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Introduction 

• In order to fill out the cells in a nation’s balance sheets, it is 
necessary to decompose property value into land and 
structure components.  

• Information on the amount of land (and its price) is 
necessary in order to determine the productivity 
performance of the country.  

• The problem is that information on the value of the land 
component of property value is almost completely lacking. 

•  Thus in this paper, we will attempt to partially fill this 
statistical gap by indicating how residential property values 
could be decomposed into land and structure components.  

• We also look at alternative models of depreciation and 
compare alternative hedonic regression models 
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Data 

• The data for this study were obtained from the Multiple 
Listing Service for the city of Richmond, British Columbia, 
Canada for 36 quarters: Q1 in 2008 to Q4 in 2016. 

• We started out with 13,199 sales of detached houses but we 
deleted sparse observation on the tails of the distribution of 
selling prices and on the distribution of the characteristics 
used to describe the properties.  

• We ended up with 11,045 observations. 
• The main price determining characteristics of the properties 

are the area of the land plot L, the floor space area of the 
structure S, the age A of the house and its location (postal 
code area). 

• We had information on the above characteristics plus a few 
additional characteristics. 
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Data (continued) 

The ranges of the variables that we used are as follows: 
 

• The land plot area L is between 3000 and 12000 square feet; 
• Floor space area S (also called living area or structure area) 

is between 1000 and 4800 square feet; 
• The age A of the structure is less than or equal to 60 years; 
• The structure has 1 to 6 bathrooms (NBA); 
• The structure has 3 to 7 bedrooms (NBE); 
• The structure has 1 to 3 kitchens; 
• The structure has less than 4 covered parking spots; 
• For the sales prices, we deleted the bottom 1% and 

approximately the top 3% of selling prices by year. 
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Data (continued) 

• We did not use the kitchen or parking characteristics in our 
regressions; these variables were used to eliminate properties 
with an unusual number of kitchens or parking spots. 

• In addition to the above variables, we had information on 
which one of 6 postal code regions for Richmond was 
assigned to each property. 

• Finally, we used a quarterly residential construction cost 
index for the Metropolitan Area of Vancouver which we 
denote as pSt for quarter t = 1,...,36.  

• This index (in dollars per square foot of floor space area) is 
derived from Statistics Canada residential house 
construction cost models for Metro Vancouver.  

• In the following Table, V denotes the value of the property; 
i.e., the selling price. 
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Data (concluded) 

• Table 1: Descriptive Statistics for the Variables 
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Name No. of Obs. Mean Std. Dev Minimum Maximum Unit of Measurement 
V 11045 $1134.1 473.61 $450 $3435  1000 dollars 
A 11045 26.093 16.746 0 60  No. of Years    
L 11045 6.5101 1.8720 3.003 12.000  1000 ft2 

S 11045 2.6196 0.7507 1.000 4.793  1000 ft2 
NBA 11045 4.3928 0.9789 3 7  Number 
NBE 11045 3.5283 1.2768 1 6  Number 
 



3. The Builder’s Model 

• The builder’s model for valuing a detached dwelling unit 
postulates that the value of the property is the sum of two 
components: the value of the land which the structure sits on 
plus the value of the structure. 

• The simplest model for a new structure is the following one: 
(1) Vtn = αtLtn + βtStn + εtn ;                   t = 1,...,36; n = 1,...,N(t). 
• Older structures will be worth less than newer structures due 

to the depreciation of the structure.  
• Assuming that we have information on the age of the 

structure n at time t, say A(t,n), a more realistic hedonic 
regression model than that defined by (1) above is the 
following basic builder’s model (with geometric depreciation): 

(2) Vtn = αt
 Ltn + βt(1 − δ)A(t,n)Stn + εtn ; t = 1,...,36; n = 1,...,N(t)  

     where δ is the annual structure depreciation rate.  7 



The Builder’s Model with Geometric Depreciation 

• Note that the above model is a supply side model as opposed 
to a demand side model. 

• Basically, we are assuming competitive suppliers of 
residential properties so that we are in Rosen’s (1974; 44) 
Case (a), where the hedonic surface identifies the structure of 
supply.  

• This assumption is justified for the case of newly built houses 
but it is less well justified for sales of properties with older 
structures where a demand side model may be more relevant. 

• Experience has shown that it is usually not possible to 
estimate sensible land and structure prices in a hedonic 
regression like that defined by (2) due to the multicollinearity 
between lot size and structure size. 
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Builder’s Model 1 

• Thus in order to deal with the multicollinearity problem, we 
replace the parameter βt in (2) by pSt, the period t Statistics 
Canada construction cost price for houses in the Greater 
Vancouver area and we obtain the following Model 1: 

(3) Vtn = αt
 Ltn + pSt(1 − δ)A(t,n)Stn + εtn . 

• This model has 36 quarterly land price parameters (the αt) 
and one (net) geometric depreciation rate δ.  

• The R2 (between the observed values and the predicted 
values) was 0.7233 which is not too bad for such a simple 
model.  

• The estimated depreciation rate was 2.85% per year.  
• Land prices grew from α1 = $74.16 per ft2 in the first quarter 

of 2008 to α36 = $214.00 per ft2 in the last quarter of 2016, a 
2.89 fold increase over the sample period. 
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Builder’s Model 2 

• In order to take into account possible neighbourhood effects 
on the price of land, we introduced postal code dummy 
variables, DPC,tn,j, into the hedonic regression (3).  

• These 5 dummy variables are defined as follows: for t = 
1,...,36; n = 1,...,N(t); j = 1,...,5: 

(4) DPC,tn,j ≡ 1 if observation n in period t is in Postal Code j of 
                         Richmond; 
                 ≡ 0 if observation n in period t is not in Postal Code j 
                         of Richmond.     
• We now modify the model defined by (3) to allow the level of 

land prices to differ across the 6 postal codes in Richmond. 
The new nonlinear regression Model 2 is the following one: 

(5) Vtn = αt(∑j=1
6 ωjDPC,tn,j)Ltn + pSt(1 − δ)A(t,n)Stn + εtn. 
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Builder’s Model 2 (continued) 

• Comparing the models defined by equations (3) and (5), it 
can be seen that we have added an additional 6 
neighbourhood relative land value parameters, ω1,...,ω6, to the 
model defined by (3).  

• However, looking at (5), it can be seen that the 36 land time 
parameters (the αt) and the 6 location parameters (the ωj) 
cannot all be identified.  

• Thus we need to impose at least one identifying 
normalization on these parameters.  

• We chose the following normalization (the 4th postal code 
region had the most observations) 

   (6) ω4 ≡ 1. 
• Note that if we initially set all of the ωj equal to unity, Model 

2 collapses down to Model 1; i.e., the models are nested.  
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Builder’s Model 2: Results 

• The final log likelihood for Model 2 was an improvement of 
892.96 over the final LL for Model 1 (for adding 5 new 
neighbourhood parameters) which of course, is a highly 
significant increase.  

• The R2 increased to 0.7662 from the previous model R2 of 
0.7233.  

• The new estimated depreciation rate turned out to be 0.0274 
or 2.74% per year (previous model was 2.85% per year).   

• The price of land increased 2.90 fold over the sample period 
(the previous model generated a 2.89 fold increase).  

• There are significant neighbourhood effects! 
• Up to this point, we have assumed that land plots in the same 

neighbourhood sell at a constant price per square foot of lot 
area. In our next model, we see if there is some nonlinearity 
in the price of land as lot size increases. 
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Builder’s Model 3 

• In order to capture lot size nonlinearity, we divided up our 11,045 
observations into 7 groups of observations based on their lot size. 

• For each observation n in period t, we define the 7 land dummy 
variables, DL,tn,k, for k = 1,...,7 as follows: 

(7) DL,tn,k ≡ 1 if observation tn has land area that belongs to 
                      group k; 
                 ≡ 0 if observation tn has land area that does  
                     not belong to group k. 
• These dummy variables are used in the definition of the following 

piecewise linear function of Ltn, fL(Ltn), defined as follows: 
(9) fL(Ltn) ≡ DL,tn,1λ1Ltn + DL,tn,2[λ1L1+λ2(Ltn−L1)]  
                   +  DL,tn,3[λ1L1+λ2(L2−L1)+λ3(Ltn−L2)] 
                   + ... + DL,tn,7[λ1L1+λ2(L2−L1)+ ... + λ6(L6−L5)+λ7(Ltn−L6)] 
• where the λk are unknown parameters and L1 ≡ 4, L2 ≡ 5, L3 ≡ 6, 

L4 ≡ 7, L5 ≡ 8 and L6 ≡ 9.  (We are splining the land area). 
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Builder’s Model 3 (continued) 

• The function fL(Ltn) defines a relative valuation function for 
the land area of a house as a function of the plot area.       

• The new nonlinear regression Model 3 is the following one: 
(10) Vtn = αt(∑j=1

6 ωjDPC,tn,j)fL(Ltn) + pSt(1 − δ)A(t,n)Stn + εtn ; 
                                                                 t = 1,...,36; n = 1,...,N(t).                                                                                                                 
• Comparing Models 2 and 3, it can be seen that we have 

added an additional 7 land plot size parameters, λ1,...,λ7, to the 
model defined by (5). 

• We impose the following identification normalizations on the 
parameters for Model 3: 

(11) ω4 ≡ 1; λ5 ≡ 1. 
• If we set all of the λk equal to unity, Model 3 collapses down 

to Model 2. 
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Builder’s Model 3: Results 

• The final log likelihood for Model 3 was an improvement of 
1761.68 over the final LL for Model 2 (for adding 6 new lot 
size parameters) which is a highly significant increase.  

• The R2 increased to 0.8283 from the previous model R2 of 
0.7662.  

• The new estimated depreciation rate turned out to be 0.0405 
or 4.05% per year.  

• The price of land increased 2.69 fold over the sample period. 
• The sequence of marginal land prices generated by this 

model are as follows: λ1 = 1.1350, λ2 = 0.6915, λ3 = 0.1198, λ4 
= 0.2963, λ5 = 1.0000 (this value was imposed), λ6 = 0.3871 
and λ7 = 0.0086. Thus the marginal land prices as functions 
of lot size are not monotonic but for very large land plots, the 
marginal price of an extra square foot of land is very low. 
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Builder’s Model 4 

• We now allow the marginal price of adding an extra amount 
of structure to vary as the size of the structure increases.  

• In order to capture this nonlinearity, we divided up our 
11,045 observations into 5 groups of observations based on 
their structure size. 

• The Group 1 properties had structures with floor space area 
less than 2,000 ft2, … 

• The Group 5 properties had structure areas greater than or 
equal to 3,500 ft2. 

• 5 structure dummy variables, DS,tn,m, were defined as follows: 
(12) DS,tn,m ≡ 1 if observation tn has structure area that belongs  
                         to structure group m; 
                   ≡ 0 if observation tn has structure area that does  
                          not belong to group m. 
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Builder’s Model 4 (continued) 

• These dummy variables are used in the definition of the 
following piecewise linear function of the structure area 
variable  S, gS(Stn), defined as follows: 

(13) gS(Stn) ≡ DS,tn,1µ1Stn + DS,tn,2[µ1S1+µ2(Stn−S1)]  
          + DS,tn,3[µ1S1+µ2(S2−S1)+µ 3(Stn−S2)] 
          + DS,tn,4[µ1S1+µ2(S2−S1)+µ3(S3−S2) + µ4(Stn−S3)] 
          + DS,tn,5[µ1S1+µ2(S2−S1)+µ3(S3−S2)+µ 4(S4−S3)+µ 5(Stn−S4)]. 
• where the µm are unknown parameters and S1 ≡ 2, S2 ≡ 2.5, 

S3 ≡ 3 and S4 ≡ 3.5.  
• The function gS(Stn) defines a relative valuation function for 

the structure area of a house as a function of the structure 
area. 
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Builder’s Model 4 (continued) 

• The new nonlinear regression model is the following Model 
4: 

(14) Vtn = αt(∑j=1
6 ωjDPC,tn,j)fL(Ltn) + pSt(1 − δ)A(t,n) gS(Stn)  + εtn ; 

                                                                   t = 1,...,36; n = 1,...,N(t).                                       
• Comparing the models defined by equations (10) and (14), it 

can be seen that we have added an additional 5 structure 
floor space parameters, µ1,...,µ5, to the model defined by (10). 

• Again, we add the normalizations (11) in order to identify all 
of the parameters in the model.  

• There are a total of 53 unknown parameters in Model 4.  
• Note that if we set all of the µm equal to unity, Model 4 

collapses down to Model 3.  
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Builder’s Model 4: Results 

• The final log likelihood for Model 4 was an improvement of 934.91 
over the final LL for Model 3 (for adding 5 new structure size 
parameters).  

• The R2 increased to 0.8520 from the previous model R2 of 0.8283.  
• The new depreciation rate turned is 0.0298 or 2.98% per year.  
• The price of land increased 3.34 fold over the sample period.  
• The sequence of marginal land prices generated by this model are 

as follows: λ1 = 1.3042, λ2 = 0.7729, λ3 = 0.2613, λ4 = 0.3536, λ5 = 
1.0000 (this value was imposed), λ6 = 0.6410 and λ7 = 0.1268.  

• The marginal structure floor space prices estimated by Model 4 
were as follows: µ1 = 1.4318, µ2 = 1.1697, µ3 = 1.5871, µ4 = 2.4859, 
µ5 = 0.6222.  

• Thus there is a considerable amount of variability in both the 
marginal land and structure price parameters.  
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Builder’s Model 5 

• In Model 5, we allowed the geometric depreciation rates to 
differ after each 10 year interval.  

• For each observation n in period t, we define the 6 age 
dummy variables, DA,tn,i, for i = 1,...,6 as follows: 

(15) DA,tn,i ≡ 1 if observation tn has structure age that belongs  
                         to age group i; 
                  ≡ 0 if observation tn has structure age that does 
                         not belong to age group i. 
• Define the following function of the age variable, gA(Atn): 
(16) gA(Atn) ≡ DA,tn,1(1−δ1)A(t,n)  + DA,tn,2(1−δ1)10(1−δ2)A(t,n)−10  
                    + DA,tn,3(1−δ1)10(1−δ2)10(1−δ3)A(t,n)−20 

                    + DA,tn,4(1−δ1)10(1−δ2)10(1−δ3)10(1−δ4)A(t,n)−30 
                    + DA,tn,5(1−δ1)10...(1−δ4)10(1−δ5)A(t,n)−40  
                    + DA,tn,6(1−δ1)10...(1−δ5)10(1−δ6)A(t,n)−50. 
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Builder’s Model 5 (continued) 

• The new Model 5 nonlinear regression model is the following 
one: 

(17) Vtn = αt(∑j=1
6 ωjDPC,tn,j)fL(Ltn) + pStgS(Stn)gA(Atn)  + εtn .                                                                            

• Comparing the models defined by equations (14) and (17), it 
can be seen that we now have 6 depreciation rates, δ1,...,δ6, in 
place of the single depreciation rate δ which appeared in 
Model 4.  

• Again, we add the normalizations (11) in order to identify all 
of the parameters in the model.  

• There are a total of 58 unknown parameters in Model 5.  
• Note that if we initially set all of the δi equal to the δ which 

appeared in Model 4, then Model 5 collapses down to Model 
4.  
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Builder’s Model 5: Results 

• The final log likelihood for Model 5 was a  modest 
improvement of 24.36 over the final LL for Model 4 (for 
adding 5 new depreciation rate parameters).  

• The R2 increased to 0.8526 from the previous model R2 of 
0.8520.  

• Using this model, the price of land increased 3.34 fold over 
the sample period, the same increase as occurred in Model 4. 

•  The new decade by decade estimated depreciation rates 
turned out to be as follows: δ1 = 0.0351, δ2 = 0.0229, δ3 = 
0.0267, δ4 = 0.0462, δ5 = 0.0220 and δ6 = −0.0239.  

• Thus properties with structures which are over 50 years old 
tend to have a negative depreciation rate; i.e., the value of the 
structure tends to increase by 2.39% per year.  

• The marginal land and structure prices did not change much 
from the estimates from Model 4.  
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Builder’s Model 6 

• For our final two models, we introduce bathroom and 
bedroom variables into the hedonic regressions.  

• The number of bathrooms (NBAtn) in our sample ranged 
from 1 to 6 bathrooms. 

•  We assume that the number of bathrooms in the structure 
affects the quality of the structure. Thus define the following 
6 dummy variables, 

(18) DBa,tn,i ≡ 1 if observation n in period t is a house with 
                          i bathrooms; 
                   ≡ 0 if observation n in period t does not  
                          have i bathrooms.  
• We use the bathroom dummy variables defined above in 

order to define the following bathroom quality adjustment 
function: 

(19) gBa(NBAtn) ≡ (Σi=1
6 ηiDBa,tn,i)NBAtn. 
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Builder’s Model 6 (continued) 

• The new Model 6 nonlinear regression model is the following 
one: 

(20) Vtn = αt(∑j=1
6 ωjDPC,tn,j)fL(Ltn)  

                                                 + pStgS(Stn)gA(Atn)gBa(NBAtn) + εtn .                                                                               
• Comparing the models defined by equations (17) and (20), it 

can be seen that we now have added 6 new bathroom 
parameters, η1,...,η6, to Model 5.  

• Not all of these new parameters can be identified so we 
impose the identifying normalizations (21): 

(21) ω4 ≡ 1; λ5 ≡ 1; η3 ≡ 1. 
• There are a total of 63 unknown parameters in Model 6.  
• Note that if we initially set all of the ηi equal to 1, then Model 

6 collapses down to Model 5.  
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Builder’s Model 6: Results 

• The final log likelihood for Model 6 was an improvement of 38.08 
over the final LL for Model 5  (for adding 5 new bathroom 
parameters).  

• The R2 increased to 0.8536 from the previous model R2 of 0.8526.  
• The price of land again increased 3.34 fold over the sample period, 

the same increase as occurred in Models 4 and 5.  
• The new bedroom parameters turned out to be as follows: η1 = 

1.1021, η2 = 0.9368, η3 = 1.000 (imposed), η4 = 0.9526, η5 = 0.8946 
and η6 = 0.9631. These estimates are reasonable.  

• The new decade by decade estimated depreciation rates turned out 
to be: δ1 = 0.0339, δ2 = 0.0242, δ3 = 0.0304, δ4 = 0.0445, δ5 = 0.0202 
and δ6 = −0.0237. These rates are similar to the depreciation rates 
generated by the previous model.  

• The marginal land and structure prices did not change much from 
the previous estimates from Models 4 and 5. 
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Builder’s Model 7 

• Finally, we introduce the number of bedrooms into the 
hedonic regressions.  

• The number of bedrooms in our sample ranged from 3 to 7 
bedrooms.  

• Thus define the following 5 dummy variables, DBe,tn,i, for t = 
1,...,36; n = 1,...,N(t); i = 3,4,...,7: 

(22) DBe,tn,i ≡ 1 if observation n in period t is a house  
                         with i bedrooms; 
                   ≡ 0 if observation n in period t does 
                          not have i bedrooms.     
• We use the bedroom dummy variables defined above in 

order to define the following bedroom quality adjustment 
function, gBe(NBEtn): 
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Builder’s Model 7 (continued) 

(23) gBe(NBEtn) ≡ (Σi=3
7 θiDBa,tn,i)NBEtn. 

• The new Model 7 nonlinear regression model is the following 
one: 

(24) Vtn = αt(∑j=1
6 ωjDPC,tn,j)fL(Ltn) 

                      + pStgS(Stn)gA(Atn)gBa(NBAtn)gBe(NBEtn) + εtn 

•  We have added 5 new bedroom parameters, θ3,...,θ7, to 
Model 6.  

• We impose the following normalizations: 
(25) ω4 ≡ 1; λ5 ≡ 1; η3 ≡ 1; θ5 = 1. 
• There are a total of 67 unknown parameters in Model 7.  
• Note that if we set all of the θi equal to 1, then Model 7 

collapses down to Model 6.  
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Builder’s Model 7: Results 

• The final log likelihood for Model 7 was a big improvement of 
180.70 over the final LL for Model 6 (for adding 4 new bathroom 
parameters).  

• The R2 increased to 0.8583 from the previous model R2 of 0.8536.  
• The price of land increased 3.50 fold which is an increase over the 

3.34 fold increase that occurred in Models 4-6.  
• The estimated coefficients for Model 7 are listed in Table 2 of the 

paper. 
• The new estimated depreciation rates are as follows  (the 

corresponding rates from Model 6 are listed in brackets): δ1 = 
0.0298 (0.0339), δ2 = 0.0202 (0.0242), δ3 = 0.0301 (0.0304), δ4 = 
0.0345 (0.0445), δ5 = 0.0132 (0.0202) and δ6 = −0.0180 (−0.0237). 

• The standard errors on the δi are fairly large and hence the 
depreciation parameters are not estimated with great precision. 
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Section 4. Sales Price Indexes for the Geometric 
                  Depreciation Models 

• Once the parameters for Model 4 have been determined, the 
predicted constant quality amount of land for property n sold 
during period t, Ltn

*, can be defined as follows: 
(26) Ltn

* ≡ (∑j=1
6 ωjDPC,tn,j)fL(Ltn) ;            t = 1,...,36; n = 1,...,N(t). 

• The corresponding quarter t constant quality land price is the 
estimated coefficient, αt, for t = 1,...,36.  

• Similarly, the predicted constant quality amount of structure 
for property n sold during period t, Stn

*, can be defined as 
follows: 

(27) Stn
* ≡ (1 − δ)A(t,n) gS(Stn) ;                  t = 1,...,36; n = 1,...,N(t). 

• The corresponding quarter t constant quality structure price is 
the quarter t Statistics Canada price index pSt for t = 1,...,36. 
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Sales Price Indexes (continued) 

• In order to form an overall quarter t property price index, it 
is necessary to aggregate the individual property amounts of 
constant quality land and structure into quarterly aggregates, 
say Lt

* and St
*.  

• This task can be accomplished by simple addition.  
• The corresponding quarter t aggregate prices will be αt and 

pSt respectively.  
• Rescale these price indexes so that they equal 1 in quarter 1. 

Denote these normalized price indexes by PLt and PSt for 
quarter t.  

• Normalizing the price indexes means that the corresponding 
quarter t quantity aggregates need to be normalized in the 
opposite direction.  
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Sales Price Indexes (continued) 

• Thus for Model 4, we end up with the following definitions 
for the price and quantity of aggregate constant quality land 
and structures for each quarter t = 1,...,36: 

(28) P4Lt ≡ αt/α1 ; 
(29) L4t

* ≡ α1 Σn=1
N(t) (∑j=1

6 ωjDPC,tn,j)fL(Ltn) ; 
(30) P4St ≡ pSt/pS1 ; 
(31) S4t

* ≡ pS1Σn=1
N(t) (1 − δ)A(t,n) gS(Stn). 

• P4Lt and P4St, are listed in Table 4 below.  
• We used the above land and structure aggregates to form 

Fisher (1922) chained property price indexes.  
• These Model 4 aggregate property price indexes are listed as 

P4t in Table 3 in the paper.  
• Later, we will show a Chart which plots the land price index. 
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Sales Price Indexes (continued) 

• A similar procedure can be used in order to construct land 
and structure subindexes for Models 5, 6 and 7, P5Lt- P7Lt and 
P5St- P7St, along with the corresponding overall property 
price indexes, which we denote by P5t, P6t and P7t in Table 3. 

•  Note that definitions (28) and (30) are used to define the land 
and structure price indexes for each model  but the 
counterparts to definitions (31) will differ for each model. 

•  For example, the counterpart definitions to (31) for Model 7 
are the following definitions for t = 1,...,36: 

(32) S7t
* ≡ pS1Σn=1

N(t) gS(Stn)gA(Atn)gBa(NBAtn)gBe(NBEtn). 
• The structure price indexes generated by Models 4-7 are all 

identical (and equal to the Statistics Canada index). 
• The overall property price indexes P4t - P7t along with a 

simple mean and median price index are shown below.  
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Alternative Property Price Indexes 

 
 
 
 
 
 
 
 
 
 
 
 
The mean and median indexes are more volatile; the other  
indexes P4t – P7t are very close to each other. 
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Alternative Land Price Indexes and the  
Structure Price Index 

 
 
 
 
 
 
 
 
 
 
 
PL4-PL6 cannot be distinguished. PL7 lies a bit above the other 
land price indexes. PS lies below the land price indexes. 
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Sales Price Indexes using Geometric Depreciation: Conclusion 

• Our conclusion here is that it appears that Model 4, which 
has only a single geometric depreciation rate and does not 
make use of the bathroom and bedroom variables, generates 
land and overall property price indexes which adequately 
approximate  our subsequent hedonic regression  Models 
which require additional information on housing 
characteristics.  

• This is an important result for statistical agencies in that it is 
typically difficult to get information on housing 
characteristics.  

• Thus information on property location, the floor space area 
of the structure, the age of the structure and the lot size can 
be sufficient to generate price indexes that are reasonably 
accurate.  
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5. Approximate Price Indexes for Housing Stocks 

• House price indexes are used for different purposes.  
• For many macroeconomic purposes, price indexes for the 

sales of houses are not so important; what is more important 
is the construction of price indexes for the stock of houses. 

• In this section, we show how our sales price indexes could be 
used to value residential housing stocks. 

• The details in this section are omitted here. 
• The message in this section is as follows: once we have 

estimated our hedonic regression model, then if we have 
characteristics information on the housing stock, we can 
value the stock and construct land and structure price 
indexes for the stock. 

• For Richmond, it turns out that the stock price inflation rate 
is higher than the sales price inflation rate. 

• The reason: sales data over represent new structures.  
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6. Sales Price Indexes for Piecewise Linear Depreciation 
Models 

• In this section, we re-estimate Models 1-7 which were 
explained in Section 3.  

• The geometric depreciation rates which were used in Section 
3 are replaced by either straight line depreciation for Models 
1-4 and by piecewise linear depreciation for Models 5-7.  

• Recall that Models 1-4 were defined by equations (3), (5), 
(10) and (14) in Section 3.  

• For the new Models 1-4, replace the term (1 − δ)A(t,n) which 
appears in these equations by the term (1−δAtn) so that δ is 
now interpreted as the straight line depreciation rate which 
was previously a geometric or declining balance depreciation 
rate. 

• The parameter normalizations that were used in the 
geometric models are also used here. 
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Price Indexes for Piecewise Linear Depreciation Models 

• Recall that Models 5-7 in Section 3 were defined by equations 
(17), (20) and (24).  

• For the piecewise linear depreciation Models 5-7 that are 
estimated in this section, replace the old depreciation 
function gA(Atn) by the new depreciation function defined as 
follows (where Atn is the age of the structure on property n 
sold during period t and the age dummy variables DA,tn,i are 
defined by (15)):  

(35) gA(Atn) ≡  DA,tn,1(1−δ1Atn) + DA,tn,2(1− 10δ1 − δ2(Atn−10)) 
          + DA,tn,3(1− 10δ1 − 10δ2 − δ3(Atn−20))  

               + DA,tn,4(1− 10δ1 − 10δ2 − 10δ3 − δ4(Atn−30))  
          + DA,tn,5(1− 10δ1 − 10δ2 − 10δ3 − 10δ4 − δ5(Atn−40))  
          + DA,tn,6(1− 10δ1 − 10δ2 − 10δ3 − 10δ4 − 10δ5 − δ6(Atn−50)).     
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Piecewise Linear Depreciation Models (continued) 

• The remaining parts of Models 1-7 remain unchanged.  
• In Table 5 below, we list the R2 and improvement in the log 

likelihood (∆LL) for each new model over the previous model. 
•  For Models 1-4, we list the estimated straight line 

depreciation rate δ1 for each model and for Models 5-7, we 
list the 6 decade by decade linear depreciation rates δ1-δ6 that 
were estimated  by these models.  

• These depreciation rates of course are somewhat different 
from our previously estimated geometric depreciation rates. 

•  However, for both the geometric depreciation Model 7 and 
the piecewise linear depreciation Model 7, the depreciation 
rate δ6 becomes an appreciation rate for structures in the 50-
60 year old range.  
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Piecewise Linear Depreciation Models: Results 
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 R2 ∆LL δ1 δ2 δ3 δ4 δ5 δ6 
Model 1 0.7494  0.0247      
Model 2 0.7914   955.60 0.0242      
Model 3 0.8429 1861.43 0.0279      
Model 4 0.8476   170.45 0.0210      
Model 5 0.8525   181.44 0.0301 0.0140 0.0141 0.0150 0.0052 −0.0054 
Model 6 0.8535     38.43 0.0292 0.0150 0.0154 0.0140 0.0047 −0.0053 
Model 7 0.8583   182.55 0.0261 0.0134 0.0166 0.0123 0.0039 −0.0052 
 



Piecewise Linear Depreciation Models: Results (continued) 

• Although the estimated depreciation rates for our new Model 
7 differ considerably from the geometric depreciation rates 
that we estimated for Model 7 in Section 3, the age functions 
that these two models generate are somewhat similar.  

• If structure depreciation is geometric at the rate of 3% per 
year, the quality adjusted fraction of a structure that is A 
years old is g1(A) ≡ (1 − 0.03)A.  

• Using the 6 decade by decade geometric depreciation rates 
that are listed in Table 2 and the 6 piecewise linear 
depreciation rates that are listed in Table 6 for Model 7, we 
can generate similar age functions which are denoted by 
g2(A) and g3(A) on Chart 1.  

• It can be seen that all three age functions approximate each 
other closely for the first decade of age but they diverge in 
subsequent decades.  
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Comparing 3 Alternative Age Functions 

 
 
 
 
 
 
 
 
 
 
 
The bottom curve is g1(A), the middle curve is g2(A) and the top 
curve is the age function for the piecewise linear depreciation 
model with 6 break points, g3(A).     
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Chart 1: Alternative Age Functions 
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Comparison of Land Prices for Models 4-7 Using 
Alternative Depreciation Models 

• Chart 2 plots the land price indexes P4L, P6L, P7L for the 
geometric models and compares these indexes with the land 
price indexes P4LN, P6LN, P7LN for the piecewise linear models 
of depreciation.  

• The lowest land price series P4LN, which uses a single straight 
line depreciation rate,  generates indexes that are rather 
different from the other models.  

• The land price indexes P4L, P6L  (based on geometric 
depreciation) and the land price index P6LN  (based on 
piecewise linear depreciation rates) are also too close to 
distinguish on Chart 2.  

• The highest land price indexes are P7L and P7LN and they are 
too close to each other to distinguish on Chart 2. 
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Comparison of Land Prices for Models 4-7 Using Alternative 
Depreciation Models (continued) 
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Chart 2: Land Price Indexes Using Geometric and  
Piecewise Linear Depreciation Models 
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Comparison of Land Prices for Models 4-7 Using Alternative 
Depreciation Models: Concluded  

• Our conclusion at this point is that if we use multiple 
depreciation rates, the price indexes that the geometric and 
generalized straight line depreciation generate are essentially 
identical.  

• A more tentative conclusion is that the geometric model of 
depreciation with a single rate (Model 4) generates an 
acceptable land price index and hence also generates an 
overall sales property price index that approximates 
subsequent property price indexes based on models that 
require information on more characteristics. 

• The depreciation rates that we have estimated in this paper 
do not account for all of the structure depreciation that 
occurs in the housing market: our data on sales of properties 
do not include structures which have been demolished before 
they reach the end of their useful life. 

• Thus demolition depreciation should be taken into account. 
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7. Estimating Structure Depreciation Rates from 
Traditional Log Price Hedonic Regression Models 
• Time does not permit us to outline demand side interpretation that 

can be placed on traditional time dummy variable property 
regressions. 

• The plain vanilla traditional regression model is the following one: 
(41) lnVt = ρt + αlnL + βlnS + γA. 
• The estimates for ρt when exponentiated form a property price 

index for sales of properties.  
• Following Shimizu, Nishimura and Watanabe (2010; 795), the 

estimate for γ can be turned into a geometric depreciation rate δ 
for the structure: 

(43) δ = 1 − eγ/β. 
• When we estimated a generalized version of (41) using the same 

characteristics as used in our Model 7s, we found that the 
estimated depreciation rate generated by this log price time 
dummy hedonic regression was 3.003 per cent per year, which 
corresponds very well to our Model 4 geometric rate of 2.98 %.  
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Traditional Log Price Hedonic Regression Models (cont) 

• The plain vanilla log price time dummy hedonic regression 
model takes the data for all quarters and estimates the α, β 
and γ parameters, which of course are constant across all 
quarters. 

• Instead of running one big regression, one can take the data 
for 2 consecutive periods and estimate two consecutive ρt 
along with the α, β and γ parameters.  

• Then ρt/ρt-1 can be calculated and a chained property price 
index can be formed. 

• The advantage of this adjacent period time dummy 
regression model is that it allows for taste change. 

• We used our Richmond data to construct property price 
indexes using both the one big regression approach and the 
chaining approach. 
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Traditional Log Price Hedonic Regression Models (cont) 

• The single regression and the adjacent period overall 
property price indexes Pt and PCHt are plotted on Chart 3 
below along with our final geometric depreciation property 
price index P7t and the mean and median price indexes PMean 
and PMedian for comparison purposes. 

• From viewing Chart 3, it can be seen that the two traditional 
log price time dummy property price indexes, Pt and PCHt, 
can barely be distinguished from our final geometric 
depreciation property price index P7t.  

• This is a very encouraging result: it means that it is possible 
for the traditional time dummy log price hedonic regressions 
to generate overall property price indexes that are consistent 
with the overall indexes generated by the builder’s model.    
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Comparison of Traditional Log Price Hedonic Regression 
Model with Our Model 7 Geometric Model 
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Chart 3: Alternative Overall Property Price Indexes for  
Richmond 
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Comparison of Traditional Log Price Hedonic Regression Model 
with Our Model 7 Geometric Model: Land and Structure Prices 
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Chart 4: Alternative Land and Structure Price Indexes 
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Comparison of Traditional Log Price Hedonic Regression Model with 
Our Model 7 Geometric Model: Land and Structure Prices 

• Chart 4 above looks at the land and structure price subindexes 
that can be derived from the log price time dummy hedonic 
regression models. 

• PLt is the land price index that is implied by the one big time 
dummy hedonic regression; 

•  PCHLt is the land price index that is implied by the adjacent period 
time dummy hedonic regression models; 

• P7Lt is the land price index generated by the geometric 
depreciation version of Model 7; 

• PSt, PCHSt and P7St are the structure price counterparts to the above 
land price indexes.  

• Note that while the traditional time dummy hedonic regression 
models generate overall price indexes that are similar to our 
builder’s model price indexes, this correspondence does not hold 
for the land and structure subindexes.  
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Conclusion 

• The builder’s model can generate reasonable overall house 
price indexes  along with reasonable  land and structure 
subindexes using just four characteristics: the land plot area 
L, the structure floor space area S, the age of the structure A 
and the location of the property (typically the postal code). 

• Introducing spline segments for the land and structure area 
of a property does lead to a massive improvement in the fit of 
the builder’s model. 

• It is useful to introduce multiple depreciation rates for 
different ages of the structure in terms of improving the fit of 
the model. However, a single geometric depreciation rate 
does provide an adequate approximation to the more 
complex models for the Richmond data. 
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Conclusion (continued) 

• Once we introduce multiple age dependent depreciation 
rates, the geometric and piecewise linear depreciation 
models generate virtually identical indexes. This 
conclusion does not hold if we have only a single 
depreciation rate for both types of model. 

• In countries with rapidly rising residential land prices 
(such as Australia and Canada), the inflation rate that is 
generated by estimating a sales price index will tend to 
understate the corresponding house price inflation rate 
for the stock of housing.  

• Simple mean and median property price indexes 
generated property price indexes that captured the 
trend in our constant quality property price indexes. 
However, these indexes are much more volatile than our 
hedonic property price indexes (as is well known). 
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Conclusion (the end!) 

• The traditional log price time dummy hedonic regression 
approach generated overall property price indexes which 
were virtually identical to our builder’s model overall 
property price indexes when both types of model used the 
maximum number of characteristics. 

• The traditional log price time dummy hedonic regression 
approach generated an implied geometric structure 
depreciation rate which was virtually identical to the 
single geometric depreciation rate generated by the 
builder’s model. This is a very encouraging result.  

• However, our demand side utility interpretation of the 
traditional log price time dummy hedonic regression 
approach did not generate reasonable land and structure 
subindexes (and we explained why this result holds). The 
builder’s supply side model seems to generate much more 
reasonable results. 
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