# Optimal Sovereign Debt Default

Klaus Adam Mannheim University & CEPR

> Michael Grill Mannheim University

> > 19.05.2011

#### Introduction

- Standard view: limited commitment + weak ex-post incentives
- Default option ex-ante inefficient too little borrowing
- Sovereign default literature (Eaton and Gersovitz (REStud, 1981)):
  - how to generate ex-post incentives for repayment?
  - how to get them strong enough?
  - how to explain that countries default in 'bad times'

#### Introduction

- Committed government: can choose to default
- Partial repayment optimal if gov. bond markets incomplete
  - => share risk / complete the market
- Grossman & van Huyck (AER, 1988):
   'excusable' vs 'non-excusable' under limited commitment
- Here full commitment => strong implications for default policies
  - default option allows for more borrowing: relaxes the borrowing limits (marginally binding NBL)
  - default ex-ante efficient
  - default optimal following large negative shocks or small neg shock if close to borrowing limit

#### Introduction

Panizza, Sturzenegger, Zettlemyer (JEL, 2009):

'sovereign immunity' & 'act of state doctrine': not too much bite

US Foreign Sovereign Immunities Act (FSIA) of 1976

Famous legal cases of hold out creditors vs sovereigns

## Setup and Preview of Results

- Small open production economy
- Government can
  - internationally borrow by issuing own non-contingent bonds.
  - can accumulate foreign bonds/reserves
- Determines fully optimal policy under commitment.
- Instead of assuming repayment, repayment is a decision variable

# Setup and Preview of Results

Without default costs:

optimal default decisions implement first best consumption allocation default frequent: for all but the best productivity realization default proportional to news about NPV of domestic value added

# Setup and Preview of Results

- Introduce (dead-weight) costs of default: proportional to size of default
- Fairly low levels of default costs:
  - Default never optimal following BC cycle-sized shocks, unless country close to maximally sustainable net foreign debt position.
- Introduce economic disaster risk (Barro and Jin (2011): default reemerges following occurrence of a disaster shock optimal even if far from maximal net foreign debt position

#### Related Literature

- Grossman and van Huyck (AER,1988): 'excusable' default with limited commitment
- Chari, Kehoe and Christiano (1991) and Sims (2001): nominal bonds and price level adjustments
- Angeletos (2002): exploit yield curve for insurance purposes

#### The Model: Households and Firms

Representative consumer:

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subsistence consumption:  $c_t \geq \bar{c} \geq 0$ 

Representative firm:

$$y_t = z_t k_{t-1}^{\alpha},$$
 where  $z_t \in Z = \left\{z^1,...,z^N\right\}$ 

• Transition probabilities are given by  $\pi(z'|z)$  for  $z', z \in Z$ .

#### The Model: Government

- Government maximizes utility of the representative domestic household.
- can invest in 1-period riskless international bonds (zero coupon):

'long position':  $\mathbf{G}_t^{\mathit{L}} \geq \mathbf{0}$  , yield capital gain  $\mathbf{1} + r = \mathbf{1}/\beta$ 

can issue (potentially risky) 1-period own bonds:

'short position'  $G_t^S \ge 0$ 

extension to longer maturities later on

#### The Model: Government

 in t – 1 can decide to (partially) default on bonds maturing t (commitment):

$$\Delta_{t-1} = (\delta_{t-1}^1, ..., \delta_{t-1}^N) \in [0, 1]^N$$

where  $\delta_{t-1}^n \in [0, 1]$ .

Total repayment in state z<sup>n</sup> in t is given by

$$G_{t-1}^{\mathbb{S}} \cdot (1-(1-\lambda)\delta_{t-1}^{I(\mathbf{z}^n)})$$

 $\lambda \geq 0$ : 'dead weight costs' of default.

## The Model: Foreign Lenders

• Interest rate on domestic bonds:

$$1 + r = (1 + R(z_t, \Delta_t)) \sum_{n=1}^{N} (1 - \delta_t^n) \cdot \pi(z^n | z_t)$$

## **Optimal Policy Problem**

Ramsey allocation problem

$$\max_{\left\{G_{t}^{L} \geq 0, G_{t}^{S} \geq 0, \Delta_{t} \in [0,1]^{N}, k_{t} \geq 0, c_{t} \geq \bar{c}\right\}} \qquad E_{0} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$

$$s.t. : c_{t} + k + \frac{G_{t}^{L}}{1+r} = w_{t} + \frac{G_{t}^{S}}{1+R(z_{t}, \Delta_{t})}$$

$$w_{t+1} \geq NBL(z_{t+1}) \quad \forall z_{t+1} \in Z$$

Beginning-of-period wealth:

$$w_t \equiv z_t k_{t-1}^{\alpha} + G_{t-1}^{L} - G_{t-1}^{S} \cdot (1 - (1 - \lambda) \delta_{t-1}^{I(z_t)}).$$

# Optimal policy problem

- Solving optimal policy problem difficult:
  - Interest rate  $R(z_t, \Delta_t)$  depends on default policy: unclear if problem is concave & use of FOCs justified....
  - Many occasionally binding inequality constraints  $G_t^L \geq 0$ ,  $G_t^S \geq 0$  and particular  $\Delta_t \in [0,1]^N$  that are difficult to handle computationally
  - Optimal default policies Δ<sub>t</sub> turn out to be non-continuous, complicating numerical solutions difficult.
- Derive an equivalent problem: concave (can use FOCs), economizes on inequality constraints, continuous optimal policies...

### **Equivalent Problem**

Equivalent optimization problem:

$$\begin{aligned} \max_{\{b_t, a_t \geq 0, k_t \geq 0, c_t \geq \bar{c}\}} & E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \\ \text{s.t. } \forall t : c_t & = & \widetilde{w}_t - k_t - \frac{1}{1+r} b_t - p_t \cdot a_t \\ \widetilde{w}_{t+1} & \geq & \textit{NBL}(z_{t+1}) \quad \forall z_{t+1} \in \textit{Z} \end{aligned}$$

 $b \geqslant 0$ : riskless bond

a : vector of Arrow securities

 $p_t$ : price vector for Arrow securities (indep. of policy)

 $\widetilde{w}_0 = w_0$ : initial condition

Beginning-of-period wealth

$$\widetilde{\textit{w}}_t \equiv \textit{z}_t \textit{k}_{t-1}^{\alpha} + \textit{b}_{t-1} + (1-\lambda)\textit{a}_{t-1}(\textit{z}_t)$$

Concave problem, economizes on inequality constraints

## **Equivalence of Problems**

- Equivalence proof in paper.....
- b has an interpretation as the net foreign asset position

$$b_t = \mathbf{G}_t^L - \mathbf{G}_t^S,$$

Arrow securities capture state contingent default policies on own bonds
 In a setting with 2 productivity states:

$$a_t = \left(egin{array}{c} G_t^{\mathsf{S}} \delta^1 \ G_t^{\mathsf{S}} \delta^2 \end{array}
ight)$$

## **Analytical Result**

#### Proposition

Without default costs ( $\lambda=0$ ) the solution involves constant consumption equal to

$$c = (1 - \beta)(\Pi(z_0) + \widetilde{w}_0)$$

where  $\Pi(\cdot)$  denotes the maximized expected value added

$$\Pi(\mathbf{z}_t) \equiv E_t \left[ \sum_{j=0}^{\infty} \beta^j \left( -\mathbf{k}^*(\mathbf{z}_{t+j}) + \beta \mathbf{z}_{t+j+1} \left( \mathbf{k}^*(\mathbf{z}_{t+j}) \right)^{\alpha} \right) \right]$$

with

$$k^*(\mathbf{z}_t) = (\alpha \beta \mathbf{E}(\mathbf{z}_{t+1}|\mathbf{z}_t))^{\frac{1}{1-\alpha}}$$

denoting the profit maximizing capital level. For any period t, the optimal default level satisfies

$$a_0(z_t) \propto -\left(\Pi(z_t) + z_t \left(k^*(z_{t-1})\right)^{\alpha}\right)$$

## Optimal Policies with Default Costs

- Positive default costs: require numerical solution
- Calibrate the model at annual frequency
- Tauchen's method to generate obtain a two-state productivity process (implied quarterly persistence of technology 0.9 & std dev of 0.5)
- Utility function is given by

$$u(c) = \frac{(c - \bar{c})^{1-\sigma}}{1-\sigma}$$

- ē: if bonds must be repaid always, max sustainable NFA equals -100% of GDP (Lane and Milesi-Ferretti (2007))
- Remaining parameters:

| α    | β    | $\sigma$ | Ē     | 1+r                |
|------|------|----------|-------|--------------------|
| 0.34 | 0.97 | 2        | 0.357 | $1/\beta - 0.0005$ |

#### The Effect of Default Costs



### Optimal Default and Economic Disasters

- Default option:
  - relaxes borrowing limit from 100% of GDP to 220% of GDP
  - with default costs suboptimal to use if above max sustainable NFA position
  - less default in the future if current state low: persistence....

## Optimal Default and Economic Disasters

Calibrating Economic Disasters following Barro and Jin (2011):

Shock process  $Z = \{z^h, z^l, z^d, z^{dd}\} = \{1.0133, 0.9868, 0.9224, 0.6696\}$  with transition matrix

$$\pi = \left( \begin{array}{cccc} 0.7770 & 0.1850 & 0.019 & 0.019 \\ 0.1850 & 0.7770 & 0.019 & 0.019 \\ 0.1429 & 0.1429 & 0.3571 & 0.3571 \\ 0.1429 & 0.1429 & 0.3571 & 0.3571 \end{array} \right).$$

We recalibrate the subsistence level of consumption to  $\bar{c} = 0.198$ .

# Optimal Default with Disaster Risk



# NFA and Default under Optimal Policy



# Welfare Analysis

- Welfare equivalent consumption gain from default (first 500 years)
- ullet Compute consumption change  $\omega$  solving

$$E_0\left[\sum_{t=0}^{500} \beta^t \frac{((c_t^1(1+\omega)-\bar{c}))^{1-\gamma}}{1-\gamma}\right] = E_0\left[\sum_{t=0}^{500} \beta^t \frac{(c_t^2-\bar{c})^{1-\gamma}}{1-\gamma}\right]$$

- $c_t^1$ : optimal consumption path in the no-default economy (repayment assumed)
- ullet c<sup>2</sup>: the corresponding consumption path with optimal (costly) default.

# NFA and Default under Optimal Policy



# Approximate Implementation

- The government now issues two kinds of financial instruments:
- Simple non-contingent bond with payoff (1, 1, 1, 1)
- Equity-like bond with payoff (1, 1, 0, 0) plus default cost  $\lambda$  in disaster

# Approximate Implementation: Welfare Gain Relative to Optimal Implementation



# **Longer Maturities**

- No difference from introducing long foreign bonds: no value for insurance
- No difference from long domestic bonds if repayment is assumed (unlike in Angeletos(2001))
- Long domestic bonds with default option:
  - (partial) default *in the future* after bad event *today* => bonds fall in value repurchase at depreciated value & realize a capital gain
- Improvements possible: if repurchase has lower dead weight costs than outright default....

#### Conclusion

- Default can be optimal under commitment if bond markets incomplete
- Relaxes borrowing limits, increases welfare & optimal after bad output realizations
  - following large disasters
  - if NFA position close to borrowing limit
- Welfare gains large (1-2% of cons.) & not very sensitive to default costs
- Simple equity bonds can approx. implement optimal default policies (for moderate default costs)
- Buyback program may be even more efficient