Public Debt and Changing Inflation Targets

Michael Krause and Stéphane Moyen¹

Deutsche Bundesbank

Spring Conference 2011

 $^{-1}$ Disclaimer: opinions not necessarily those of the Deutsche Bundesbank $_{\pm}$ $_{\odot @}$

- Financial crisis resulted in large increases in public debt due to stimulus and rescue packages.
- Large projected (net) debt increases since 2008
 - U.S.: from 40% to 67% of GDP
 - Germany: from 60% to 85% of GDP
- How to reduce debt burden?

- Financial crisis resulted in large increases in public debt due to stimulus and rescue packages.
- Large projected (net) debt increases since 2008
 - U.S.: from 40% to 67% of GDP
 - Germany: from 60% to 85% of GDP
- How to reduce debt burden?
 - Fiscal consolidation, default, or inflation

- Financial crisis resulted in large increases in public debt due to stimulus and rescue packages.
- Large projected (net) debt increases since 2008
 - U.S.: from 40% to 67% of GDP
 - Germany: from 60% to 85% of GDP
- How to reduce debt burden?
 - Fiscal consolidation, default, or inflation
- Suggestions to raise inflation target to improve private and public sector balance sheets (e.g., Rogoff, Blanchard, Krugman,...)

- How effective is inflation in reducing real public debt?
- Two factors
 - Inflation expectations: affect current inflation and nominal interest rates on newly-issued debt
 - **Maturity structure**: determines the fraction of outstanding real public debt that can be inflated away by (anticipated) inflation

- How effective is inflation in reducing real public debt?
- Two factors
 - Inflation expectations: affect current inflation and nominal interest rates on newly-issued debt
 - **Maturity structure**: determines the fraction of outstanding real public debt that can be inflated away by (anticipated) inflation
- New Keynesian sticky price model with a maturity structure of government debt and a time-varying inflation target

- How effective is inflation in reducing real public debt?
- Two factors
 - Inflation expectations: affect current inflation and nominal interest rates on newly-issued debt
 - **Maturity structure**: determines the fraction of outstanding real public debt that can be inflated away by (anticipated) inflation
- New Keynesian sticky price model with a maturity structure of government debt and a time-varying inflation target
- Imperfect information about inflation target:

- How effective is inflation in reducing real public debt?
- Two factors
 - Inflation expectations: affect current inflation and nominal interest rates on newly-issued debt
 - **Maturity structure**: determines the fraction of outstanding real public debt that can be inflated away by (anticipated) inflation
- New Keynesian sticky price model with a maturity structure of government debt and a time-varying inflation target
- Imperfect information about inflation target:
 - different degrees of credibility of monetary policy

- How effective is inflation in reducing real public debt?
- Two factors
 - Inflation expectations: affect current inflation and nominal interest rates on newly-issued debt
 - **Maturity structure**: determines the fraction of outstanding real public debt that can be inflated away by (anticipated) inflation
- New Keynesian sticky price model with a maturity structure of government debt and a time-varying inflation target
- Imperfect information about inflation target:
 - different degrees of credibility of monetary policy
 - differences in the evolution of inflation expectations

Aizenman and Marion (2009):

- find large incentives to inflate away public debt in a partial equilibrium model with a fixed interest rate
- Hall and Sargent (2009):
 - find that historically the fraction of U.S. public debt inflated was comparatively low. Instead, high real GDP growth made the largest contribution, not inflation

- Main results
- Introducing a 'stochastic bond'
- Imperfect information about inflation target
- Remaining model features
- Calibration and simulation
- Conclusions

Main results

• Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates
- Temporary change in inflation target:

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates
- Temporary change in inflation target:
 - $\bullet\,$ only weak effects on real debt, <5% after 10 years

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates
- Temporary change in inflation target:
 - $\bullet\,$ only weak effects on real debt, <5% after 10 years
 - even with large jump in inflation, effect is low

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates
- Temporary change in inflation target:
 - $\bullet\,$ only weak effects on real debt, <5% after 10 years
 - even with large jump in inflation, effect is low
- Learning about inflation target: debt reduction larger

- Simulation of crisis-related real debt increase, followed by a change of the inflation target by 4 percentage points
- Persistent change in the inflation target:
 - $\bullet\,$ Inflate away 25% to 30% of crisis-related real debt after 10 years
 - even though current long-run interest rates rise, due to high inflation expectations, old debt priced at past, low rates
- Temporary change in inflation target:
 - $\bullet\,$ only weak effects on real debt, <5% after 10 years
 - even with large jump in inflation, effect is low
- Learning about inflation target: debt reduction larger
- Effect on real debt depends on average maturity

Debt structure in advanced economies

		Local Currency	Average Maturity
	Central Government	share of Cent.	of Debt in Local
Advanced Economies (2009)	Debt (% of GDP)	Gov. Debt	Currency
Japan	158.2	100	6.1
Greece	116.6	100	7.9
United States	48.5	100	4.4
Ireland	47.3	100	6.0
Spain	42.6	99	6.4
United Kingdom	55.5	100	14.1
France	57.0	100	6.7
Portugal	65.9	98	6.0
Netherlands	44.8	98	6.6
Italy	90.3	100	7.0
Average	72.7	99	7.1

Source: IMF (2010)

• A 'callable perpetuity with stochastic call date'

- A 'callable perpetuity with stochastic call date'
- $\bullet\,$ Each period, individual bond matures with probability α

- A 'callable perpetuity with stochastic call date'
- Each period, individual bond matures with probability α
- Large number of these bonds issued each period, households hold representative portfolio: fraction α matures each period

- A 'callable perpetuity with stochastic call date'
- Each period, individual bond matures with probability α
- Large number of these bonds issued each period, households hold representative portfolio: fraction α matures each period
- Stock of long-term bonds evolves as

$$B_t^L = (1 - \alpha)B_{t-1}^L + B_t^{new}$$
(1)

- A 'callable perpetuity with stochastic call date'
- Each period, individual bond matures with probability α
- Large number of these bonds issued each period, households hold representative portfolio: fraction α matures each period
- Stock of long-term bonds evolves as

$$B_t^L = (1 - \alpha)B_{t-1}^L + B_t^{new} \tag{1}$$

• Average remaining maturity of all bonds = $1/\alpha$

- A 'callable perpetuity with stochastic call date'
- Each period, individual bond matures with probability α
- Large number of these bonds issued each period, households hold representative portfolio: fraction *α* matures each period
- Stock of long-term bonds evolves as

$$B_t^L = (1 - \alpha)B_{t-1}^L + B_t^{new} \tag{1}$$

- Average remaining maturity of all bonds = $1/\alpha$
- Standard one-period bond: $\alpha = 1$

- A 'callable perpetuity with stochastic call date'
- Each period, individual bond matures with probability α
- Large number of these bonds issued each period, households hold representative portfolio: fraction *α* matures each period
- Stock of long-term bonds evolves as

$$B_t^L = (1 - \alpha)B_{t-1}^L + B_t^{new} \tag{1}$$

- Average remaining maturity of all bonds $= 1/\alpha$
- Standard one-period bond: $\alpha = 1$
- In steady state:

$$\alpha = \frac{B^{new}}{B^L}$$

- Interest rate of a newly issued long-term bond: i_t^{new}
- Average interest rate i_t^L is weighted average of i_t^{new}

$$i_t^L = \frac{B_t^{new}}{B_t^L} i_t^{new} + (1-\alpha) \frac{B_{t-1}^{new}}{B_t^L} i_{t-1}^{new} + (1-\alpha)^2 \frac{B_{t-2}^{new}}{B_t^L} i_{t-2}^{new} + \dots$$

- Interest rate of a newly issued long-term bond: i_t^{new}
- Average interest rate i_t^L is weighted average of i_t^{new}

$$i_t^L = (1 - \alpha)i_{t-1}^L \frac{B_{t-1}^L}{B_t^L} + i_t^{new} \frac{B_t^{new}}{B_t^L}$$

- Interest rate of a newly issued long-term bond: i_t^{new}
- Average interest rate i_t^L is weighted average of i_t^{new}

$$i_t^L = (1 - \alpha)i_{t-1}^L \frac{B_{t-1}^L}{B_t^L} + i_t^{new} \frac{B_t^{new}}{B_t^L}$$

Linearized

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new} = \alpha \sum_{s=0}^{\infty} (1-\alpha)^s i_{t-s}^{new}$$

- Interest rate of a newly issued long-term bond: i_t^{new}
- Average interest rate i_t^L is weighted average of i_t^{new}

$$i_t^L = (1 - \alpha)i_{t-1}^L \frac{B_{t-1}^L}{B_t^L} + i_t^{new} \frac{B_t^{new}}{B_t^L}$$

Linearized

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new} = \alpha \sum_{s=0}^{\infty} (1-\alpha)^s i_{t-s}^{new}$$

• Recursive representation possible because same fraction of old issuance matures each period, irrespective of date of issuance.

• Long-term debt (divide by price level)

$$b_t^L = (1 - \alpha) \frac{b_{t-1}^L}{\pi_t} + b_t^{new}$$

• Long-term debt (divide by price level)

$$b_t^L = (1-lpha) rac{b_{t-1}^L}{\pi_t} + b_t^{new}$$

• Government budget constraint (ignore short-term debt)

$$\tau_{t}Y_{t} + m_{t} - \frac{m_{t-1}}{\pi_{t}} + b_{t}^{new} = g + (\alpha + i_{t}^{L})\frac{b_{t-1}^{L}}{\pi_{t}}$$

• Long-term debt (divide by price level)

$$b_t^L = (1-lpha)rac{b_{t-1}^L}{\pi_t} + b_t^{new}$$

• Government budget constraint (ignore short-term debt)

$$\tau_t Y_t + m_t - \frac{m_{t-1}}{\pi_t} + b_t^{new} = g + (\alpha + i_t^L) \frac{b_{t-1}^L}{\pi_t}$$

• Fiscal policy rule

$$\tau_t = \tau + \phi_\tau \frac{b_t^L - b^L}{b^L}$$

• Long-term debt (divide by price level)

$$b_t^L = (1-lpha) rac{b_{t-1}^L}{\pi_t} + b_t^{new}$$

• Government budget constraint (ignore short-term debt)

$$\tau_{t}Y_{t} + m_{t} - \frac{m_{t-1}}{\pi_{t}} + b_{t}^{new} = g + (\alpha + i_{t}^{L})\frac{b_{t-1}^{L}}{\pi_{t}}$$

Fiscal policy rule

$$\tau_t = \tau + \phi_\tau \frac{b_t^L - b^L}{b^L}$$

• With a bit of inserting and simplifying (i.e., no seignorage)

$$b_t^L = \frac{1}{1 + \overline{\phi_\tau} Y_t} \left[g - \overline{\tau} Y_t + (1 + i_{t-1}^L) \frac{b_{t-1}^L}{\pi_t} \right]$$

The evolution of real debt

Long-term debt (divide by price level)

$$b_t^L = (1-lpha) rac{b_{t-1}^L}{\pi_t} + b_t^{new}$$

• Government budget constraint (ignore short-term debt)

$$\tau_{t}Y_{t} + m_{t} - \frac{m_{t-1}}{\pi_{t}} + b_{t}^{new} = g + (\alpha + i_{t}^{L})\frac{b_{t-1}^{L}}{\pi_{t}}$$

Fiscal policy rule

$$\tau_t = \tau + \phi_\tau \frac{b_t^L - b^L}{b^L}$$

• With a bit of inserting and simplifying (i.e., no seignorage)

$$b_t^L = \frac{1}{1 + \overline{\phi_\tau} Y_t} \left[g - \overline{\tau} Y_t + (1 + i_{t-1}^L) \frac{b_{t-1}^L}{\pi_t} \right]$$

Need to determine dynamics of i_t^L and $\pi_{t^{\Box}} \rightarrow \langle \sigma \rangle \rightarrow \langle \sigma \rangle$ Krause/Moyen (Deutsche Bundesbank) Public Debt and Changing Inflation Targets

Household optimization

Households maximize E₀ Σ[∞]_{t=0} β^t U(C_t, M_t, N_t) subject to their budget constraint and the equations that describe the evolution of debt and of the average interest rate on long-term debt

Household optimization

- Households maximize $E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, M_t, N_t)$ subject to their budget constraint and the equations that describe the evolution of debt and of the average interest rate on long-term debt
- First-order conditions for bonds (including a short-term bond)

$$1 = E_t \beta \left(rac{C_{t+1}}{C_t}
ight)^{-\sigma} rac{P_t}{P_{t+1}} \left[1+i_t
ight]$$
 ,

$$1 = E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \left[1 + i_t^{new} - \mu_{t+1}(1-\alpha)\Delta i_{t+1}^{new}\right],$$
$$\mu_t = E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \left[1 + \mu_{t+1}(1-\alpha)\right].$$

Household optimization

- Households maximize $E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, M_t, N_t)$ subject to their budget constraint and the equations that describe the evolution of debt and of the average interest rate on long-term debt
- First-order conditions for bonds (including a short-term bond)

$$1 = E_t \beta \left(rac{C_{t+1}}{C_t}
ight)^{-\sigma} rac{P_t}{P_{t+1}} \left[1+i_t
ight]$$
 ,

$$1 = E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \left[1 + i_t^{new} - \mu_{t+1}(1-\alpha)\Delta i_{t+1}^{new}\right],$$

$$\mu_t = E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \left[1 + \mu_{t+1}(1-\alpha)\right].$$

• μ_t is Lagrange multiplier on long-term interest rate equation

• The two first-order (Euler) conditions for short- and long-term bonds lead to arbitrage conditions that link *i*_t and *i*_t^{new}

$$i_t^{new} \approx (1-\alpha)E_t i_{t+1}^{new} + \alpha i_t$$

• The two first-order (Euler) conditions for short- and long-term bonds lead to arbitrage conditions that link *i*_t and *i*_t^{new}

$$i_t^{new} \approx (1-\alpha)E_t i_{t+1}^{new} + \alpha i_t$$

• Recall equation for the evolution of the interest rate i_t^L :

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new}$$

• The two first-order (Euler) conditions for short- and long-term bonds lead to arbitrage conditions that link *i*_t and *i*_t^{new}

$$i_t^{new} \approx (1-\alpha)E_t i_{t+1}^{new} + \alpha i_t$$

• Recall equation for the evolution of the interest rate i_t^L :

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new}$$

Monetary policy rule

$$\dot{i}_t = \bar{\imath} + \hat{\pi}_t^* + \phi_{\pi}(\hat{\pi}_t - \hat{\pi}_t^*) + \phi_y(\hat{Y}_t - \hat{Y}_t^n) + \eta_t$$

• The two first-order (Euler) conditions for short- and long-term bonds lead to arbitrage conditions that link *i*_t and *i*_t^{new}

$$i_t^{new} \approx (1-\alpha)E_t i_{t+1}^{new} + \alpha i_t$$

• Recall equation for the evolution of the interest rate i_t^L :

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new}$$

Monetary policy rule

$$i_t = \overline{\imath} + \widehat{\pi}_t^* + \phi_{\pi}(\widehat{\pi}_t - \widehat{\pi}_t^*) + \phi_y(\widehat{Y}_t - \widehat{Y}_t^n) + \eta_t$$

• Time-varying inflation target $\widehat{\pi}_t^* = \rho_\pi \widehat{\pi}_{t-1}^* + \eta_t^\pi$, variance $\sigma_{\eta^\pi}^2$

• The two first-order (Euler) conditions for short- and long-term bonds lead to arbitrage conditions that link *i*_t and *i*_t^{new}

$$i_t^{new} \approx (1-\alpha)E_t i_{t+1}^{new} + \alpha i_t$$

• Recall equation for the evolution of the interest rate i_t^L :

$$i_t^L \approx (1-\alpha)i_{t-1}^L + \alpha i_t^{new}$$

Monetary policy rule

$$i_t = \overline{\imath} + \widehat{\pi}_t^* + \phi_{\pi}(\widehat{\pi}_t - \widehat{\pi}_t^*) + \phi_y(\widehat{Y}_t - \widehat{Y}_t^n) + \eta_t$$

13 / 26

- Time-varying inflation target $\widehat{\pi}_t^* = \rho_\pi \widehat{\pi}_{t-1}^* + \eta_t^\pi$, variance $\sigma_{\eta^\pi}^2$
- Monetary policy shock η_t i.i.d. with σ_{η}^2

• Monetary policy rule

$$\dot{\mu}_t = \bar{\iota} + \widehat{\pi}_t^* + \phi_{\pi}(\widehat{\pi}_t - \widehat{\pi}_t^*) + \phi_y(\widehat{Y}_t - \widehat{Y}_t^n) + \eta_t$$

• Use Kalman filter to extract best guess $E_t \widehat{\pi}_t^*$ from signal

$$\varepsilon_t^{\pi} = (1 - \phi_{\pi})\widehat{\pi}_t^* + \eta_t$$

Monetary policy rule

$$\dot{y}_t = \bar{\iota} + \hat{\pi}_t^* + \phi_\pi(\hat{\pi}_t - \hat{\pi}_t^*) + \phi_y(\hat{Y}_t - \hat{Y}_t^n) + \eta_t$$

• Use Kalman filter to extract best guess $E_t \widehat{\pi}_t^*$ from signal

$$\varepsilon_t^{\pi} = (1 - \phi_{\pi})\widehat{\pi}_t^* + \eta_t$$

• Then best guess is the Kalman filtered signal

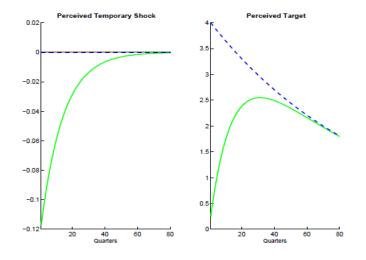
$$E_t \widehat{\pi}_t^* = E_{t-1} \widehat{\pi}_{t-1}^* + \frac{\kappa}{\rho_{\pi}} \left[\varepsilon_t^{\pi} - E_{t-1} \varepsilon_t^{\pi} \right]$$

and κ is the Kalman gain, depends on $\sigma^2_{\eta^\pi}$, ho_π , and σ^2_η

Monetary policy rule

$$\dot{q}_t = \bar{\iota} + \hat{\pi}_t^* + \phi_\pi (\hat{\pi}_t - \hat{\pi}_t^*) + \phi_y (\hat{Y}_t - \hat{Y}_t^n) + \eta_t$$

• Use Kalman filter to extract best guess $E_t \widehat{\pi}_t^*$ from signal


$$\varepsilon_t^{\pi} = (1 - \phi_{\pi})\widehat{\pi}_t^* + \eta_t$$

Then best guess is the Kalman filtered signal

$$E_t \widehat{\pi}_t^* = E_{t-1} \widehat{\pi}_{t-1}^* + \frac{\kappa}{\rho_{\pi}} \left[\varepsilon_t^{\pi} - E_{t-1} \varepsilon_t^{\pi} \right]$$

and κ is the Kalman gain, depends on $\sigma_{\eta^{\pi}}^2$, ρ_{π} , and σ_{η}^2 • The agents' optimal forecast of the inflation target is

$$E_t\widehat{\pi}_{t+s}^* = \rho_\pi^s E_t\widehat{\pi}_t^*$$

Krause/Moyen (Deutsche Bundesbank) Public Debt and Changing Inflation Targets Spring Conference 2011 15 / 26

- Monopolistic firms face Calvo-style price rigidities
- ullet Prices on average adjusted with steady-state inflation rate $E_t \widehat{\pi}^*_t$
- New Keynesian Phillips curve

$$\widehat{\pi}_t = E_t \widehat{\pi}_t^* + \beta E_t (\widehat{\pi}_{t+1} - \widehat{\pi}_{t+1}^*) + \varphi \widehat{mc}_t$$

with marginal costs $mc_t = w_t / A_t$

• Note that $E_t \hat{\pi}_t^*$ need not be identical to true target when there is imperfect information about the inflation target

• Assume flexible prices, then $s \ge 1$

$$E_t\widehat{\pi}_{t+s} = \omega \rho_\pi^s E_t\widehat{\pi}_t^*$$

• Assume flexible prices, then $s \ge 1$

$$E_t\widehat{\pi}_{t+s} = \omega \rho_\pi^s E_t\widehat{\pi}_t^*$$

• With $E_t i_{t+s} - i = E_t \hat{\pi}_{t+s}$, recalling equation for i_t^{new}

$$i_t^{new} - i \approx \frac{\alpha \rho_{\pi}}{1 - (1 - \alpha) \rho_{\pi}} \omega E_t \hat{\pi}_t^*$$

• Assume flexible prices, then $s \ge 1$

$$E_t\widehat{\pi}_{t+s} = \omega \rho_\pi^s E_t\widehat{\pi}_t^*$$

• With $E_t i_{t+s} - i = E_t \hat{\pi}_{t+s}$, recalling equation for i_t^{new}

$$i_t^{new} - i \approx \frac{\alpha \rho_{\pi}}{1 - (1 - \alpha) \rho_{\pi}} \omega E_t \widehat{\pi}_t^*$$

The evolution of long-term interest rates becomes

$$i_t^L - i \approx \frac{\alpha \rho_\pi}{1 - (1 - \alpha)\rho_\pi} \alpha \sum_{s=0}^\infty (1 - \alpha)^s \omega E_t \hat{\pi}_{t-s}^*$$

 ${\scriptstyle \bullet}\,$ Assume flexible prices, then $s\geq 1$

$$E_t\widehat{\pi}_{t+s} = \omega \rho_\pi^s E_t\widehat{\pi}_t^*$$

• With $E_t i_{t+s} - i = E_t \hat{\pi}_{t+s}$, recalling equation for i_t^{new}

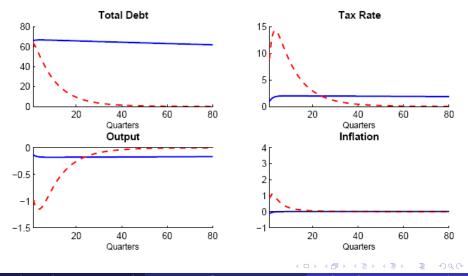
$$i_t^{new} - i \approx \frac{\alpha \rho_{\pi}}{1 - (1 - \alpha) \rho_{\pi}} \omega E_t \hat{\pi}_t^*$$

• The evolution of long-term interest rates becomes

$$i_t^L - i \approx \frac{\alpha \rho_\pi}{1 - (1 - \alpha)\rho_\pi} \alpha \sum_{s=0}^\infty (1 - \alpha)^s \omega E_t \hat{\pi}_{t-s}^*$$

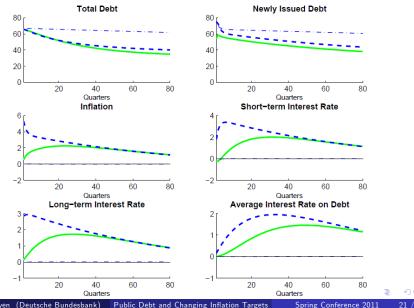
With signal extraction: repeated expectational errors

Calibration

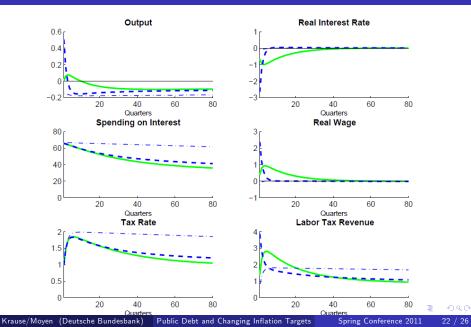

Parameter	Value	Description
Preferences		
β	0.99	Time discount factor
σ	1.5	Intertemporal elasticity of substitution
σ_m	2.56	Inverse of the interest elasticity of money demand
χ	$5.2 imes 10^{-6}$	Scale factor to utility of money balances, targets $m/Y = 0.07$
ϕ	2.00	Inverse of the Frish of labor supply
φ	35.94	Scale factor to disutility of work, targets $h = 1/3$
Bonds market		
α	0.055	Quarterly probability of maturing debt
<u>Firms</u>		
ϵ	6	Price markup of 20%
θ	0.75	One year price contracts
Monetary policy		
$\overline{ ho_i}$	0.75	Interest rate smoothing parameter
ϕ_{π}	1.5	Response of interest rate to inflation
ϕ_y	0.5	Response of interest rate to output gap
Fiscal policy		
$\rho_{ au}$	0.5	Tax rate smoothing parameter
$\phi_{ au}$	0.02	Tax feedback to deviations of debt from steady-state

æ

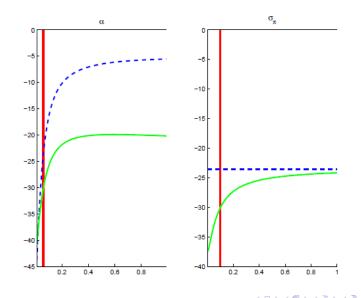
イロト イ団ト イヨト イヨト


- 'Debt shock' that raises U.S. government debt
- First: possible fiscal policy reaction (response of tax rate)
- Second: monetary policy action
 - permanent change of inflation target
 - comparing full and imperfect information
- Fourth: role of debt maturity, credibility, size of target shock

Simulation: debt shock


Krause/Moyen (Deutsche Bundesbank) Public Debt and Changing Inflation Targets Spring Conference 2011 20 / 26

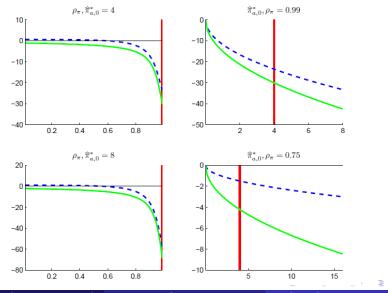
Simulation: permanent inflation target shock I



Krause/Moyen (Deutsche Bundesbank) Public Debt and Changing Inflation Targets 21 / 26

Simulation: permanent inflation target shock II

Average maturity and credibility



Average maturity

	Central Government	Local Currency share of Cent.	Average Maturity of Debt in Local
Advanced Economies (2009)	Debt (% of GDP)	Gov. Debt	Currency
Japan	158.2	100	6.1
Greece	116.6	100	7.9
United States	48.5	100	4.4
Ireland	47.3	100	6.0
Spain	42.6	99	6.4
United Kingdom	55.5	100	14.1
France	57.0	100	6.7
Portugal	65.9	98	6.0
Netherlands	44.8	98	6.6
Italy	90.3	100	7.0
Average	72.7	99	7.1

æ

Inflation target shock properties

Krause/Moyen (Deutsche Bundesbank) Public Debt and Changing Inflation Targets

• To reduce real government debt need permanent change in inflation target (transitory does not work)

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent
- The better anchored are (low) inflation expectations, the more difficult to bring actual inflation up: difficult to lower nominal rate when close to zero-lower bound

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent
- The better anchored are (low) inflation expectations, the more difficult to bring actual inflation up: difficult to lower nominal rate when close to zero-lower bound
- Future work

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent
- The better anchored are (low) inflation expectations, the more difficult to bring actual inflation up: difficult to lower nominal rate when close to zero-lower bound
- Future work
 - default risk

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent
- The better anchored are (low) inflation expectations, the more difficult to bring actual inflation up: difficult to lower nominal rate when close to zero-lower bound
- Future work
 - default risk
 - conditions under which inflation target is raised (fiscal limit)

- To reduce real government debt need permanent change in inflation target (transitory does not work)
- In the baseline scenario, crisis related increase in real public debt can be brought down by up to 30 percent after 10 years
- If target shock is larger (8 percentage points) reduce additional crisis-related debt up to 40 percent
- The better anchored are (low) inflation expectations, the more difficult to bring actual inflation up: difficult to lower nominal rate when close to zero-lower bound
- Future work
 - default risk
 - conditions under which inflation target is raised (fiscal limit)
 - open-economy constraints