THE FISCAL MULTIPLIER MORASS: A BAYESIAN PERSPECTIVE

Todd B. Walker (IU) with Eric M. Leeper (IU) and Nora Traum (NC State)

> May 19, 2011 Bundesbank Spring Conference

FISCAL MULTIPLIER(S): DEFINITION

1. Present Value Multiplier:

Present Value Multiplier(Q) =
$$\frac{\sum_{t=0}^{Q} E_t \left(\prod_{i=0}^{Q} R_{t+i}^{-1}\right) \Delta Y_{t+Q}}{\sum_{t=0}^{Q} E_t \left(\prod_{i=0}^{Q} R_{t+i}^{-1}\right) \Delta G_{t+Q}}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 − のへぐ

2. Impact Multiplier: Q = 0

HOW BIG/SMALL ARE FISCAL MULTIPLIERS?

IMF Working Paper 10/73 March 2010

- 1. 17 coauthors: model builders for policy institutions
- 2. Seven Structural Models: QUEST, GIMF, FRB-US, SIGMA BoC-GEM, OECD Fiscal, NAWM.
- 3. Conclude: "Robust finding across all models that fiscal policy can have sizeable output multipliers."

REPRESENTATIVE IMF MULTIPLIER

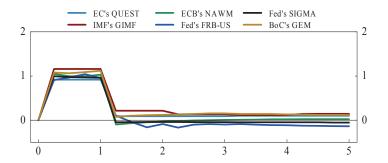


FIGURE 1: Estimated Impact on GDP of Increase in Government Purchases of 1 Percent of GDP

ROBUST FINDING?

• Cogan, Cwik, Taylor and Wieland (2010), Cwik and Wieland (2010)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 − のへぐ

- Multipliers less than 1
- Uhlig (2010)
 - Long-run multipliers negative

UHLIG (2010) IMPULSE RESPONSE

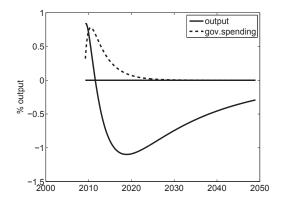


FIGURE 5. OUTPUT AND GOVERNMENT SPENDING: 40 YEARS.

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト

MOTIVATION

Why do policy models yield very different conclusions for multipliers even when conditioning on same data set?

Answer: Multipliers are *conditional* statistics, so different specifications \rightarrow different multipliers

MOTIVATION

Why do policy models yield very different conclusions for multipliers even when conditioning on same data set?

Answer: Multipliers are *conditional* statistics, so different specifications \rightarrow different multipliers

IMF WP10/73's Response to Uhlig (2010) and Cogan et al. (2010):

- include hand-to-mouth agents
- focus on short-run & temporary stimulus
- model different types of fiscal-monetary interactions (Davig-Leeper (2009))

THIS PAPER

Open Question: To what extent does a DSGE model *force* a particular multiplier on the data?

- "black box" problem of DSGE models
- use Bayesian methodology to address issue

OUR CONTRIBUTION

- Build suite of nested models to determine important elements for multipliers.
- Use modified prior predictive analysis (PPA) to understand *a priori* what restrictions are generated by DSGE model
- More general message: What does it mean for a prior to be "flat"?
- Distribution of object of interest should be "flat" relative to economic question at hand

FINDINGS

- Model restrictions impose tight ranges on multipliers
- Rigidities and hand-to-mouth agents key for long run multipliers > 0

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Most important features for multiplier variation:
 - gov. spending process
 - hand-to-mouth agents
 - monetary-fiscal interactions

REVIEW OF PPA

- Standard Exercise [Lancaster (2004), Geweke (2010)]: used to evaluate model's adequacy for given feature of data *before* estimation stage (model evaluation)
- θ parameters, y data, ω vector of interest

$$\begin{array}{lll} \theta^{(m)} & \sim & p(\theta) \\ y^{(m)} & \sim & p(y|\theta^{(m)}) \\ \omega^{(m)} & \sim & p(\omega|y^{(m)},\theta^{(m)}) \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

• Compare distribution of ω to data

REVIEW OF PPA

- Standard Exercise [Lancaster (2004), Geweke (2010)]: used to evaluate model's adequacy for given feature of data *before* estimation stage (model evaluation)
- θ parameters, y data, ω vector of interest

$$\begin{array}{lll} \theta^{(m)} & \sim & p(\theta) \\ y^{(m)} & \sim & p(y|\theta^{(m)}) \\ \omega^{(m)} & \sim & p(\omega|y^{(m)},\theta^{(m)}) \end{array}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Compare distribution of ω to data
- computionally inexpensive

MODIFIED PPA

- Issue: What is multiplier in data? Requires model and identification
- A_j DSGE model, θ parameters of DSGE, ω = multipliers

Draw $\theta^{(m)} \sim p(\theta)$ Solve DSGE Model Calculate $\omega^m | \theta^{(m)}$ Form $p(\omega | A_j)$

MODIFIED PPA

- Issue: What is multiplier in data? Requires model and identification
- A_j DSGE model, θ parameters of DSGE, ω = multipliers

Draw $\theta^{(m)} \sim p(\theta)$ Solve DSGE Model Calculate $\omega^m | \theta^{(m)}$ Form $p(\omega | A_j)$

• PPA gives entire range of possible multipliers

OUR MODEL

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. forward-looking, optimizing agents
- 2. utility from consumption and leisure
- 3. capital and labor inputs in production
- 4. monopolistic competition
- 5. nominal & real frictions
- 6. fiscal and monetary policy
- 7. open economy features

• Model 1: Basic RBC

- Model 1: Basic RBC
- Model 2: RBC with real frictions

- Model 1: Basic RBC
- Model 2: RBC with real frictions
- Model 3: NK model with sticky prices and wages

- Model 1: Basic RBC
- Model 2: RBC with real frictions
- Model 3: NK model with sticky prices and wages
- Model 4: NK model with hand-to-mouth agents

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Model 1: Basic RBC
- Model 2: RBC with real frictions
- Model 3: NK model with sticky prices and wages
- Model 4: NK model with hand-to-mouth agents
- Model 5: NK model with open economy features

• CRRA, time-separable utility

$$E_t \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{L_t^{1+\xi}}{1+\xi} \right]$$

Cobb-Douglas production

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

• Law of motion for capital:

$$K_t = I_t + (1 - \delta)K_{t-1}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 − のへぐ

• GBC:

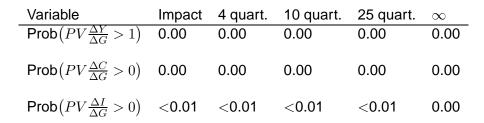
$$B_t + \tau_t^K R_t^K K_{t-1} + \tau_t^L W_t L_t + \tau_t^C C_t = R_{t-1} B_{t-1} + G_t + Z_t$$

capital tax, labor tax, government consumption, transfers follow

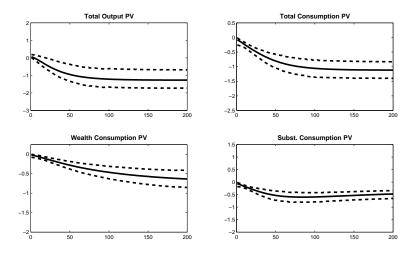
$$\hat{X}_t = \rho_x \hat{X}_{t-1} + (1-\rho_x) \gamma_x \hat{s}_{t-1}^b + \epsilon_t^x$$
 where $s_{t-1}^b = B_{t-1}/Y_{t-1}$

- 5,000 draws from priors: $\gamma \sim N^+(2, 0.6)$, $\xi \sim N^+(2, 0.6)$, $\rho_x \sim B(0.5, 0.2)$, $\gamma_x \sim N^+(0.2, 0.05)$
- Priors similar to Smets and Wouters (2003) and others

- Other parameters fixed at well known values (e.g., $\beta=0.99)$



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Intuition Straightforward:

- Baxter-King (1993) Monacelli-Perotti (2008) + distortionary fiscal financing
- $\uparrow G \rightarrow {\rm negative}$ wealth and substitution effects, crowding out
- Consumption, Investment falls
- Increase in public demand cannot offset decrease in private demand

Add to Model 1

· Habit formation in utility

$$E_t \sum_{t=0}^{\infty} \beta^t \left[\frac{(c_t - \theta C_{t-1})^{1-\gamma}}{1-\gamma} - \frac{L_t^{1+\xi}}{1+\xi} \right]$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\theta \sim B(0.5, 0.2)$

• Capacity utilization: $\psi(v_t)$ cost per unit of Kv = 1, $\psi(1) = 0$, $\frac{\psi''(1)}{\psi'(1)} = \frac{\psi}{1-\psi}$, $\psi \sim B(0.6, 0.15)$

Investment adjustment costs

$$K_t = (1-\delta)K_{t-1} + \left[1 - s\left(\frac{I_t}{I_{t-1}}\right)\right]I_t$$

where s(1) = s'(1) = 0, and s''(1) = s > 0, $s \sim N(6, 1.5)$

Investment adjustment costs

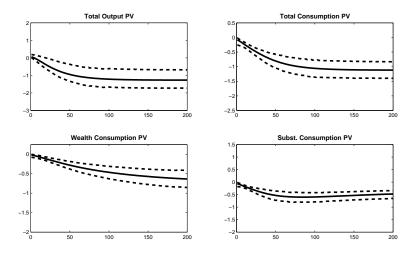
$$K_t = (1-\delta)K_{t-1} + \left[1 - s\left(\frac{I_t}{I_{t-1}}\right)\right]I_t$$

where s(1) = s'(1) = 0, and s''(1) = s > 0, $s \sim N(6, 1.5)$

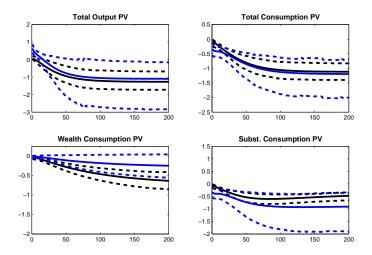
• Aggregate resource constraint:

$$Y_t = C_t + G_t + I_t + \psi(v_t)K_{t-1}$$

・ロト・日本・日本・日本・日本



◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ◆ 日 ト



- More dispersed range of multipliers
- Agents and firms want to smooth consumption and investment
- Smaller wealth effects (agents care about c_t, c_{t-1}), larger substitution effects (more sensitive to price changes)

• Same policy implications

MODEL 3: STICKY PRICE & WAGE

Add to Model 2

Monopolistically competitive intermediate goods & labor services

$$Y_{t} = \left[\int_{0}^{1} y_{t}(i)^{\frac{1}{1+\eta_{p}}} di\right]^{1+\eta_{p}}$$

Price & wage stickiness via Calvo (1983)

MODEL 3: STICKY PRICE & WAGE

Add to Model 2

Monopolistically competitive intermediate goods & labor services

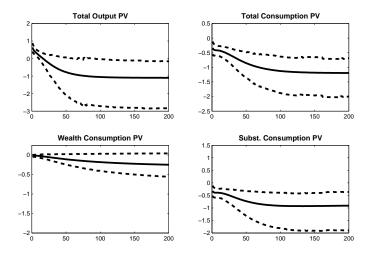
$$Y_{t} = \left[\int_{0}^{1} y_{t}(i)^{\frac{1}{1+\eta_{p}}} di\right]^{1+\eta_{p}}$$

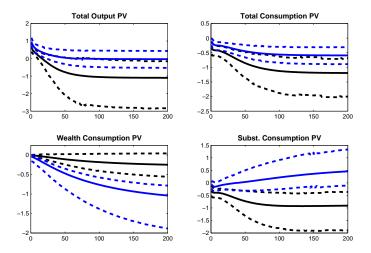
- Price & wage stickiness via Calvo (1983)
 - prob. $1 \omega_p$ re-optimize
 - prob. ω_p partial indexation: $p_t = \pi_{t-1}^{\chi_p} p_{t-1}$

• Monetary policy via Taylor rule

$$\hat{R}_t = \rho_r \hat{R}_{t-1} + (1 - \rho_r) \left[\phi_\pi \hat{\pi}_t + \phi_y \hat{Y}_t \right] + \epsilon_t^r$$

Variable	Impact	4 quart.	10 quart.	25 quart.	∞
$Prob\big(PV\frac{\Delta Y}{\Delta G} > 1\big)$	0.35	0.01	<0.01	0.00	0.00
$Prob\big(PV\tfrac{\Delta C}{\Delta G}>0\big)$	<0.01	0.00	0.00	0.00	0.00
$Prob\big(PV\frac{\Delta I}{\Delta G}>0\big)$	<0.01	<0.01	<0.01	<0.01	0.00





- Much larger multipliers
- sticky prices \rightarrow firms respond to a government spending increase by increasing production rather than their price
- Sub Effect: sticky wages → wage substitution effect is now often positive (increasing real wages)
- CB doesn't raise nominal rate enough initially to keep real rate from falling
- Wealth Effect: initial real value of debt higher (than flex price case), requires larger fiscal adjustment

Add to Model 3

• Non-savers consume entire per period disposable income

$$c_t^N = (1 - \tau_t^L) w_t L_t^N + Z_t^N$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Add to Model 3

• Non-savers consume entire per period disposable income

$$c_t^N = (1 - \tau_t^L) w_t L_t^N + Z_t^N$$

· Set wage to average of savers

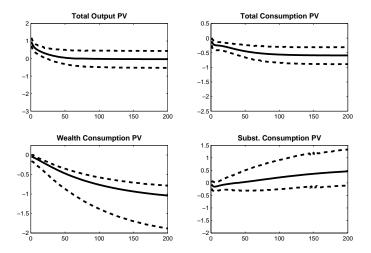
Add to Model 3

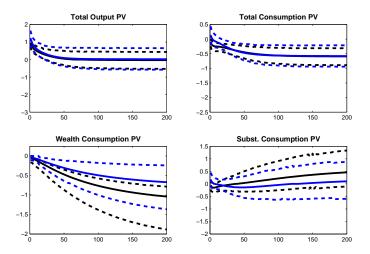
Non-savers consume entire per period disposable income

$$c_t^N = (1 - \tau_t^L) w_t L_t^N + Z_t^N$$

- · Set wage to average of savers
- Crucial parameter: percentage of non-savers $\mu \sim B(0.3, 0.1)$

Variable	Impact	4 quart.	10 quart.	25 quart.	∞
$Prob\big(PV\frac{\Delta Y}{\Delta G} > 1\big)$	0.88	0.32	0.07	0.02	0.01
$Prob\big(PV\tfrac{\Delta C}{\Delta G}>0\big)$	0.84	0.46	0.18	0.02	0.01
$Prob\big(PV\frac{\Delta I}{\Delta G} > 0\big)$	<0.01	<0.01	<0.01	<0.01	0.01





Much, much larger impact multipliers, similar long-run multipliers

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 − のへぐ

- intuition straightfoward: nonsavers are nonsavers
- the most crucial parameter value

Add to Model 4

- Two large symmetric countries (*H* & *F*)
- Complete financial markets
- C and I consist of domestic and imported goods

$$Q_t^C = \left[(1 - \nu_c)^{\frac{1}{\mu_c}} (C_t^H)^{\frac{\mu_C - 1}{\mu_C}} + \nu_C^{\frac{1}{\mu_C}} (C_t^F)^{\frac{\mu_C - 1}{\mu_C}} \right]^{\frac{\mu_C}{\mu_C - 1}}$$

• G non-traded

• Home market domestic demand:

$$y^H_t(i) = Y^H_t \left(\frac{p^H_t(i)}{P^H_t}\right)^{-\frac{1+\eta^p}{\eta^P}}$$

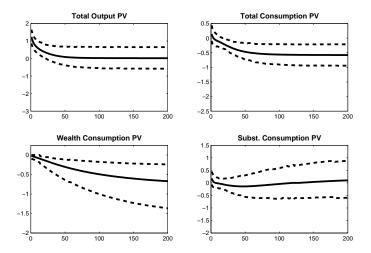
• Home market foreign demand:

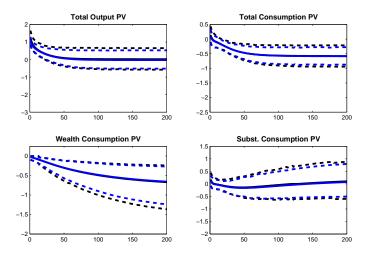
$$m_t(i) = M_t^* \left(\frac{p_t^{H*}(i)}{P_t^{H*}}\right)^{-\frac{1+\eta^p}{\eta^P}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

local currency pricing

Variable					∞
$Prob\big(PV\frac{\Delta Y}{\Delta G} > 1\big)$	0.81	0.27	0.05	0.01	0.01
$Prob\big(PV\tfrac{\Delta C}{\Delta G}>0\big)$	0.82	0.48	0.23	0.02	<0.01
$Prob\big(PV\tfrac{\Delta I}{\Delta G}>0\big)$	<0.01	<0.01	<0.01	<0.01	0.01





- smaller multipliers
- import-substitution effect: increases in government expenditures induce a substitution away from domestically produced goods towards imported goods.
- Multipliers are smaller still when government spending is a traded good as part of the increase in government spending is "leaked" to the foreign country

ROOT MEAN SQUARE DEVIATIONS

How much do multipliers vary on average due to particular parameter?

- Draw $\tilde{\theta} = [\tilde{\theta}_1 \quad \dots \quad \tilde{\theta}_n]'$ from $p(\theta)$. Calculate $\tilde{\omega}|\tilde{\theta}_n$
- Let $\tilde{\theta}^i = [\tilde{\theta}_1 \quad \dots \quad E[\theta_i] \quad \dots \quad \tilde{\theta}_n]'$. Calculate $\tilde{\omega}^i | \tilde{\theta}^i$

• Calculate
$$\sqrt{\frac{\sum_{j=1}^{M} (\tilde{\omega}_j - \tilde{\omega}_j^i)^2}{M}}$$

RMSDs for NK open economy model.

Impact $\frac{\Delta C}{\Delta G}$	
μ , fraction of non-savers	0.115
$ ho_G$, lagged govt cons resp.	0.065
θ_c , habit formation	0.048
ρ_r , lagged interest rate resp.	0.047
γ , risk aversion	0.035

$PV_{\infty}\frac{\Delta C}{\Delta G}$	
ρ_G , lagged govt cons resp.	0.202
γ , risk aversion	0.055
ρ_r , lagged interest rate resp.	0.047
ω_w , wage stickiness	0.044
ξ , inverse Frisch labor elast.	0.042

RMSDs for NK open economy model.

Impact $\frac{\Delta Y}{\Delta G}$	
μ , fraction of non-savers	0.123
$ ho_G$, lagged govt cons resp.	0.120
ψ , capital utilization	0.095
ρ_r , lagged interest rate resp.	0.065
θ_c , habit formation	0.052

$PV_{\infty}\frac{\Delta Y}{\Delta G}$	
ρ_G , lagged govt cons resp.	0.427
$ ho_r$, lagged interest rate resp.	0.096
ω_w , wage stickiness	0.086
ξ , inverse Frisch labor elast.	0.086
ϕ_{π} , interest rate resp. to inflation	0.068

ALTERNATIVE MP-FP INTERACTION

- Multipliers depend on MP-FP interaction
 - Davig & Leeper (2009), Christiano, Eichenbaum, Rebelo (2009)
- Calculate multipliers for passive monetary and active fiscal policy regime
 - FP unconstrained: doesn't control *B* growth
 - MP satisfies equilibrium conditions: R adjusts less than 1-1 with π

MODEL 5: OPEN ECONOMY PMAF

Variable	Impact	4 quart.	10 quart.	25 quart.	∞
$Prob\big(PV\frac{\Delta Y}{\Delta G} > 1\big)$	1.00	1.00	0.97	0.93	0.91
$Prob\big(PV\tfrac{\Delta C}{\Delta G}>0\big)$	1.00	1.00	1.00	0.99	0.93
$Prob\big(PV\frac{\Delta I}{\Delta G} > 0\big)$	0.73	0.53	0.45	0.44	0.47

CONCLUSION

• DSGE specification matters! If not careful, results can be imposed on data

- Most important features for multiplier variation:
 - gov. spending process
 - hand-to-mouth agents
 - monetary-fiscal interactions

CONCLUSION

- DSGE specification matters! If not careful, results can be imposed on data
- Most important features for multiplier variation:
 - gov. spending process
 - hand-to-mouth agents
 - monetary-fiscal interactions
- Broader message: use PPA to shine light on DSGE black box

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>