}{Z_t}}_{\text{intercept}}}_{\text{slope}}$$

• For $r_{S,t} < r_{L,t}$, define cutoff $z_{C,t} = \{z \mid \pi_{L,t}(z) = \pi_{G,t}(z)\}$.

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Firms: a	aggregation				

 Define average labor productivity for local borrowers (*ž*_{L,t}) and global borrowers (*ž*_{G,t}):

• Every period, $N_{L,t}$ firms borrow locally $(z < z_{C,t})$, and $N_{G,t}$ firms borrow from the global banks $(z > z_{C,t})$;

• So that $N_{L,t} + N_{G,t} = N_t$.

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Firms:	aggregation				

Pareto-distributed firm productivity

• Firm-specific labor productivity z is Pareto-distributed:

$$g(z) = kz_{min}/z^{k+1}$$

$$G(z) = 1 - (z_{min}/z)^{k}.$$

• Under the Pareto assumption, the firm productivity averages are:

$$\widetilde{z}_{L,t} = \left[\frac{1}{G(z_{C,t})} \int_{z_{\min}}^{z_{C,t}} z^{\theta-1} g(z) dz\right]^{\frac{1}{\theta-1}} = \nu z_{\min} z_{C,t} \left[\frac{z_{C,t}^{k-(\theta-1)} - z_{\min}^{k-(\theta-1)}}{z_{C,t}^{k} - z_{\min}^{k}}\right]^{\frac{1}{\theta-1}},$$

$$\widetilde{z}_{G,t} = \left[\frac{1}{1-G(z_{C,t})} \int_{z_{C,t}}^{\infty} z^{\theta-1} g(z) dz\right]^{\frac{1}{\theta-1}} = \nu z_{C,t}.$$

Introduction	Empirical Investigation	Model	Calibration 00●0000	Conclusion	Additional slides
Firms: a	aggregation				

• Average prices:

$$\begin{split} \widetilde{p}_{L,t} &= \frac{\theta}{\theta-1} \frac{w_t}{Z_t \widetilde{z}_{L,t}} (1 + \phi r_{L,t}) & (\text{local borrowing}) \\ \widetilde{p}_{G,t} &= \frac{\theta}{\theta-1} \frac{w_t}{Z_t \widetilde{z}_{G,t}} (1 + \phi r_{S,t}) & (\text{global borrowing}) \end{split}$$

• Average profits:

$$\begin{aligned} \widetilde{\pi}_{L,t} &= \frac{1}{\theta} \left(\widetilde{\rho}_{L,t} \right)^{1-\theta} C_t \qquad \text{(local borrowing)} \\ \widetilde{\pi}_{G,t} &= \frac{1}{\theta} \left(\widetilde{\rho}_{G,t} \right)^{1-\theta} C_t - f_G \frac{w_t}{Z_t} \qquad \text{(global borrowing)} \end{aligned}$$

• Price index:

$$1 = N_{L,t} \left(\widetilde{p}_{L,t} \right)^{1-\theta} + N_{G,t} \left(\widetilde{p}_{G,t} \right)^{1-\theta}$$

$$1 = N_{L,t}^* \left(\widetilde{p}_{L,t}^* \right)^{1-\theta} + N_{G,t}^* \left(\widetilde{p}_{G,t}^* \right)^{1-\theta}$$

• Total profits:

$$N_{t}\widetilde{\pi}_{t} = N_{L,t}\widetilde{\pi}_{L,t} + N_{G,t}\widetilde{\pi}_{G,t}$$

$$N_{t}^{*}\widetilde{\pi}_{t}^{*} = N_{L,t}^{*}\widetilde{\pi}_{L,t}^{*} + N_{G,t}^{*}\widetilde{\pi}_{G,t}^{*}$$

$$(\Box \rightarrow \langle \Box \rangle \langle$$

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
000	000000	0000000	000000		000000
Countr	w_specific go	ods and	trade		

Production

- Each firm produces variety $y_t(\omega)$.
- All varieties ω available at period t form the country-specific good:

$$\widehat{Y}_{h,t} = \left[\int_{\omega\in\Omega} y_t(\omega)^{rac{ heta-1}{ heta}} d\omega
ight]^{rac{ heta}{ heta-1}},$$

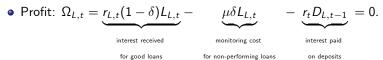
where $\theta > 1$ is the elasticity of substitution across varieties.

Trade

• The home-specific good $\widehat{Y}_{h,t}$ can be consumed domestically $(Y_{h,t})$ or exported $(Y_{h,t}^*)$, so that $\widehat{Y}_{h,t} = Y_{h,t} + Y_{h,t}^*$.

Prices

• The home consumption basket C_t is a CES aggregate of the home and foreign-specific goods, set as the numeraire $(P_t = 1)$:


$$C_{t} = \left[\left(\lambda_{y} \right)^{\frac{1}{\epsilon_{y}}} \left(Y_{h,t} \right)^{\frac{\epsilon_{y}-1}{\epsilon_{y}}} + \left(1 - \lambda_{y} \right)^{\frac{1}{\epsilon_{y}}} \left(Y_{f,t} \right)^{\frac{\epsilon_{y}-1}{\epsilon_{y}}} \right]^{\frac{\epsilon_{y}}{\epsilon_{y}-1}}.$$

Introduction	Empirical Investigation	Model	Calibration ●00	Conclusion	Additional slides
Banks					

• In each economy, two types of banks (local and global) transform deposits into loans, as in de Blas and Russ (2010):

$$L_{j,t}=rac{D_{j,t}}{c_j}, ext{ where } c_j\geq 1 ext{ and } j\in\{L,G\}\,.$$

The global bank is more productive (c^G < c^L), so that r^G < r^L.
(1) The local bank

• The cost c and firm exit δ introduce a wedge between r_t and $r_{L,t}$:

$$r_{L,t}=\frac{c^L}{1-\delta}r_t+\frac{\mu\delta}{1-\delta}.$$

• Loan clearing: $L_{L,t} = N_{L,t}\tilde{I}_{L,t}$, where $\tilde{I}_{L,t} = \frac{\phi_{W_t}}{Z_t\tilde{z}_{L,t}} \left(\frac{\tilde{p}_{L,t}}{p_{h,t}}\right)^{-\theta} \left(Y_{h,t} + Y_{h,t}^*\right).$

Introduction	Empirical Investigation	Model	Calibration ○●O	Conclusion	Additional slides
Banks					

(2) The global bank

 Interest charged for loans is a weighted average of the cost of home and foreign deposits:

$$r_{G,t} = \frac{D_{H,t-1}}{D_{H,t-1} + D_{H,t-1}^* Q_t} \left(\frac{c_G r_t + \mu \delta}{1 - \delta} \right) + \frac{D_{H,t-1}^* Q_t}{D_{H,t-1} + D_{H,t-1}^* Q_t} \left(\frac{c_G r_t^* Q_t + \mu \delta}{1 - \delta} \right)$$

• Market clearing for the global loans:

$$L_{S,t} = \left[\lambda^{\frac{1}{\epsilon}} L_{H,t}^{\frac{\epsilon-1}{\epsilon}} + (1-\lambda)^{\frac{1}{\epsilon}} L_{F,t}^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}} = N_{G,t} \widetilde{I}_{G,t}.$$

Allocation of deposits

 Home deposits D_{t-1} are allocated in fixed shares across the home local, home global, and foreign global banks: S_L + S_H + S_F = 1.

Bank lending constraints

$$L_{H,t} + L_{H,t}^* Q_t = \frac{S_H D_{t-1} + S_H^* D_{t-1}^* Q_t}{c_G} \text{ and } L_{F,t}^* + \frac{L_{F,t}}{Q_t} = \frac{S_F^* D_{t-1}^* + S_F D_{t-1} / Q_t}{c_G^*}.$$

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Closing	the model				

• Net lending (Net Due To Position) by foreign branches in Home:

$$\textit{NDTP}_t^* = \frac{1}{Q_t} \left[\textit{L}_{\textit{F},t} - \frac{\textit{S}_{\textit{F}}\textit{D}_{t-1}}{\textit{c}_{\textit{G}}^*} \right].$$

• Net lending by home branches abroad:

$$NDTP_t = Q_t \left[L_{H,t}^* - \frac{S_H^* D_{t-1}^*}{c_G} \right]$$

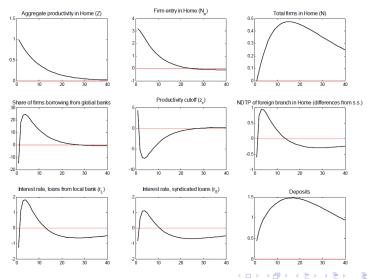
• The balance of payments equation:

$$\underbrace{\underbrace{P_{h,t}Y_{h,t}^* - p_{f,t}Q_tY_{f,t}}_{\text{net exports}} + \underbrace{r_tS_FD_{t-1} - r_t^*S_H^*D_{t-1}^*Q_t}_{\text{net interest payments}}}_{\text{set interest payments}}$$

$$= \underbrace{S_F(D_t - D_{t-1}) - S_H^*(D_t^* - D_{t-1}^*)}_{\text{change in stock of foreign assets}}.$$

・ロト・日本・日本・日本・日本・日本

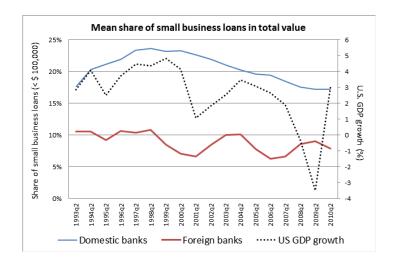
Introduction	Empirical Investigation	Model	Calibration ○●○	Conclusion	Additional slides
Calibratio	on				


• Standard quarterly calibration:

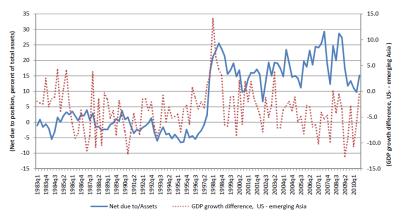
$\beta = 0.99$	Discount factor
$\gamma = 2$	CRRA coefficient
$\theta = 3.8$	Intra-temporal elasticity of substitution
$f_E = 1$	Firm's sunk entry cost
k = 3.4	Pareto distribution parameter
$\delta = 0.025$	Probability of firm exit
$\phi = 0.5$	Share of wage bill to be financed
$f_G = 0.0002$	Firms' fixed cost for global loans
$C_L = 1.05, C_G = 1.01$	Cost parameter, local and global bank
$S_L = 0.4, S_H = 0.3, S_F = 0.3$	Share of home deposits
$\mu=$ 0.01	Banks' monitoring cost
$\varepsilon_{\lambda} = 1.4$	Substitution, home and foreign loans
$\lambda = 0.5$	Share of home global bank in syndicate

• Steady states: 1% of firms borrow globally, account for 9% of total borrowing; foreign banks provide 5% of total lending.

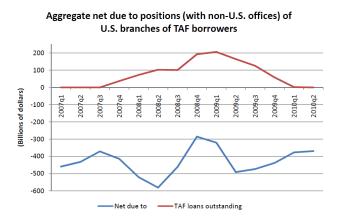
Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Impulse	responses				


• % deviations from steady state, (+) TFP shock in Home ($\rho = 0.9$):

∃ 990


Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides
Further	work				

- Study the model dynamics in response to shocks:
 - A positive TFP shock in Home:
 - \rightarrow firms' ability to access foreign deposits amplifies the expansion;
 - \rightarrow as more of the small firms gain acess to international loans \rightarrow further amplification.
 - A negative TFP shock in Home:
 - \rightarrow international bank lending exacerbates the contraction.
- Analyze the implications of proposed Basel III liquidity standards that would decrease the amount of intrabank funding:
 - Limit banks' ability to use deposits from one country to make loans in another.


▲ロ ▶ ▲ 理 ▶ ▲ 理 ▶ ▲ 理 ▶ ● の Q @

Aggregate net due to positions (with non-U.S. offices) of U.S. branches of emerging Asian banks (% of assets)

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Dependent variable:	Net due to / Assets	Gross due to /Assets	Gross due from / Assets	Net due to / Assets	Gross due to /Assets	Gross due from / Assets
	(1)	(2)	(3)	(4)	(5)	(6)
Dummy Crisis	3.086	4.072*	0.986	3.692**	4.366***	0.674
burning chisis	[2.574]	[2.367]	[1.313]	[1.489]	[1.474]	[0.663]
Dummy Europe	-23.298***	-14.067***	9.231***	[]	(=····)	[]
<i>,</i> ,	[2.760]	[2.423]	[1.402]			
Dummy Crisis X Dummy Europe	-7.454*	-4.169	3.285*	-8.478***	-4.959**	3.519**
	[3.902]	[3.456]	[1.955]	[2.694]	[2.438]	[1.581]
Constant	26.045***	39.855***	13.810***	17.265***	34.621***	17.355***
	[1.760]	[1.671]	[0.913]	[0.616]	[0.577]	[0.332]
Branch Fixed Effects	No	No	No	Yes	Yes	Yes
Observations	1,204	1,204	1,204	1,204	1,204	1,204
R-squared	0.13	0.06	0.09	0.03	0.03	0.04

Robust standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.1

Introduction	Empirical Investigation	Model 000000000000	Calibration	Conclusion	Additional slides ○○○○●○
Firm Ent	ry with Sunk	Costs			

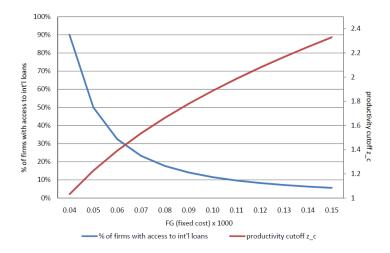
Firm entry

• Firm entry takes place untill the sunk entry cost equals the net present value of the average firm, as in Ghironi and Melitz (QJE, 2005):

$$f_E \frac{w_t}{Z_t} = \widetilde{v}_t,$$

where:

$$\widetilde{v}_t = E_t \sum_{s=t+1}^{\infty} \left[\beta(1-\delta)\right]^{s-t} \left(\frac{C_s}{C_t}\right)^{-\gamma} \widetilde{\pi}_s.$$


• The law of motion for the number of producing firms is:

$$N_{t+1} = (1 - \delta)(N_t + N_{E,t}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Empirical Investigation	Model	Calibration	Conclusion	Additional slides ○○○○●
Calibrati	on exercise				

• Vary the fixed cost f_G of international borrowing:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで