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Abstract 
 
The use of hedonic regression models on the sales of detached housing units is 
widespread in the real estate literature. However, these models do not address the need to 
decompose the sale price into structure and land components. In the international System 
of National Accounts, it is necessary to obtain separate estimates for the price and 
quantity of housing structures and the land that these structures sit on. The builder’s 
model accomplishes this decomposition but it has only been applied to Dutch and 
Japanese data. The paper will apply the builder’s model to data on sales of detached 
houses in Richmond, British Columbia to test the robustness of the model. The property 
price indexes generated by the builder’s model are also compared to the corresponding 
indexes generated by a traditional time product dummy hedonic regression model. The 
implied structure depreciation rates generated by both models are also compared. We find 
that if a sufficient number of housing characteristics are included in the hedonic 
regressions, the two approaches generate similar overall property price indexes and 
similar geometric depreciation rates. However, the two approaches do not generate 
similar land and structure subindexes.  
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1. Introduction 
 
In order to fill out the cells in a nation’s balance sheets, it is necessary to decompose 
property value into land and structure components. The national balance sheets are used 
to construct measures of household wealth (which influences consumption decisions) and 
to construct estimates of the capital stock (by type of asset) that is used by the production 
sector. Information on the amount of land (and its price) is necessary in order to 
determine the productivity performance of the country. The problem is that information 
on the value of the land component of property value is almost completely lacking. Thus 
in this paper, we will attempt to partially fill this statistical gap by indicating how 
residential property values could be decomposed into land and structure components.  
 
There are various hedonic regression models that could be used to obtain a 
decomposition of property value into land and structure components. We will use data on 
the sales of detached houses in a suburb of Vancouver, Canada to illustrate these methods. 
The data will be explained in Section 2. Most of our paper will focus on the use of the 
builder’s model which will be explained in Section 3. The results of the hedonic 
regressions described in Section 3 will be used in Section 4 in order to construct constant 
quality overall property price indexes for the sales of detached houses as well as constant 
quality land and structure subindexes. In Section 5, we indicate how the results of Section 
3 could be used to form approximate price indexes for the stock of houses (as opposed to 
the quarterly sales of houses). 
 
The hedonic regression models that are utilized in Sections 3-5 of the paper make use of a 
geometric (or declining balance) model of structure depreciation. In Section 6, we switch 
to straight line depreciation and a generalization of straight line depreciation (piecewise 
linear depreciation). We rerun the models explained in Section 3 in Section 6, but using 
this alternative piecewise linear depreciation model. In the end, we find that under certain 
conditions, there is little difference in the indexes that are due to the different 
depreciation models. 
 
In Section 7, we turn away from the builder’s model for a hedonic property price 
regression and we look at the more traditional property price hedonic regressions which 
use the logarithm of the property’s selling price as the dependent variable and enter the 
various characteristics of the property as independent variables in a linear regression with 
time dummy variables. We follow the example of McMillen (2003) and Shimizu, 
Nishimura and Watanabe (2010) and show how these traditional log price hedonic 
regressions can be manipulated to give estimates for a geometric depreciation rate for the 
structure. We compare this imputed depreciation rate with the geometric depreciation 
rates that we obtained in Section 3 (and we find that there is a close comparison). We also 
compare the overall property price index that is generated by the traditional log price 
hedonic regression approach with our comparable builder’s model overall price indexes 
and again, we find that there is a close comparison. However, we show that the traditional 
log price hedonic regression approach does not generate reasonable land and structure 
price subindexes.  
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Section 8 concludes. 
    
2. Data 
 
The data for this study were obtained from the Multiple Listing Service for the city of 
Richmond, British Columbia, Canada.2 Richmond is a suburb of the city of Vancouver 
and lies immediately to the south of Vancouver. There were a total of 13,199 
observations on the sales of detached houses in the Richmond region for the period from 
January 2008 to November 2016.3 However, not all of these observations were used in 
our hedonic regressions: before doing the estimation, we deleted the tails of the 
distributions of the dependent variable (the selling price of the property) and the 
explanatory characteristics. Including range outliers in the regression can distort the 
results to a considerable degree. Because the number of observations at the tails of each 
characteristic distribution is small, a hedonic regression surface cannot be reliably 
measured at these observations that have extreme values for the underlying property 
characteristics.  
 
The definitions for the variables used in the regressions and their units of measurement 
are as follows: 
 

V = selling price of the property in thousands of dollars; 
L = size of the lot area measured in thousands of square feet; 
S = structure area (total floor area) measured thousands of square feet; 
A = age if the structure in years; 
NBE = number of bedrooms; 
NBA = Number of bathrooms.4 

 
We now explain the details of our deletion process. We first removed 2 observations that 
were not freehold. The first main variable listed above that we undertake range deletions 
is the selling price variable V. Since the selling prices increase over years, we examine 
the histograms of selling prices quarter by quarter. We found that the distribution of 
selling prices for each year is right-skewed, with the mass of the distribution of the 
selling prices concentrated on the left part of the histograms. In order to avoid the 
problem that a few observations at the top end of the selling price are spread over a large 
range of prices, we dropped observations with selling prices above the top 3% of sales by 
year. We also deleted observations that are in the bottom 1% of sales by year. Through 
this process, 541 observations were dropped from the sample. 
 

                                                 
2 We obtained the data from Raymond Chan, who obtained the data from the MLS@ system (Multiple 
Listing Service), a branch of the Canadian Real Estate Association, for research purposes at Simon Fraser 
University. 
3 The monthly sales data were aggregated into quarterly data. Our last “quarter” (Quarter 36) is missing the 
sales for the month of December. 
4 A half bathroom is regarded as a full bathroom in this paper. 
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At the next stage, we deleted outliers of the explanatory variables. Before deleting 
outliers, we dropped 472 observations that have missing values in age A, 6 observations 
with missing values in the floor space area S and 17 observations with zero bedrooms. To 
determine the range of the main explanatory variables, we examined the histograms of 
these variables. As mentioned earlier, the purpose of removing the outliers is to avoid 
having only a few observations at either the bottom end or top end of the distribution. 
After several rounds of trimming, the final dataset included 11,045 observations with the 
following characteristics:5 
 

 The land plot area L is between 3000 and 12000 square feet; 
 Floor space area S (also called living area or structure area) is between 1000 and 

4800 square feet; 
 The age A of the structure is less than or equal to 60 years; 
 The structure has 1 to 6 bathrooms (NBA); 
 The structure has 3 to 7 bedrooms (NBE); 
 The structure has 1 to 3 kitchens; 
 The structure has less than 4 covered parking spots; 
 For the sales prices, we deleted the bottom 1% and approximately the top 3% of 

selling prices by year. 
 
We did not use the kitchen or parking characteristics in our regressions; these variables 
were used to eliminate properties with an unusual number of kitchens or parking spots. 
 
In addition to the above variables, we had information on which one of 6 postal code 
regions for Richmond was assigned to each property.6 
 
Finally, we created a quarterly residential augmented construction cost index7 for the 
Metropolitan Area of Vancouver which we denote as pSt for quarter t = 1,...,36. This 
index (in dollars per square foot of floor space area) is derived from Statistics Canada 
residential construction cost models for Metro Vancouver. This augmented construction 
cost index may be a bit low with respect to its levels but it probably captures the rates of 
change of augmented construction costs over our sample period.8  

                                                 
5 Thus we deleted 16.3% of our observations. This seems to be a high number of deletions but we feel that 
accurate hedonic surfaces cannot be estimated when the number of observations is sparse at the edges of 
the hedonic surface.  
6 We grouped the properties based on the forward sortation area (FSA), which is a geographical area 
defined based on the first three characters in a Canadian postal code. 
7 It is an augmented construction cost index because it may include some element of contractor profit. 
However, for our purposes, this is appropriate: if one buys a newly constructed house, the purchaser 
certainly has to pay for the contractor’s profit margin.   
8 It may be the case that this index understates the cost of house construction in the Greater Vancouver area. 
From the Altus Group (2015) Construction Cost Guide for 2015, we find the following range of house 
construction costs per square foot for the Vancouver area: Speculative Basic Quality: $100 - $165; 
Speculative Medium Quality: $165 - $225; Speculative High Quality: $225 - $350; Custom Built: $400 - 
$1,000. The Statistics Canada estimated Vancouver augmented construction cost may be on the low end of 
the quality spectrum. We will address this issue later in the paper; i.e., our Models 4-7 allow for an upward 
adjustment in the level of the Statistics Canada quarterly structure prices. 
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The basic descriptive statistics for the above variables are listed in Table 1 below. 
 
Table 1: Descriptive Statistics for the Variables 
 
Name No. of Obs. Mean Std. Dev Minimum Maximum Unit of Measurement 
V 11045 $1134.1 473.61 $450 $3435  1000 dollars 
A 11045 26.093 16.746 0 60  No. of Years    
L 11045 6.5101 1.8720 3.003 12.000  1000 ft2 

S 11045 2.6196 0.7507 1.000 4.793  1000 ft2 
NBA 11045 4.3928 0.9789 3 7  Number 
NBE 11045 3.5283 1.2768 1 6  Number 
 
It can be seen that detached houses in Richmond sold for a considerable amount of 
money over our sample period; i.e., they sold for an average of $1,113,410. 
 
3. The Builder’s Model 
 
The builder’s model for valuing a detached dwelling unit postulates that the value of the 
property is the sum of two components: the value of the land which the structure sits on 
plus the value of the structure. 
 
In order to justify the model, consider a property developer who builds a structure on a 
particular property. The total cost of the property after the structure is completed will be 
equal to the floor space area of the structure, say S square feet, times the building cost per 
square foot t during the quarter, plus the cost of the land, which will be equal to the cost 
per square foot t during the quarter times the area of the land site, say L square feet. 
Now think of a sample of properties of the same general type, which have prices or 
values Vtn in quarter t9 and structure areas Stn and land areas Ltn for n = 1,...,N(t) where 
N(t) is the number of observations in period t. Assume that these prices are equal to the 
sum of the land and structure costs plus error terms tn which we assume are 
independently normally distributed with zero means and constant variances. This leads to 
the following hedonic regression model for period t where the t and t are the 
parameters to be estimated in the regression:10 
 
(1) Vtn = tLtn + tStn + tn ;                                                            t = 1,...,36; n = 1,...,N(t). 
 
The hedonic regression model defined by (1) applies to new structures. But it is likely 
that a model that is similar to (1) applies to older structures as well. Older structures will 

                                                 
9 In the empirical work which follows, t will run from 1 to 36 where Quarter 1 is the first quarter of 2008 
and Quarter 36 is the last quarter of 2016.  
10 Other papers that have suggested hedonic regression models that lead to additive decompositions of 
property values into land and structure components include Clapp (1980; 257-258), Bostic, Longhofer and 
Redfearn (2007; 184), Diewert (2008; 19-22) (2010) (2011), Francke and Vos (2004), Francke (2008; 167), 
Koev and Santos Silva (2008), de Haan and Diewert (2011), Rambaldi, McAllister, Collins and Fletcher 
(2010), Diewert, Haan and Hendriks (2011) (2015), Diewert and Shimizu (2015) (2016) (2016) and 
Burnett-Issacs, Huang and Diewert (2016). 
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be worth less than newer structures due to the depreciation of the structure. Assuming 
that we have information on the age of the structure n at time t, say A(t,n), and assuming  
a geometric (or declining balance) depreciation model, a more realistic hedonic 
regression model than that defined by (1) above is the following basic builder’s model: 
 
(2) Vtn = t

 Ltn + t(1  )A(t,n)Stn + tn ;                                          t = 1,...,36; n = 1,...,N(t) 
 
where the parameter  reflects the net geometric depreciation rate as the structure ages 
one additional period. Thus if the age of the structure is measured in years, we would 
expect an annual net depreciation rate to be around 2 to 3 percent per year.11 Note that (2) 
is now a nonlinear regression model whereas (1) was a simple linear regression model. 
The period t constant quality price of land will be the estimated coefficient for the 
parameter t and the price of a unit of a newly built structure for period t will be the 
estimate for t. The period t quantity of land for property n is Ltn and the period t quantity 
of structure for property n, expressed in equivalent units of a new structure, is (1  
)A(t,n)Stn where Stn is the floor space area of the structure for property n in period t. 
 
Note that the above model is a supply side model as opposed to a demand side model.12 
Basically, we are assuming competitive suppliers of residential properties so that we are 
in Rosen’s (1974; 44) Case (a), where the hedonic surface identifies the structure of 
supply. This assumption is justified for the case of newly built houses but it is less well 
justified for sales of properties with older structures where a demand side model may be 
more relevant. 
  
There is a major practical problem with the hedonic regression model defined by (2): The 
multicollinearity problem. Experience has shown that it is usually not possible to estimate 
sensible land and structure prices in a hedonic regression like that defined by (2) due to 
the multicollinearity between lot size and structure size.13 Thus in order to deal with the 
multicollinearity problem, we replace the parameter t in (2) by pSt, the period t Statistics 
Canada augmented construction cost price for houses in the Greater Vancouver area.14 
Thus Model 1 is the following nonlinear hedonic regression model: 
 
(3) Vtn = t

 Ltn + pSt(1  )A(t,n)Stn + tn ;                                          t = 1,...,36; n = 1,...,N(t) 
 
This model has 36 quarterly land price parameters (the t) and one (net) geometric 
depreciation rate . The R2 (between the observed values and the predicted values) was 
0.7233 which is satisfactory for such a simple model. The estimated depreciation rate was 
                                                 
11 This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” gross 
structure depreciation rate less an average renovations appreciation rate. Since we do not have information 
on renovations and major repairs to a structure, our age variable will only pick up average gross 
depreciation less average real renovation expenditures.   
12 We will pursue a demand side model in Section 7 below. 
13 See Schwann (1998) and Diewert, de Haan and Hendriks (2011) (2015) on the multicollinearity problem. 
14 This formulation follows that of Diewert (2010) (2011), Diewert, Haan and Hendriks (2011) (2015), de 
Haan and Diewert (2011), Diewert and Shimizu (2015) (2016) (2017) and Burnett-Issacs, Huang and 
Diewert (2016) in assuming property value is the sum of land and structure components but movements in 
the price of structures are proportional to an exogenous structure price index. 
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2.85% per year. Land prices grew from 1 = $74.16 per ft2 in the first quarter of 2008 to 
36 = $214.00 per ft2 in the last quarter of 2016, a 2.89 fold increase over the sample 
period.15    
 
In order to take into account possible neighbourhood effects on the price of land, we 
introduced (forward sortation) postal code dummy variables, DPC,tn,j, into the hedonic 
regression (3). These 5 dummy variables are defined as follows: for t = 1,...,36; n = 
1,...,N(t); j = 1,...,5:16 
 
(4) DPC,tn,j  1 if observation n in period t is in Postal Code j of Richmond; 
                  0 if observation n in period t is not in Postal Code j of Richmond.  
    
We now modify the model defined by (3) to allow the level of land prices to differ across 
the 6 postal codes in Richmond. The new nonlinear regression model is the following 
one: 
 
(5) Vtn = t(j=1

6 jDPC,tn,j)Ltn + pSt(1  )A(t,n)Stn + tn ;                t = 1,...,36; n = 1,...,N(t).                                       
                                                                           
Comparing the models defined by equations (3) and (5), it can be seen that we have 
added an additional 6 neighbourhood relative land value parameters, 1,...,6, to the 
model defined by (3). However, looking at (5), it can be seen that the 36 land time 
parameters (the t) and the 6 location parameters (the j) cannot all be identified. Thus 
we need to impose at least one identifying normalization on these parameters. We chose 
the following normalization:17 
 
(6) 4  1. 
 
Thus Model 2 defined by equations (5) and (6) has 5 additional parameters compared to 
Model 1. Note that if we initially set all of the j equal to unity, Model 2 collapses down 
to Model 1. We made use of this fact in running our sequence of nonlinear regressions. 
Our models are nested so that we can use the final parameter estimates from a previous 
model as starting parameter values in the next model’s nonlinear regression.18 
 
The final log likelihood (LL) for Model 2 was an improvement of 892.96 over the final 
LL for Model 1 (for adding 5 new neighbourhood parameters) which of course, is a 
highly significant increase. The R2 increased to 0.7662 from the previous model R2 of 
0.7233. The new estimated depreciation rate turned out to be 0.0274 or 2.74% per year. 
The price of land increased 2.90 fold over the sample period.   

                                                 
15 The Statistics Canada structure cost index increased 0.99 fold over the sample period. 
16 The number of observations over the sample period in the 6 postal code neighbourhoods are as follows:  
791, 812, 2314, 3519, 3217 and 392..   
17 The fourth postal code region had the most observations over the sample period. 
18 In order to obtain sensible parameter estimates in our final (quite complex) nonlinear regression model, it 
is absolutely necessary to follow our procedure of sequentially estimating gradually more complex models, 
using the final coefficients from the previous model as starting values for the next model. We used Shazam 
to perform the nonlinear regressions; see White (2004). 
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In our next model, we introduce some nonlinearities into the pricing of the land area for 
each property. As mentioned above, the land plot areas in our sample of properties run 
from 3,000 to 12,000 ft2. Up to this point, we have assumed that land plots in the same 
neighbourhood sell at a constant price per square foot of lot area. However, it is likely 
that there is some nonlinearity in this pricing schedule; for example, it is likely that large 
lots sell at an average price that is below the average price of medium sized lots. In order 
to capture this nonlinearity, we initially divided up our 11,045 observations into 9 groups 
of observations based on their lot size. The Group 1 properties had lots less than 4,000 ft2, 
the Group 2 properties had lots greater than or equal to 4,000 ft2 and less than 5,000 ft2,..., 
the Group 8 properties had lots greater than or equal to 10,000 ft2 and less than 11,000 
ft2and the Group 9 properties had lots greater than or equal to 11,000 ft2. However, there 
were very few observations in Groups 8 and 9 so we added these groups to Group 7.19  
For each observation n in period t, we define the 7 land dummy variables, DL,tn,k, for k = 
1,...,7 as follows: 
 
(7) DL,tn,k  1 if observation tn has land area that belongs to group k; 
                  0 if observation tn has land area that does not belong to group k. 
 
These dummy variables are used in the definition of the following piecewise linear 
function of Ltn, fL(Ltn), defined as follows: 
 
(9) fL(Ltn)  DL,tn,11Ltn + DL,tn,2[1L1+2(LtnL1)] + DL,tn,3[1L1+2(L2L1)+3(LtnL2)] 
                   + ... + DL,tn,7[1L1+2(L2L1)+ ... + 6(L6L5)+7(LtnL6)] 
 
where the k are unknown parameters and L1  4, L2  5, L3  6, L4  7, L5  8 and L6  9. 
The function fL(Ltn) defines a relative valuation function for the land area of a house as a 
function of the plot area.       
 
The new nonlinear regression model is the following one: 
 
(10) Vtn = t(j=1

6 jDPC,tn,j)fL(Ltn) + pSt(1  )A(t,n)Stn + tn ;         t = 1,...,36; n = 1,...,N(t).                                       
                                                                           
Comparing the models defined by equations (5) and (10), it can be seen that we have 
added an additional 7 land plot size parameters, 1,...,7, to the model defined by (5). 
However, looking at (10), it can be seen that the 36 land time parameters (the t), the 6 
postal code parameters (the j) and the 7 land plot size parameters (the k) cannot all be 
identified. Thus we impose the following identification normalizations on the parameters 
for Model 3 defined by (10) and (11):20 
 
(11) 4  1; 5  1. 
 

                                                 
19 The sample probabilities of an observation falling in the 7 final groups were: 0.109, 0.164, 0.109, 0.136, 
0.270, 0.126 and 0.086.   
20 The fifth land size group had the most observations over the sample period. 
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Note that if we set all of the k equal to unity, Model 3 collapses down to Model 2. The 
final log likelihood for Model 3 was an improvement of 1761.68 over the final LL for 
Model 2 (for adding 6 new lot size parameters) which is a highly significant increase. The 
R2 increased to 0.8283 from the previous model R2 of 0.7662. The new estimated 
depreciation rate turned out to be 0.0405 or 4.05% per year. The price of land increased 
2.69 fold over the sample period. Thus the new model has given rise to somewhat 
different land prices and the new depreciation rate is considerably higher than the 
depreciation rates in Models 1 and 2. The sequence of marginal land prices generated by 
this model are as follows: 1 = 1.1350, 2 = 0.6915, 3 = 0.1198, 4 = 0.2963, 5 = 
1.0000 (this value was imposed), 6 = 0.3871 and 7 = 0.0086. Thus the marginal land 
prices as functions of lot size are not monotonic but for very large land plots, the 
marginal price of an extra square foot of land is very low. 
 
Our next model is similar to Model 3 except we now allow the marginal price of adding 
an extra amount of structure to vary as the size of the structure increases. It is likely that 
the quality of the structure increases as the size of the structure increases. In order to 
capture this nonlinearity, we divided up our 11,045 observations into 5 groups of 
observations based on their structure size. The Group 1 properties had structures with 
floor space area less than 2,000 ft2, the Group 2 properties had structure areas greater 
than or equal to 2,000 ft2 and less than 2,500 ft2, the Group 3 properties had structure 
areas greater than or equal to 2,500 ft2 and less than 3,000 ft2, the Group 4 properties had 
structure areas greater than or equal to 3,000 ft2 and less than 3,500 ft2 and the Group 5 
properties had structure areas greater than or equal to 3,500 ft2.21  For each observation n 
in period t, we define the 5 structure dummy variables, DS,tn,m, for m = 1,...,5 as follows: 
 
(12) DS,tn,m  1 if observation tn has structure area that belongs to structure group m; 
                    0 if observation tn has structure area that does not belong to group m. 
 
These dummy variables are used in the definition of the following piecewise linear 
function of Stn, gS(Stn), defined as follows: 
 
(13) gS(Stn)  DS,tn,11Stn + DS,tn,2[1S1+2(StnS1)] + DS,tn,3[1S1+2(S2S1)+ 3(StnS2)] 
                      + DS,tn,4[1S1+2(S2S1)+3(S3S2)+4(StnS3)] 
                      + DS,tn,5[1S1+2(S2S1)+3(S3S2)+ 4(S4S3)+ 5(StnS4)]. 
 
where the m are unknown parameters and S1  2, S2  2.5, S3  3 and S4  3.5. The 
function gS(Stn) defines a relative valuation function for the structure area of a house as a 
function of the structure area.       
 
The new nonlinear regression model is the following Model 4: 
 
(14) Vtn = t(j=1

6 jDPC,tn,j)fL(Ltn) + pSt(1  )A(t,n) gS(Stn)  + tn ;  t = 1,...,36; n = 1,...,N(t).                                       
                                                                           

                                                 
21 The sample probabilities of an observation falling in the 5 structure groups were: 0.207, 0.308, 0.191, 
0.134 and 0.160.   
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Comparing the models defined by equations (10) and (14), it can be seen that we have 
added an additional 5 structure floor space parameters, 1,...,5, to the model defined by 
(10).22 Again, we add the normalizations (11) in order to identify all of the parameters in 
the model. There are a total of 53 unknown parameters in Model 4. Note that if we set all 
of the m equal to unity, Model 4 collapses down to Model 3.  
 
The final log likelihood for Model 4 was an improvement of 934.91 over the final LL for 
Model 3 (for adding 5 new structure size parameters) which is a highly significant 
increase. The R2 increased to 0.8520 from the previous model R2 of 0.8283. The new 
estimated depreciation rate turned out to be 0.0298 or 2.98% per year. Using this model, 
the price of land increased 3.34 fold over the sample period. The sequence of marginal 
land prices generated by this model are as follows: 1 = 1.3042, 2 = 0.7729, 3 = 0.2613, 
4 = 0.3536, 5 = 1.0000 (this value was imposed), 6 = 0.6410 and 7 = 0.1268. These 
marginal land prices are much larger than the corresponding prices in the previous model 
and they appear to be more reasonable. The marginal structure floor space prices 
estimated by Model 4 were as follows: 1 = 1.4318, 2 = 1.1697, 3 = 1.5871, 4 = 
2.4859, 5 = 0.6222. Thus there is a considerable amount of variability in both the 
marginal land and structure price parameters.  
 
In Model 5, we allowed the geometric depreciation rates to differ after each 10 year 
interval. We divided up our 11,045 observations into 6 groups of observations based on 
the age of the structure at the time of the sale. The Group 1 properties had structures with 
structure age less than 10 years, the Group 2 properties had structure ages greater than or 
equal to 10 years but less than 20 years, ..., the Group 6 properties had structure ages 
greater than or equal to 50 years.23  For each observation n in period t, we define the 6 
age dummy variables, DA,tn,i, for i = 1,...,6 as follows: 
 
(15) DA,tn,i  1 if observation tn has structure age that belongs to age group i; 
                   0 if observation tn has structure age that does not belong to age group i. 
 
These age dummy variables are used in the definition of the following function of the age 
variable, gA(Atn), defined as follows:24 
 
(16) gA(Atn)  DA,tn,1(11)A(t,n) + DA,tn,2(11)10(12)A(t,n)10  
           + DA,tn,3(11)10(12)10(13)A(t,n)20 + DA,tn,4(11)10(12)10(13)10(14)A(t,n)30 
           + DA,tn,5(11)10...(14)10(15)A(t,n)40 + DA,tn,6(11)10...(15)10(16)A(t,n)50. 
                             
Thus the annual geometric depreciation rates are allowed to change at the end of each 
decade that the structure survives.  
                                                 
22 Note that we did not normalize one of the parameters 1-5. This lack of a normalization means that we 
are allowing our estimated levels of structure imputed values to be totally independent of the earlier 
imputed structure values which were tied to the Statistics Canada estimated augmented construction cost 
index.  
23 The sample probabilities of an observation falling in the 6 age groups were: 0.224, 0.146, 0.164, 0.225, 
0.149 and 0.093.   
24 Atn is the same as A(t,n). 
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The new Model 5 nonlinear regression model is the following one: 
 
(17) Vtn = t(j=1

6 jDPC,tn,j)fL(Ltn) + pStgS(Stn)gA(Atn)  + tn ;       t = 1,...,36; n = 1,...,N(t).   
                                                                           
Comparing the models defined by equations (14) and (17), it can be seen that we now 
have 6 depreciation rates, 1,...,6, in place of the single depreciation rate  which 
appeared in Model 4. Again, we add the normalizations (11) in order to identify all of the 
parameters in the model. There are a total of 58 unknown parameters in Model 5. Note 
that if we initially set all of the i equal to the  which appeared in Model 4, then Model 5 
collapses down to Model 4.  
 
The final log likelihood for Model 5 was a modest improvement of 24.36 over the final 
LL for Model 4 (for adding 5 new depreciation rate parameters). The R2 increased to 
0.8526 from the previous model R2 of 0.8520. Using this model, the price of land 
increased 3.34 fold over the sample period, the same increase as occurred in Model 4. 
The new decade by decade estimated depreciation rates turned out to be as follows: 1 = 
0.0351, 2 = 0.0229, 3 = 0.0267,25 4 = 0.0462, 5 = 0.0220 and 6 = 0.0239. Thus 
properties with structures which are over 50 years old tend to have a negative 
depreciation rate; i.e., the value of the structure tends to increase by 2.39% per year.26 
The marginal land and structure prices did not change much from the estimates from 
Model 4. The conclusion we can draw from Models 4 and 5 is that there is some evidence 
that the (net) geometric depreciation rate for detached houses in Richmond is around 2 to 
3 percent per year for the first 30 years of the structure life and then for the next 10 years 
the rate increases to something around 4.6% per year. The rate then decreases to around 
2.2% per year for houses of age 40-50 and finally, the depreciation rate for houses that 
survive more than 50 years becomes negative with an appreciation rate of approximately 
2.4% per year. However, the improvement in the descriptive power of this more general 
depreciation model is fairly limited; a single geometric depreciation rate of around 3% 
per year describes the data almost as well.    
 
For our final two models, we introduce bathroom and bedroom variables into the hedonic 
regressions. The number of bathrooms in our sample ranged from 1 to 6 bathrooms. We 
assume that the number of bathrooms in the structure affects the quality of the structure. 
Thus define the following 6 dummy variables, DBa,tn,i: for t = 1,...,36; n = 1,...,N(t); i = 
1,...,6:27 
 
(18) DBa,tn,i  1 if observation n in period t is a house with i bathrooms; 
                    0 if observation n in period t does not have i bathrooms.  

                                                 
25 Remember that these depreciation rates are net depreciation rates. As houses approach their middle age, 
renovations become important and thus a decline in the net depreciation rate is plausible.  
26 This phenomenon has been observed in the literature before; i.e., older heritage houses that have been 
extensively renovated may increase in value over time rather than depreciate as they age. 
27 The sample probabilities of an observation falling in the 6 number of bathroom groups were: 0.029, 
0.151, 0.423, 0.165, 0.122 and 0.110. Thus 3 bathroom houses were by far the most common type of house 
and so we set 3 = 1 when normalizing one of the bathroom coefficients in the restrictions (21).  
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We use the bathroom dummy variables defined above in order to define the following 
bathroom quality adjustment function, gBa(NBAtn) 
 
(19) gBa(NBAtn)  (i=1

6 iDBa,tn,i)NBAtn. 
 
The new Model 6 nonlinear regression model is the following one: 
 
(20) Vtn = t(j=1

6 jDPC,tn,j)fL(Ltn) + pStgS(Stn)gA(Atn)gBa(NBAtn) + tn ;       
                                                                                                        t = 1,...,36; n = 1,...,N(t).   
                                                                           
Comparing the models defined by equations (17) and (20), it can be seen that we now 
have added 6 new bathroom parameters, 1,...,6, to Model 5. Not all of these new 
parameters can be identified so we impose the identifying normalizations (21) on the 
parameters in (20): 
 
(21) 4  1; 5  1; 3  1. 
 
There are a total of 63 unknown parameters in Model 6. Note that if we initially set all of 
the i equal to 1, then Model 6 collapses down to Model 5.  
 
The final log likelihood for Model 6 was an improvement of 38.08 over the final LL for 
Model 5 (for adding 5 new bathroom parameters). The R2 increased to 0.8536 from the 
previous model R2 of 0.8526. Using this model, the price of land again increased 3.34 
fold over the sample period, the same increase as occurred in Models 4 and 5. The new 
bedroom parameters turned out to be as follows: 1 = 1.1021, 2 = 0.9368, 3 = 1.000 
(imposed), 4 = 0.9526, 5 = 0.8946 and 6 = 0.9631. These estimates are reasonable. 
The new decade by decade estimated depreciation rates turned out to be as follows: 1 = 
0.0339, 2 = 0.0242, 3 = 0.0304, 4 = 0.0445, 5 = 0.0202 and 6 = 0.0237. These rates 
are similar to the depreciation rates generated by the previous model. The marginal land 
and structure prices did not change much from the previous estimates from Models 4 and 
5. 
 
Finally, we introduce the number of bedrooms into the hedonic regressions. The number 
of bedrooms in our sample ranged from 3 to 7 bedrooms. We assume that the number of 
bedrooms in the structure affects the quality of the structure. Thus define the following 5 
dummy variables, DBe,tn,i, for t = 1,...,36; n = 1,...,N(t); i = 3,4,...,7:28 
 
(22) DBe,tn,i  1 if observation n in period t is a house with i bedrooms; 
                    0 if observation n in period t does not have i bedrooms.  
    
We use the bedroom dummy variables defined above in order to define the following 
bedroom quality adjustment function, gBe(NBEtn): 
                                                 
28 The sample probabilities of an observation falling in the 5 number of bedroom groups were: 0.210, 0.318, 
0.358, 0.096, 0.018. Thus 5 bedroom houses were the most common type of house and so we set 5 = 1 
when normalizing one of the bedroom coefficients in the restrictions (25).  
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(23) gBe(NBEtn)  (i=3

7 iDBa,tn,i)NBEtn. 
 
The new Model 7 nonlinear regression model is the following one: 
 
(24) Vtn = t(j=1

6 jDPC,tn,j)fL(Ltn) + pStgS(Stn)gA(Atn)gBa(NBAtn)gBe(NBEtn) + tn ;       
                                                                                                        t = 1,...,36; n = 1,...,N(t).   
                                                                           
Comparing the models defined by equations (20) and (24), it can be seen that we now 
have added 5 new bedroom parameters, 3,...,7, to Model 6. Not all of these new 
parameters can be identified so we impose the identifying normalizations (25) on the 
parameters in (24): 
 
(25) 4  1; 5  1; 3  1; 5 = 1. 
 
There are a total of 67 unknown parameters in Model 7. Note that if we set all of the i 
equal to 1, then Model 7 collapses down to Model 6.  
 
The final log likelihood for Model 7 was a big improvement of 180.70 over the final LL 
for Model 6 (for adding 4 new bathroom parameters). The R2 increased to 0.8583 from 
the previous model R2 of 0.8536. Using this model, the price of land increased 3.50 fold 
which is an increase over the 3.34 fold increase that occurred in Models 4-6. The 
estimated coefficients for Model 7 are listed below in Table 2.29 The new decade by 
decade estimated depreciation rates turned out to be as follows (the corresponding rates 
from Model 6 are listed in brackets): 1 = 0.0298 (0.0339), 2 = 0.0202 (0.0242), 3 = 
0.0301 (0.0304), 4 = 0.0345 (0.0445), 5 = 0.0132 (0.0202) and 6 = 0.0180 (0.0237). 
These new depreciation rates are broadly similar to the depreciation rates generated by 
the previous two models but there are some substantial differences. The problem is that 
the standard errors on these parameter estimates are fairly large and hence the 
depreciation parameters are not estimated with great precision. The marginal land and 
structure prices did not change much from the previous estimates from Models 4 and 5. 
  
Table 2: Estimated Coefficients for Model 7 
 
Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat 
1 62.30 16.68 24 117.27 18.46 7 0.1274 2.52 
2 63.56 16.29 25 122.10 18.49 1 1.4427 27.12 
3 59.64 14.04 26 128.08 18.29 2 1.3993 7.87 
4 50.48 11.75 27 130.00 18.38 3 1.5694 8.61 
5 52.37 15.49 28 130.99 18.63 4 2.3765 11.91 
6 63.78 17.16 29 142.46 18.74 5 0.8117 6.65 
7 68.54 17.38 30 153.56 18.71 1 0.0298 19.38 
8 75.25 17.61 31 169.88 18.79 2 0.0202 10.15 
9 88.73 18.13 32 182.24 18.80 3 0.0301 10.22 
10 92.02 18.26 33 229.69 18.79 4 0.0345 6.90 

                                                 
29  Standard errors for each estimated coefficient can be obtained by dividing the estimate by the 
corresponding listed t statistic. 
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11 90.42 18.13 34 245.21 18.80 5 0.0132 1.97 
12 94.19 18.19 35 236.03 18.65 6 0.0180 1.27 
13 125.40 18.63 36 217.87 18.10 1 1.1223 11.61 
14 122.37 18.64 1 0.6392 69.92 2 0.9473 26.11 
15 116.76 18.43 2 0.9880 129.47 4 1.0077 62.35 
16 118.47 18.34 3 0.8643 169.34 5 0.9837 52.81 
17 126.91 18.67 5 0.9334 185.06 6 1.0572 47.39 
18 120.76 18.32 6 0.5508 41.20 3 1.1048 40.35 
19 114.56 18.13 1 1.2651 17.79 4 1.0835 88.41 
20 107.87 17.34 2 0.7524 8.47 6 0.8603 72.92 
21 110.06 17.74 3 0.3241 4.19 7 0.7334 30.49 
22 113.78 18.32 4 0.3237 4.76    
23 114.19 18.32 6 0.6115 6.51    
 
In the following section, we will use the results from Models 4-7 to construct overall 
property price indexes and the corresponding land price indexes in order to determine 
how similar they are. 
 
4. Sales Price Indexes for the Geometric Depreciation Models 
 
Recall equations (14) in the previous section which regressed the sale price of property n 
in quarter t, Vtn, on terms associated with the land and structure values of the property. 
Once the parameters for Model 4 have been determined, the predicted constant quality 
amount of land for property n sold during period t, Ltn

*, can be defined as follows: 
 
(26) Ltn

*  (j=1
6 jDPC,tn,j)fL(Ltn) ;                                                  t = 1,...,36; n = 1,...,N(t).   

 
The corresponding quarter t constant quality land price is the estimated coefficient, t, 
for t = 1,...,36. Similarly, the predicted constant quality amount of structure for property 
n sold during period t, Stn

*, can be defined as follows: 
 
(27) Stn

*  (1  )A(t,n) gS(Stn) ;                                                         t = 1,...,36; n = 1,...,N(t).   
  
The corresponding quarter t constant quality structure price is the quarter t Statistics 
Canada price index pSt for t = 1,...,36. 
 
In order to form an overall quarter t property price index, it is necessary to aggregate the 
individual property amounts of constant quality land and structure into quarterly 
aggregates, say Lt

* and St
*. This task can be accomplished by simple addition. The 

corresponding quarter t aggregate prices will be t and pSt respectively. It is convenient to 
rescale these price indexes so that they equal 1 in quarter 1. Denote these normalized 
price indexes by PLt and PSt for quarter t. Normalizing the price indexes means that the 
corresponding quarter t quantity aggregates need to be normalized in the opposite 
direction. Thus for Model 4, we end up with the following definitions for the price and 
quantity of aggregate constant quality land and structures for each quarter t = 1,...,36: 
 
(28) P4Lt  t/1 ; 
(29) L4t

*  1 n=1
N(t) (j=1

6 jDPC,tn,j)fL(Ltn) ; 
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(30) P4St  pSt/pS1 ; 
(31) S4t

*  pS1n=1
N(t) (1  )A(t,n) gS(Stn). 

 
The aggregate quarterly land and structure price indexes generated by Model 4, P4Lt and 
P4St, are listed in Table 4 below. Equations (28)-(31) generate aggregate land and 
structure prices and quantities for the 36 quarters in our sample. We used these land and 
structure aggregates to form Fisher (1922) chained property price indexes. These Model 4 
aggregate property price indexes are listed as P4t in Table 3. 
 
A similar procedure can be used in order to construct land and structure subindexes for 
Models 5, 6 and 7, P5Lt- P7Lt and P5St- P7St, along with the corresponding overall property 
price indexes, which we denote by P5t, P6t and P7t in Table 3. Note that definitions (28) 
and (30)30 are used to define the land and structure price indexes for each model but the 
counterparts to definitions (31) will differ for each model. For example, the counterpart 
definitions to (31) for Model 7 are the following definitions for t = 1,...,36: 
 
(32) S7t

*  pS1n=1
N(t) gS(Stn)gA(Atn)gBa(NBAtn)gBe(NBEtn). 

   
Table 3: Property Price Indexes P4-P7, Land Price Indexes P4L-P7L, Structure Price 
Index PS and Mean and Median Price Indexes for Sales of Properties in Richmond 
Q1 2008 to Q4 2016  
 

t P4t P5t P6t   P7t P4Lt P5Lt P6Lt   P7Lt PSt PMean PMedian 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0082 1.0086 1.0052 1.0103 1.0146 1.0154 1.0086 1.0203 1.0020 1.0360 1.0280 
3 0.9867 0.9874 0.9854 0.9805 0.9737 0.9750 0.9708 0.9574 0.9990 1.0100 0.9800 
4 0.8934 0.8933 0.8970 0.8945 0.8203 0.8195 0.8267 0.8103 0.9610 0.9870 0.9430 
5 0.8751 0.8750 0.8747 0.8729 0.8507 0.8503 0.8490 0.8407 0.9006 0.9870 0.9620 
6 0.9283 0.9258 0.9254 0.9236 1.0199 1.0157 1.0153 1.0238 0.8509 0.9550 0.9520 
7 0.9751 0.9734 0.9707 0.9703 1.0921 1.0900 1.0852 1.1002 0.8743 1.0340 0.9960 
8 1.0334 1.0339 1.0316 1.0357 1.1792 1.1819 1.1782 1.2080 0.9064 1.1080 1.0780 
9 1.1499 1.1489 1.1478 1.1468 1.3913 1.3919 1.3918 1.4243 0.9318 1.2140 1.1620 

10 1.1797 1.1787 1.1773 1.1794 1.4356 1.4365 1.4357 1.4772 0.9474 1.1760 1.1770 
11 1.1671 1.1668 1.1669 1.1649 1.4153 1.4174 1.4197 1.4514 0.9425 1.2030 1.1700 
12 1.1929 1.1914 1.1917 1.1892 1.4735 1.4735 1.4765 1.5120 0.9357 1.2680 1.2450 
13 1.4356 1.4336 1.4315 1.4266 1.9441 1.9455 1.9458 2.0130 0.9367 1.4330 1.3900 
14 1.4093 1.4101 1.4090 1.4059 1.8893 1.8959 1.8975 1.9642 0.9425 1.3800 1.3480 
15 1.3675 1.3663 1.3657 1.3625 1.8095 1.8118 1.8141 1.8743 0.9406 1.4090 1.3870 
16 1.3813 1.3810 1.3785 1.3721 1.8423 1.8465 1.8454 1.9018 0.9337 1.3630 1.3450 
17 1.4470 1.4447 1.4415 1.4350 1.9714 1.9722 1.9706 2.0372 0.9298 1.4160 1.3800 
18 1.4001 1.3970 1.3955 1.3880 1.8811 1.8801 1.8810 1.9384 0.9279 1.3940 1.3160 
19 1.3553 1.3530 1.3483 1.3431 1.7904 1.7904 1.7843 1.8390 0.9279 1.4310 1.3330 
20 1.3019 1.2987 1.3003 1.2930 1.6849 1.6823 1.6890 1.7315 0.9240 1.3790 1.3900 
21 1.3183 1.3164 1.3135 1.3057 1.7242 1.7246 1.7222 1.7668 0.9181 1.3390 1.2620 
22 1.3441 1.3438 1.3399 1.3307 1.7798 1.7836 1.7796 1.8264 0.9142 1.3870 1.3090 
23 1.3457 1.3446 1.3405 1.3321 1.7860 1.7883 1.7840 1.8330 0.9113 1.4130 1.3210 
24 1.3584 1.3574 1.3569 1.3501 1.8198 1.8224 1.8257 1.8824 0.9045 1.4680 1.4470 
25 1.3913 1.3910 1.3883 1.3830 1.8904 1.8949 1.8940 1.9599 0.9016 1.4870 1.4580 
26 1.4351 1.4345 1.4329 1.4228 1.9856 1.9898 1.9917 2.0559 0.8938 1.4390 1.3900 
27 1.4485 1.4468 1.4449 1.4359 2.0142 2.0167 2.0179 2.0867 0.8918 1.5340 1.5310 
28 1.4607 1.4586 1.4559 1.4458 2.0339 2.0355 2.0353 2.1027 0.8967 1.5420 1.4930 
                                                 
30 The structure price indexes P4St-P7St are all equal and are listed as PSt in Table 3. 
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29 1.5441 1.5414 1.5390 1.5290 2.2024 2.2036 2.2048 2.2868 0.8947 1.6420 1.5630 
30 1.6302 1.6279 1.6245 1.6169 2.3631 2.3657 2.3657 2.4650 0.9064 1.6820 1.6740 
31 1.7575 1.7550 1.7543 1.7439 2.6046 2.6082 2.6147 2.7270 0.9172 1.8290 1.8440 
32 1.8580 1.8554 1.8524 1.8420 2.7921 2.7963 2.7988 2.9253 0.9289 1.9550 1.9360 
33 2.2296 2.2277 2.2248 2.2110 3.4966 3.5053 3.5110 3.6870 0.9493 2.2800 2.2700 
34 2.3628 2.3623 2.3563 2.3401 3.7348 3.7470 3.7477 3.9361 0.9717 2.3800 2.4110 
35 2.3075 2.3048 2.2992 2.2802 3.6106 3.6181 3.6186 3.7888 0.9883 2.3320 2.3490 
36 2.1694 2.1651 2.1595 2.1449 3.3394 3.3422 3.3412 3.4972 0.9873 2.1470 2.1210 
 
It can be seen that there is little difference in the land and overall property price indexes 
generated by Models 4-6. For Model 7, the land price index P7L ends up 4.7% higher than 
the Model 6 land price index P6L in Quarter 36 but the difference between the overall 
indexes P6 and P7 is less than 1% in Quarter 36. For comparison purposes, the Mean and 
Median price indexes (normalizations of the mean and median selling price of houses in 
each quarter) are also listed in Table 3. These indexes generally capture the trend of the 
hedonic property price indexes but they are much more volatile than the hedonic indexes. 
 
Our conclusion here is that it appears that Model 4, which has only a single geometric 
depreciation rate and does not make use of the bathroom and bedroom variables, 
generates land and overall property price indexes which adequately approximate our 
subsequent hedonic regression Models which require additional information on housing 
characteristics. This is an important result for statistical agencies in that it is typically 
difficult to get information on housing characteristics. Thus information on property 
location, the floor space area of the structure, the age of the structure and the lot size can 
be sufficient to generate price indexes that are reasonably accurate.  
 
The price indexes listed in Table 3 pertain to the sales of houses in Richmond. In the 
following section, we attempt to estimate price indexes that apply to the stock of houses 
in Richmond. 
 
5. Approximate Price Indexes for Housing Stocks  
 
House price indexes are used for different purposes. For many macroeconomic purposes, 
price indexes for the sales of houses are not so important; what is more important is the 
construction of price indexes for the stock of houses.31 In this section, we show how our 
sales price indexes could be used to value residential housing stocks. 
 
The first step is to form estimates for the total stock of residential housing in an area. In 
this section, we will show how a very rough approximation to the total stock of housing 
in Richmond can be formed. Once we have estimates for the total stock of constant 
quality land and structures at the end of our sample period, we can apply our quarterly 
price indexes to these stock estimates and get approximate total property price indexes 
for Richmond over our sample period.  
 
                                                 
31 Price and quantity information on the land and structure components of the stock of rental housing is 
important for the measurement of the productivity of the rental residential property industry. Information 
on the price of  the stock of Owner Occupied Housing is important for the construction of a Consumer 
Price Index and for the valuation of the real consumption services that can be attributed to OOH.   
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Recall definitions (29) and (31) in the previous section which defined total constant 
quality land and structures sold in quarter t for Model 4, L4t

* and S4t
* respectively. We 

aggregate these quarterly quantities into annual quantities sold (by simple addition)32 and 
we obtain 9 annual constant quality amounts of land and structures sold, L4y

** and S4y
**, 

for years y = 1,2,...,9.33 A very rough approximation to the total stock of quality adjusted 
land that exists in Richmond at the end of our sample period can be obtained by adding 
up these annual amounts of quality adjusted land that sold over the 9 years in our sample; 
i.e., define L4

** as follows: 
 
(32) L4

**  y=1
9 L4y

**. 
 
The same procedure could be applied to our annual estimates for quality adjusted 
structures that were sold during the 9 years but simple addition would overstate the stock 
at the end of the sample period because the properties sold at the beginning of the sample 
period would encounter structure depreciation for 9 years. Thus the amount of quality 
adjusted structure that sold over the 9 years, adjusted for annual depreciation, S4

**, is 
defined as follows: 
 
(33) S4

**  S4,9
** + (1)S4,8

** +  (1)2S4,7
** + ... + (1)8S4,1

**.    
 
The approximate stocks of quality adjusted land and structures defined by (32) and (33) 
can be used to form the following Model 4 approximate price index for the Richmond 
housing stock for quarter t, PLowe4t:34 
 
(34) PLowe4t  [P4LtL4

** + PStS4
**]/[P4L1L4

** + PS1S4
**] ;                                      t = 1,...,36    

 
where the land and structure price indexes P4Lt and PSt are listed above in Table 3. The 
overall property price index defined by (34) is called a Lowe (1823) Index since it is a 
basket type index that uses constant quantity weights throughout the sample period.   
 
The same procedure can be followed using the results of Models 5, 6 and 7 in order to 
construct the approximate housing stock indexes, PLowe5t, PLowe7t and PLowe7t. Of course, 
the quarterly L4t

* defined by (29) and S4t
* defined by (31) need to be replaced by their 

Model 5, 6 and 7 counterparts in carrying out the above approximations to the constant 
quality stocks of land and structures.35 The Lowe indexes for Models 4-7 are listed in 
Table 4. 

                                                 
32 If we had information on the age of structures by their age in quarters, it would not be necessary to do 
this aggregation. But because our information on the age of the structure is in years and because we 
estimate annual depreciation rates, we aggregated the quarterly data into annual data.  
33 The annual ratios of  L4y

** to S4y
** were 0.968, 0.918, 1.028, 1.165, 1.018, 0.958, 1.001, 1.035 and 1.146   

while the corresponding ratios of L7y
** to S7y

** were 0.826, 0.785, 0.873, 0.974, 0.851, 0.805, 0.841, 0.869 
and 0.947. Thus the alternative models do change the estimated land to structure ratios. 
34 The ratio of L4

** to S4
**  was 1.146 while the corresponding ratio of L7

** to S7
** was 0.965.  

35 Models 5, 6 and 7 had multiple depreciation rates rather than the single depreciation rate that was 
generated by Model 4. Hence the aggregation equation (33) is no longer valid for Models 5-7. However, we 
continued to use equation (33) to aggregate the annual stocks into the end of period constant quality stock 
of structures using the single depreciation rate   0.03.    
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Table 4: Approximate Property Price Indexes PLowe4-PLowe7 for the Housing Stock in 
Richmond Q1 2008 to Q4 2016  
 
t PLowe4t PLowe5t PLowe6t   PLowe7t 
1 1.0000 1.0000 1.0000 1.0000 
2 1.0087 1.0091 1.0055 1.0110 
3 0.9855 0.9862 0.9841 0.9786 
4 0.8858 0.8857 0.8899 0.8870 
5 0.8739 0.8738 0.8733 0.8712 
6 0.9412 0.9385 0.9379 0.9358 
7 0.9906 0.9890 0.9859 0.9852 
8 1.0521 1.0529 1.0502 1.0545 
9 1.1772 1.1764 1.1751 1.1736 

10 1.2081 1.2075 1.2057 1.2075 
11 1.1950 1.1950 1.1950 1.1924 
12 1.2229 1.2216 1.2218 1.2187 
13 1.4747 1.4731 1.4705 1.4652 
14 1.4481 1.4494 1.4478 1.4443 
15 1.4046 1.4038 1.4027 1.3991 
16 1.4190 1.4191 1.4160 1.4091 
17 1.4860 1.4841 1.4804 1.4737 
18 1.4370 1.4342 1.4322 1.4241 
19 1.3885 1.3865 1.3810 1.3753 
20 1.3303 1.3272 1.3287 1.3206 
21 1.3486 1.3469 1.3435 1.3349 
22 1.3765 1.3765 1.3721 1.3622 
23 1.3784 1.3776 1.3730 1.3640 
24 1.3933 1.3926 1.3918 1.3847 
25 1.4297 1.4297 1.4266 1.4213 
26 1.4768 1.4766 1.4747 1.4645 
27 1.4912 1.4899 1.4876 1.4786 
28 1.5040 1.5023 1.4991 1.4889 
29 1.5931 1.5907 1.5878 1.5784 
30 1.6843 1.6824 1.6785 1.6719 
31 1.8183 1.8163 1.8152 1.8060 
32 1.9239 1.9218 1.9181 1.9093 
33 2.3097 2.3084 2.3046 2.2938 
34 2.4473 2.4475 2.4404 2.4275 
35 2.3887 2.3867 2.3799 2.3636 
36 2.2434 2.2395 2.2327 2.2199 
 
From Table 4, it can be seen that the Model 4-7 Lowe indexes approximate each other 
quite closely. It can also be seen that the Lowe indexes PLowe4t-PLowe7t are approximately 
3.5% above their sales property price counterparts, P4t-P7t, at the end of the sample period 
when t = 36. This is to be expected: our approximate stock price indexes have a higher 
land to structure ratio because the stock indexes better reflect the composition of the 
structure stock by depreciating the structures for the early years in our sample of sold 
properties. A more accurate measure of the Richmond housing stock would produce an 
even higher property inflation rate for the stock measure.  
 
The form of depreciation that we used in Models 5-7 gave rise to rather complex 
nonlinear regression models which could lead to a lack of convergence in applications to 
other data sets. Thus in the following section, we replace our geometric depreciation 
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models with piecewise linear depreciation models which are not as nonlinear. These 
alternative models also provide a robustness check on our earlier computations.   
 
6. Sales Price Indexes for Piecewise Linear Depreciation Models 
 
In this section, we re-estimate Models 1-7 which were explained in Section 3. The 
geometric depreciation rates which were used in Section 3 are replaced by either straight 
line depreciation for Models 1-4 and by piecewise linear depreciation for Models 5-7.  
 
Recall that Models 1-4 were defined by equations (3), (5), (10) and (14) in Section 3.36 
For the new Models 1-4, replace the term (1  )A(t,n) which appears in these equations by 
the term (1Atn) so that  is now interpreted as the straight line depreciation rate which 
was previously a geometric or declining balance depreciation rate.  
 
Recall that Models 5-7 in Section 3 were defined by equations (17), (20) and (24). The 
same depreciation rate function gA(Atn) defined by (16) was used in each of these 
geometric depreciation models. For the piecewise linear depreciation Models 5-7 that are 
estimated in this section, replace the old depreciation function gA(Atn) by the new 
depreciation function defined as follows (where Atn is the age of the structure on property 
n sold during period t and the age dummy variables DA,tn,i are defined by (15)):  
 
(35) gA(Atn)   DA,tn,1(11Atn) + DA,tn,2(1 101  2(Atn10)) 
          + DA,tn,3(1 101  102  3(Atn20)) + DA,tn,4(1 101  102  103  4(Atn30))  
          + DA,tn,5(1 101  102  103  104  5(Atn40))  
          + DA,tn,6(1 101  102  103  104  105  6(Atn50)).     
 
The remaining parts of Models 1-7 remain unchanged. In Table 5 below, we list the R2 
and improvement in the log likelihood (LL) for each new model over the previous 
model. For Models 1-4, we list the estimated straight line depreciation rate 1 for each 
model and for Models 5-7, we list the 6 decade by decade linear depreciation rates 1-6 
that were estimated  by these models. These depreciation rates of course are somewhat 
different from our previously estimated geometric depreciation rates. However, for both 
the geometric depreciation Model 7 and the piecewise linear depreciation Model 7, the 
depreciation rate 6 becomes an appreciation rate for structures in the 50-60 year old 
range.      
 
Table 5: Results for the Piecewise Linear Depreciation Models 1-7 
 
 R2 LL 1 2 3 4 5 6 
Model 1 0.7494  0.0247      
Model 2 0.7914   955.60 0.0242      
Model 3 0.8429 1861.43 0.0279      
Model 4 0.8476   170.45 0.0210      
Model 5 0.8525   181.44 0.0301 0.0140 0.0141 0.0150 0.0052 0.0054 
Model 6 0.8535     38.43 0.0292 0.0150 0.0154 0.0140 0.0047 0.0053 
                                                 
36 The parameter normalizations that were used in Section 3 are also used in this section. 
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Model 7 0.8583   182.55 0.0261 0.0134 0.0166 0.0123 0.0039 0.0052 
 
Model 2 added 5 additional neighbourhood parameters to Model 1, Model 3 added 6 
marginal price parameters for the size of the land plot, Model 4 added 5 marginal price 
parameters for the size of the structure, Model 5 added 5 depreciation rate parameters, 
Model 6 added 5 extra bathroom parameters and Model 7 added 4 extra bedroom 
parameters. Looking at the increases in the log likelihood that are listed in Table 5, it can 
be seen that the additional variables do add a considerable amount of explanatory power. 
The estimated coefficients for the new Model 7 are listed in Table 6. It can be seen that 
with the exception of the depreciation rates, the estimated coefficients for the new 
piecewise linear Model 7 are similar to the estimated coefficients listed in Table 3 for the 
geometric depreciation Model 7.  
 
Table 6: Estimated Coefficients for Model 7 Using Piecewise Linear Depreciation 
 
Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat 
1 62.12 17.07 24 117.17 18.39 7 0.1284 2.57 
2 63.36 16.70 25 122.00 18.36 1 1.4405 28.39 
3 59.38 13.84 26 128.00 18.59 2 1.3871 7.95 
4 50.32 11.62 27 129.90 18.32 3 1.5689 8.65 
5 52.21 16.44 28 130.90 18.68 4 2.3665 12.22 
6 63.65 17.32 29 142.39 18.63 5 0.8046 6.79 
7 68.42 17.71 30 153.49 18.53 1 0.0261 22.16 
8 75.13 17.55 31 169.83 18.36 2 0.0134 10.01 
9 88.62 17.89 32 182.21 18.47 3 0.0166 11.80 
10 91.88 18.33 33 229.75 18.48 4 0.0123 7.52 
11 90.28 18.12 34 245.28 18.45 5 0.0039 2.18 
12 94.06 18.34 35 236.14 18.32 6 -0.0052 -1.36 
13 125.33 18.54 36 217.91 17.72 1 1.1244 11.95 
14 122.23 18.60 1 0.6384 69.17 2 0.9483 25.98 
15 116.67 18.55 2 0.9883 128.92 4 1.0079 60.23 
16 118.36 18.57 3 0.8641 166.89 5 0.9844 51.76 
17 126.83 18.10 5 0.9335 185.39 6 1.0583 46.62 
18 120.68 18.29 6 0.5499 41.06 3 1.1056 40.22 
19 114.49 17.60 1 1.2629 17.40 4 1.0838 90.07 
20 107.77 17.44 2 0.7536 8.64 6 0.8602 73.16 
21 110.00 18.20 3 0.3192 4.15 7 0.7337 29.76 
22 113.64 18.38 4 0.3226 4.73    
23 114.08 18.39 6 0.6102 6.57    
 
Although the estimated depreciation rates for our new Model 7 differ considerably from 
the geometric depreciation rates that we estimated for Model 7 in Section 3, the age 
functions that these two models generate are somewhat similar. If structure depreciation 
is geometric at the rate of 3% per year, the quality adjusted fraction of a structure that is 
A years old is g1(A)  (1  0.03)A. This function of age A is the lowest curve on Chart 1 
below.  Using the 6 decade by decade geometric depreciation rates that are listed in Table 
2 and the 6 piecewise linear depreciation rates that are listed in Table 6 for Model 7, we 
can generate similar age functions which are denoted by g2(A) and g3(A) on Chart 1. It 
can be seen that all three age functions approximate each other closely for the first decade 
of age but they diverge in subsequent decades. The two geometric age functions, g1(A) 
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and g2(A), are reasonably close to each other but the piecewise linear age function g3(A) 
lies considerably above the two other age functions. However, as we shall see, since most 
of the sales of houses in Richmond are for relatively young structures, the new and the 
old Model 7 generate much the same sales price indexes.37  
 

 
 
 
We use the same procedures that were used in Section 4 in order to calculate the land and 
property price indexes that are implied by Models 4-7. The overall sales property price 
indexes for quarter t for the new Models 4-7 are denoted by P4Nt-P7Nt and the 
corresponding quality adjusted land prices are denoted by P4LNt-P7LNt. These indexes are 
listed in Table 7. The quality adjusted structure price indexes for the new Models 4-7 are 
all equal to the indexes PSt listed in Table 3 in Section 3.   
 
Table 7: New Property Price Indexes P4N-P7N and Land Price Indexes P4LN-P7LN for 
Sales of Properties in Richmond Q1 2008 to Q4 2016  
 

t P4Nt P5Nt P6Nt   P7Nt P4LNt P5LNt P6LNt   P7LNt 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0058 1.0082 1.0049 1.0101 1.0084 1.0148 1.0079 1.0199 
3 0.9840 0.9868 0.9848 0.9799 0.9736 0.9735 0.9693 0.9558 
4 0.8925 0.8937 0.8974 0.8947 0.8436 0.8192 0.8265 0.8100 
5 0.8769 0.8750 0.8747 0.8729 0.8627 0.8499 0.8487 0.8404 
6 0.9273 0.9258 0.9254 0.9236 0.9882 1.0167 1.0164 1.0246 
7 0.9752 0.9734 0.9708 0.9704 1.0537 1.0915 1.0868 1.1014 
8 1.0350 1.0338 1.0315 1.0357 1.1334 1.1834 1.1798 1.2093 

                                                 
37 The final LL for the Model 7 geometric model of depreciation was 72920.50 while the final LL for the 
Model 7 piecewise linear model of depreciation was slightly lower at  72923.68 so the geometric model is 
a slightly preferred model. But the depreciation rates for older houses are not determined very precisely so 
the issue of which depreciation model best fits the data is open.   

Chart 1: Alternative Age Functions 
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9 1.1534 1.1488 1.1477 1.1468 1.3153 1.3946 1.3947 1.4265 
10 1.1814 1.1783 1.1768 1.1791 1.3515 1.4386 1.4381 1.4790 
11 1.1689 1.1665 1.1666 1.1647 1.3341 1.4198 1.4223 1.4533 
12 1.1933 1.1910 1.1914 1.1890 1.3786 1.4761 1.4795 1.5142 
13 1.4438 1.4333 1.4313 1.4263 1.7767 1.9514 1.9521 2.0175 
14 1.4144 1.4092 1.4082 1.4052 1.7282 1.9001 1.9024 1.9676 
15 1.3722 1.3658 1.3652 1.3622 1.6617 1.8163 1.8191 1.8780 
16 1.3871 1.3804 1.3780 1.3716 1.6892 1.8513 1.8505 1.9054 
17 1.4541 1.4443 1.4412 1.4346 1.7961 1.9783 1.9770 2.0417 
18 1.4127 1.3967 1.3953 1.3877 1.7308 1.8856 1.8871 1.9427 
19 1.3629 1.3529 1.3483 1.3429 1.6483 1.7958 1.7901 1.8431 
20 1.3099 1.2984 1.3002 1.2928 1.5619 1.6866 1.6938 1.7349 
21 1.3265 1.3164 1.3135 1.3056 1.5935 1.7298 1.7277 1.7707 
22 1.3508 1.3430 1.3392 1.3301 1.6358 1.7878 1.7842 1.8294 
23 1.3568 1.3440 1.3401 1.3316 1.6477 1.7928 1.7890 1.8364 
24 1.3693 1.3569 1.3564 1.3496 1.6737 1.8273 1.8311 1.8861 
25 1.4063 1.3904 1.3878 1.3824 1.7375 1.9002 1.8999 1.9638 
26 1.4479 1.4340 1.4325 1.4223 1.8101 1.9960 1.9985 2.0604 
27 1.4628 1.4462 1.4443 1.4351 1.8355 2.0227 2.0243 2.0910 
28 1.4774 1.4580 1.4554 1.4451 1.8565 2.0417 2.0420 2.1072 
29 1.5674 1.5406 1.5383 1.5283 2.0036 2.2106 2.2125 2.2921 
30 1.6477 1.6269 1.6236 1.6160 2.1270 2.3734 2.3740 2.4708 
31 1.7765 1.7540 1.7534 1.7429 2.3282 2.6174 2.6246 2.7339 
32 1.8817 1.8544 1.8515 1.8410 2.4905 2.8067 2.8099 2.9332 
33 2.2623 2.2265 2.2238 2.2098 3.0810 3.5200 3.5269 3.6984 
34 2.3942 2.3610 2.3550 2.3387 3.2768 3.7630 3.7647 3.9483 
35 2.3363 2.3042 2.2986 2.2793 3.1753 3.6345 3.6360 3.8012 
36 2.2070 2.1642 2.1586 2.1438 2.9691 3.3561 3.3559 3.5077 
 
Comparing the indexes listed in Tables 3 and 7, it can be seen that while P4N differs 
somewhat from P4 (and P4LN differs considerably from P4L), the overall property price 
indexes P5-P7 are very close to their new counterparts P5N-P7N and the land price indexes 
P5L-P7L are very close to their new counterparts P5LN-P7LN. This close correspondence is 
explained by the fact that once multiple depreciation rates are introduced into the age 
function for structures, the geometric and piecewise linear models of depreciation 
approximate each other sufficiently so that Models 5-7 generate similar results for both 
types of depreciation. 
 
Chart 2 plots the land price indexes P4L, P6L, P7L for the geometric models and compares 
these indexes with the land price indexes P4LN, P6LN, P7LN for the piecewise linear models 
of depreciation.38 The lowest land price series, P4LN, which uses a single straight line 
depreciation rate, generates indexes that are rather different from the other models. The 
land price indexes P4L, P6L (based on geometric depreciation) and the land price index 
P6LN (based on piecewise linear depreciation rates) are also too close to distinguish on 
Chart 2. The highest land price indexes are P7L and P7LN and they are too close to each 
other to distinguish on Chart 2. 
      

                                                 
38 P5L is too close to P6L and P5LN is too close to P6LN to be distinguished on a chart.  
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Our conclusion at this point is that if we use multiple depreciation rates, the price indexes 
that the geometric and generalized straight line depreciation generate are essentially 
identical. A more tentative conclusion is that the geometric model of depreciation with a 
single rate (Model 4) generates an acceptable land price index and hence also generates 
an overall sales property price index that approximates subsequent property price indexes 
based on models that require information on more characteristics. 
 
It should be noted that the depreciation rates that we have estimated in this paper do not 
account for all of the structure depreciation that occurs in the housing market. Our data 
on sales of properties do not include structures which have been demolished before they 
reach the end of their useful life. Hulten and Wykoff (1981) indicate one method for 
adjusting for this additional demolition depreciation and Diewert and Shimizu (2017) 
suggest an alternative method which requires information on the age of structures when 
they are demolished.39 Another issue which requires additional analysis is associated with 
the treatment of renovation expenditures: should they be immediately expensed in a 
consumer price index or should they be capitalized and depreciated separately over time? 
Looking at our estimated age functions that appear on Chart 1, it can be seen that 
renovation expenditures are probably significant determinants of structure value for older 
houses. This suggests that these expenditures should be capitalized. 
 
In the following section, we turn our attention to “traditional” house price hedonic 
regressions and ask whether these regressions can generate property price indexes and 
depreciation rates that are comparable to the estimates generated by the builder’s model. 

                                                 
39 In their study of commercial properties in Tokyo, Diewert and Shimizu (2017) found that the geometric 
depreciation rate generated by the builder’s model was 2.6% per year and demolition depreciation 
amounted to an additional 1.2% per year contribution to annual depreciation. Thus it is important to 
account for demolition when constructing estimates of depreciation for the national accounts or for tax 
policy purposes.  

Chart 2: Land Price Indexes Using Geometric and  
Piecewise Linear Depreciation Models 
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7. Estimating Structure Depreciation Rates from Traditional Log Price Hedonic 
Regression Models 
 
A way of rationalizing the traditional log price time dummy hedonic regression model for 
properties with varying amounts of land area L and constant quality structure area S* is 
that the utility that these properties yield to consumers is proportional to the Cobb-
Douglas utility function LS* where  and  are positive parameters (which do not 
necessarily sum to one).40 Initially, we assume that the constant quality structure area S* 
is equal to the floor space area of the structure, S, times an age adjustment, (1)A, where 
A is the age of the structure in years and  is a positive depreciation rate that is less than 1. 
Thus S* is related to S as follows: 
 
(36) S*  S(1)A. 
 
In any given time period t, we assume that the nominal value of a property, Vt, with the 
amount of land L and the amount of quality adjusted structure S* is equal to the following 
expression: 
 
(37) Vt = ptLS* 
            = ptL [S(1)A]               using (36) 
            = ptL S(1)A 
            = ptL S


A 

 
where pt can be interpreted as a period t property price index and the constant  is 
defined as follows: 
 
(38)   (1). 
 
Thus if we deflate Vt by the period t property price index pt, we obtain the real value or 
utility ut of the property with characteristics L and S*; i.e., we have: 
 
(39) Vt/pt = LS*  ut. 
 
Thus ut  qt is the aggregate real value of the property with characteristics L and S*. 
 
Define t as the logarithm of pt and  as the logarithm of ; i.e.,  
 
(40) t  lnpt ;   ln. 
 

                                                 
40 The early analysis in this section follows that of McMillen (2003; 289-290) and Shimizu, Nishimura and 
Watanabe (2010; 795). McMillen assumed that + = 1. We follow Shimizu, Nishimura and Watanabe in 
allowing  and  to be unrestricted. Our depreciation model is somewhat different from the models of these 
authors. We interpret McMillen’s model as a demand side model rather than a supply side model. 



 25 

After taking logarithms of both sides of the last equation in (37) and using definitions 
(40), we obtain the following equation:41 
 
(41) lnVt = t + lnL + lnS + A. 
    
Suppose that we have N(t) sales of properties in a neighbourhood in period t and the 
selling price of property n is Ptn. Suppose that we have data for T periods. The 
characteristics associated with property n in period t are Ltn, Stn and Atn. Assuming that 
the property purchaser valuation model defined by (41) holds approximately, the 
logarithms of the period t property prices will satisfy the following equations: 
 
(42) lnPtn = t + lnLtn + lnStn + Atn + tn ;                                  t = 1,...,T; n = 1,...,N(t); 
 
where the tn are independently distributed error terms with 0 means and constant 
variances. It can be seen that (42) is a traditional log price time dummy hedonic 
regression model with a minimal number of characteristics. The unknown parameters in 
(42) are the constant quality log property prices, 1,...,T, and the taste parameters ,  
and . Once these parameters have been determined, the geometric depreciation rate  
which appears in equation (36) can be recovered from the regression parameter estimates 
as follows:  
 
(43)  = 1  e/.   
 
We now explain how the hedonic pricing model defined by (39) can be manipulated to 
provide a decomposition of property value in period t into land and quality adjusted 
structure components. 
 
From (39), we assume that there is a period t constant quality price of property in period t 
equal to pt (as before) and the period t value of a property with characteristics L and S* is 
given by the following period t property valuation function, V(pt,L,S*), defined as 
follows: 
 
(44) V(pt,L,S*)  ptLS* = ptu(L,S*)  Vt 
 
where the purchaser cardinal utility function u is defined as u(L,S*)  LS* and  and  
are positive parameters which parameterize the purchaser’s cardinal utility function. Pt is 
the period t selling price of a property with land and quality adjusted structures equal to L 
and S* and Vt is the predicted selling price that is generated using the estimated 
coefficients from the hedonic regression (42). In our empirical work, our estimates for  
and  are always such that  +  is always substantially less than 1. This means that a 
property in a given period that has double the  land and quality adjusted structure than 
another property will sell for less than double the price of the smaller property. This 
follows from the fact that our Cobb-Douglas utility function, u(L,S*)  LS*, exhibits 
diminishing returns to scale; i.e., we have: 
                                                 
41 Log price hedonic regressions for property prices date back to Bailey, Muth and Nourse (1963). 
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(45) u(L,S*) = +u(L,S*)  
 
for all  > 0 where + < 1. This behavior is roughly consistent with our builder’s 
Models 5-7 where there was a tendency for property prices to increase less than 
proportionally as L and S* increased.  
 
The marginal prices of land and constant quality structure in period t for a property with 
characteristics L and S*, tL(pt,L,S*) and tS*(pt,L,S*), are defined by partially 
differentiating the property valuation function with respect to L and S* respectively: 
 
(46) tL(pt,L,S*)   V(pt,L,S*)/L   pt LS*/L  = V(pt,L,S*)/L ; 
(47) tS

*(pt,L,S*)  V(pt,L,S*)/S*  pt LS*/S* = V(pt,L,S*)/S*. 
 
If we multiply the marginal price of land by the amount of land in the property and add to 
this value of land the product of the marginal price of constant quality structure by the 
amount of constant quality structure on the property, we obtain the following identity: 
 
(48) (+)V(pt,L,S*) = tL(pt,L,S*)L + tS

*(pt,L,S*)*S. 
 
If + is less than one, then using marginal prices to value the land and constant quality 
structure in a property will lead to a property valuation that is less than its selling price. 
Thus to make the land and structure components of property value add up to property 
value, we divide the marginal prices defined by (46) and (47) by + in order to obtain 
adjusted prices of land and structures in period t, ptL(pt,L,S*) and ptS*(pt,L,S*): 
 
(49) ptL(pt,L,S*)   tL(pt,L,S*)/(+)  = (+)1V(pt,L,S*)/L ; 
(50) ptS*(pt,L,S*)  tS*(pt,L,S*)/(+) = (+)1V(pt,L,S*)/S*. 
         
The above material outlines a theoretical framework that can generate a decomposition of 
property value into land and structure components using the results of a traditional log 
price time dummy hedonic regression model. To complete the analysis, we need to fill in 
the details of how the individual property land and structure prices that are generated by 
the model can be aggregated into period t overall land and structure price indexes. 
 
Let Ptn denote the selling price of property n in period t and denote the land area, floor 
space area and age of the structure by Ltn, Stn and Atn for t = 1,...,T and n = 1,...,N(t). Run 
the hedonic regression defined by (42) and denote the resulting parameter estimates by 
1,...,T, ,  and . Define the constant quality property price index pt for period t as 
follows: 
 
(51) pt  exp(t) ;                                                                                                     t = 1,...,T. 
 
Define the geometric depreciation rate  by (43). Once  has been defined, the amount of 
quality adjusted structure for property n in period t, S*

tn can be defined as follows: 
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(52) ln(Stn
*)  ln(Stn) + Atn ln(1) ;                                                t = 1,...,T; n = 1,...,N(t). 

 
Now that pt, Ltn, Stn

*,  and  have all been defined, we use these data in equations (44) 
in order to define the predicted prices for property n sold in period t, Vtn: 
 
(53) Vtn  pt (Ltn ) (Stn

*) ;                                                               t = 1,...,T; n = 1,...,N(t). 
 
Use the following modifications of equations (49) and (50) in order to define constant 
quality land and structure prices for sold property n in period t, ptLn and ptS*n:  
 
(54) ptLn   (+)1Vtn/Ltn ;                                                           t = 1,...,T; n = 1,...,N(t);  
(55) ptS*n  (+)1Vtn/Stn

* ;                                                          t = 1,...,T; n = 1,...,N(t). 
 
Finally, unit value constant quality land and structure prices for all properties sold in 
period t, ptL and ptS*, are defined as follows: 
 
(56) ptL  (n=1

N(t) ptLn Ltn)/(n=1
N(t) Ltn) ;                                                               t = 1,...,T; 

(57) ptS*  (n=1
N(t) ptS*nStn

*)/(n=1
N(t) Stn

*) ;                                                            t = 1,...,T. 
 
The period t land and structure prices that are defined by (56) and (57) are reasonable 
summary statistic prices for land and structures sold in period t that are generated by the 
log price time dummy hedonic regression model defined by (42). However, when we 
implemented a generalization of this model, the resulting land and structure price indexes 
were not reasonable as will be seen below.  
 
The problem with this hedonic regression model shows up in equations (54) and (55). 
Suppose a representative property (with the same characteristics) sold in periods t1 and t. 
Let the period t1 and t property values be Vt1,r and Vtr and let the constant quality 
amounts of land and structures in both periods be Lt1,r = Ltr  Lr and St1,r

* = Str
*  Sr

*. 
Substitute these values into equations (54) and (55) and calculate (one plus) the rate of 
increase in constant quality land value and constant quality structure value. We obtain the 
following equations: 
 
(58) ptLr Ltr /pt1,Lr Lt1,r = ptS*r Str

*/pt1,S*r St1,r
* = Vtr /Vt1,r. 

 
Thus the log price hedonic model predicts that the rate of increase going from one period 
to the next in the land value of a representative constant quality property is equal to the 
corresponding rate of increase in the structure value of the property and these two rates of 
increase are in turn equal to the overall rate of increase in property value of the 
representative property. This is clearly not true for Richmond properties during our 
sample period: the value of a unit of land increased far more than the value of a unit of 
constant quality structure.42  

                                                 
42 Our interpretation of the log price hedonic regression model is a utility driven purchaser side model as 
opposed to the builder’s model which is a supply side model. Strictly speaking, we can be reasonably sure 
that the supply side model applies to new houses but it is not so certain that it applies to older structures 
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We indicate how the above very simple log price hedonic regression model can be 
generalized to include additional (discrete) characteristics of the properties. Suppose that 
properties have been classified to 6 postal zones. If property n in period t belongs to 
postal zone j, then define the dummy variable dj,tn for observation n in period t to equal 1 
and if property n in period t does not belongs to postal zone k, then define the dummy 
variable dj,tn for observation n in period t to equal 0. Next, suppose that properties have 
been classified according to the number of bathrooms m in the structure where 6 is the 
maximum number of bathrooms. If property n in period t has i bathrooms, then define the 
dummy variable d1i,tn for observation n in period t to equal 1 and if property n in period t 
does not have i bathrooms, then define the dummy variable d1i,tn for observation n in 
period t to equal 0. Finally, suppose that properties have been classified according to the 
number of bedrooms k in the structure where the number of bedrooms ranges from 3 to 7. 
If property n in period t has k bedrooms, then define the dummy variable d2k,tn for 
observation n in period t to equal 1 and if property n in period t does not have k bedrooms, 
then define the dummy variable d2k,tn for observation n in period t to equal 0. Now 
consider the following generalization of the hedonic regression model defined by (42):  
 
(59) lnPtn = t + lnLtn + lnStn + Atn + j=1

6 jdj,tn + i=1
6 id1i,tn  

                    + k=3
7 kd2k,tn + tn ;                                                    t = 1,...,T; n = 1,...,N(t). 

 
The j parameters affect the quality of the land component of property value while the 
last two sets of dummy variables affect the quality of the structure component of property 
value. Not all of the parameters t, j, i and k can be identified; i.e., there is exact 
multicollinearity associated with the dummy variables associated with these parameters.43 
Thus to identify all of the remaining parameters, we make the following normalizations 
that are counterparts to the normalizations (25) for Model 7: 
 
(60) 4  0; 3  0; 5 = 0.  
 
Once the linear regression defined by equations (59) and the normalizations (60) has been 
run, define the amount of quality adjusted land associated with property n in period t, Ltn

*, 
as follows: 
 
(61) Ltn

*  Ltnexp[j=1
6 jdj,tn/] ;                                                     t = 1,...,T; n = 1,...,N(t). 

 
Define the amount of quality adjusted structure associated with property n in period t, 
Stn

*, as follows: 
 
(62) Stn

*  Stnexp[(Atn + i=1
6 id1i,tn + k=3

7 kd2k,tn)/] ;              t = 1,...,T; n = 1,...,N(t). 
  

                                                                                                                                                 
that are sold since both the land and structure are fixed factors once the structure is built. Thus it is possible 
that the purchaser side model is more appropriate for older structures. However, it is clear that the 
purchaser side model fails for new houses.  
43 The dummy variables associated with the t in equations (59) have been suppressed. 
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Now replace Ltn in equations (52)-(58) by Ltn
* defined by (61) and replace the Stn

* in 
equations (52)-(58) by the new Stn

* defined by (62). Equations (58) still hold for this 
more general hedonic regression model except that Ltn is replaced by Ltn

* defined by (61) 
and we use the new definition (62) for Stn

*. Thus the new more general hedonic 
regression model still does not capture economic reality; i.e., the rates of growth in the 
values of land and structures are far from being equal for Richmond houses sold during 
our sample period. 
 
We illustrate the above theoretical results by running the log price linear regression 
model defined by (59) and (60) using our Richmond data. The R2 for this regression 
turned out to be 0.8550 which is comparable to the R2 we obtained for our Model 7 
nonlinear regressions. The estimated coefficients this traditional log price time dummy 
linear regression along with their t statistics are listed in Table 8.44 
 
Table 8: Estimated Coefficients for the Log Price Time Dummy Regression 
 
Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat 
1 5.937 426.9 1 6.226 382.3  -0.0079 -44.63 
2 5.957 424.5 2 6.189 372.7  0.2604 25.76 
3 5.926 346.8 3 6.189 410.5  0.3806 52.20 
4 5.834 290.6 4 6.215 447.6 1 -0.2589 -44.47 
5 5.832 383.4 5 6.215 451.2 2 -0.0318 -5.59 
6 5.879 448.3 6 6.233 427.9 3 -0.1145 -29.05 
7 5.929 456.6 7 6.257 449.8 5 -0.0531 -14.42 
8 5.989 426.5 8 6.284 463.0 6 -0.3273 -41.20 
9 6.085 453.1 9 6.293 457.6 1 0.1151 11.62 
10 6.096 445.7 10 6.316 442.1 2 0.0255 4.95 
11 6.081 423.3 11 6.363 477.7 4 0.0489 9.93 
12 6.113 441.2 12 6.427 505.2 5 0.0631 9.39 
13 6.283 479.7 13 6.496 486.1 6 0.1162 14.40 
14 6.265 455.9 14 6.556 488.4 3 0.0207 4.02 
15 6.240 431.1 15 6.750 513.6 4 0.0177 4.63 
16 6.239 400.4 16 6.797 519.3 6 -0.0568 -10.99 
17 6.283 435.8 17 6.771 436.2 7 -0.1004 -9.33 
18 6.249 418.8 18 6.717 311.7    
 
Using the estimates for  and  that are listed in Table 8, we can use equation (43) in 
order to compute the geometric depreciation rate that is implicit in this hedonic 
regression model. The resulting estimate turns out to be  = 1  e/ = 0.03003; i.e., using 
our demand side Cobb-Douglas property valuation model, the implied annual geometric 
depreciation rate turns out to be 3.00% per year, which is very close to the single 
geometric depreciation rate that we obtained for Model 4 in Section 3, which was 2.98% 
per year. This is a very useful result: it says that it may be the case that we can obtain 

                                                 
44 Note that the t listed in Table 8 correspond to the logarithms of the t which appeared in Tables 3 and 7 
and the j, i and k which appear in Table 8 correspond to the logarithms of the same parameters which 
appeared in Tables 3 and 7.   
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reasonably accurate structure depreciation rates using the results of traditional log price 
time dummy hedonic regressions, which are widespread in the literature.45 
 
Using the parameter estimates that are listed in Table 8, we used definitions (51) in order 
to calculate the sequence of quarter t quality adjusted property prices, pt. The normalized 
sequence of property prices was defined as Pt  pt/p1. This series is listed in Table 9 
below. We can use definitions (61) and (62) in order to form estimates for the quantity of 
quality adjusted land and structure, Ltn

* and Stn
*, for each property in our Richmond 

sample of properties. Equations (53)-(57) were then used in order to form the constant 
quality unit value quarter t prices, ptL* and ptS*.46 These prices were normalized to equal 1 
in quarter 1; i.e., define PLt  ptL*/p1L* and PSt  ptS*/p1S* for t = 1,...,36. These constant 
quality price series for land and structures are also listed in Table 9.  
 
A final set of price indexes was computed using the Cobb-Douglas property valuation 
model. Instead of running a single log price regression with 36 time dummy variables, it 
is possible to run a sequence of 35 adjacent period log price regressions. Each one of 
these regressions uses only the data for two adjacent periods but otherwise, the 
methodology is exactly the same as the one regression methodology that uses the entire 
sample. Each adjacent period regression can be used to update the overall property price 
index level of the previous period as well as the implied land and structure price levels. 
Thus this alternative methodology uses a chaining methodology. The advantage of this 
alternative methodology is that the taste parameters are only held constant for two 
successive periods for each of the regressions and so this approach allows for taste 
changes over time. The disadvantage of the adjacent period approach is that it can 
introduce a certain amount of volatility into the price indexes. In any case, we 
implemented this approach and the resulting overall, land and structure price indexes, 
PCHt, PCHLt and PCHSt, are listed in Table 9. For comparison purposes, we also listed the 
Model 7 builder’s model counterpart price indexes, P7t, P7Lt and P7St, from Table 3.       
 
Table 9: Single Regression Cobb-Douglas Property, Land and Structure Price 
Indexes, Pt, PLt and PSt, their Adjacent Period Counterpart Indexes, PCHt, PCHLt and 
PCHSt, and the Corresponding Model 7 Geometric Depreciation Indexes, P7t, P7Lt and 
P7St   
 

t Pt PCHt P7t   PLt PCHLt P7Lt   PSt PCHSt P7St 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0204 1.0188 1.0103 1.0334 1.0350 1.0203 0.9929 0.9769 1.0020 
3 0.9896 0.9875 0.9805 1.0113 0.9952 0.9574 0.9520 0.9487 0.9990 
4 0.9026 0.9046 0.8945 0.9253 0.9400 0.8103 0.8048 0.7982 0.9610 
5 0.9011 0.8907 0.8729 0.9493 0.9652 0.8407 0.7718 0.7143 0.9006 
6 0.9442 0.9340 0.9236 0.9888 1.0029 1.0238 0.9060 0.8889 0.8509 
7 0.9925 0.9874 0.9703 1.0184 1.0384 1.1002 0.9197 0.9023 0.8743 

                                                 
45 Note that the logarithms of the land and structure areas must be used in the log price hedonic regression 
in order for our suggested methodology for estimating  structure depreciation rates to work. Usually, the 
log likelihood that is obtained using the logarithms of L and S as independent variables is higher than the 
LL obtained using the levels of L and S as independent variables; this was the case for our Richmond data. 
46 As mentioned earlier, Ltn in equations (52)-(58) is replaced by the quality adjusted land, Ltn

*, defined by 
(61).  
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8 1.0542 1.0508 1.0357 1.0614 1.0833 1.2080 0.9692 0.9507 0.9064 
9 1.1600 1.1590 1.1468 1.1219 1.1448 1.4243 1.1365 1.1211 0.9318 

10 1.1734 1.1740 1.1794 1.1566 1.1831 1.4772 1.2250 1.2149 0.9474 
11 1.1557 1.1521 1.1649 1.1304 1.1535 1.4514 1.1663 1.1566 0.9425 
12 1.1932 1.1896 1.1892 1.1626 1.1871 1.5120 1.1649 1.1348 0.9357 
13 1.4139 1.4069 1.4266 1.2780 1.3057 2.0130 1.5629 1.5598 0.9367 
14 1.3891 1.3905 1.4059 1.2993 1.3255 1.9642 1.5518 1.5806 0.9425 
15 1.3547 1.3576 1.3625 1.3315 1.3561 1.8743 1.3365 1.3801 0.9406 
16 1.3530 1.3570 1.3721 1.2642 1.2862 1.9018 1.5324 1.5792 0.9337 
17 1.4143 1.4176 1.4350 1.3618 1.3765 2.0372 1.4936 1.4938 0.9298 
18 1.3667 1.3723 1.3880 1.3768 1.3937 1.9384 1.3389 1.2863 0.9279 
19 1.3353 1.3381 1.3431 1.3680 1.3819 1.8390 1.1946 1.1858 0.9279 
20 1.2877 1.2989 1.2930 1.2994 1.3198 1.7315 1.1864 1.1639 0.9240 
21 1.2871 1.2989 1.3057 1.3150 1.3353 1.7668 1.2070 1.1575 0.9181 
22 1.3207 1.3378 1.3307 1.2938 1.3115 1.8264 1.2583 1.2186 0.9142 
23 1.3208 1.3322 1.3321 1.3586 1.3821 1.8330 1.1612 1.1531 0.9113 
24 1.3448 1.3579 1.3501 1.3552 1.3809 1.8824 1.1764 1.1731 0.9045 
25 1.3774 1.3896 1.3830 1.3649 1.3889 1.9599 1.2456 1.2493 0.9016 
26 1.4160 1.4371 1.4228 1.3772 1.4028 2.0559 1.4360 1.4614 0.8938 
27 1.4290 1.4481 1.4359 1.4392 1.4617 2.0867 1.2727 1.3241 0.8918 
28 1.4612 1.4748 1.4458 1.3901 1.3967 2.1027 1.3864 1.4910 0.8967 
29 1.5312 1.5475 1.5290 1.4824 1.4898 2.2868 1.4101 1.5177 0.8947 
30 1.6331 1.6524 1.6169 1.5851 1.5945 2.4650 1.5761 1.7077 0.9064 
31 1.7506 1.7687 1.7439 1.6640 1.6752 2.7270 1.7406 1.8781 0.9172 
32 1.8576 1.8398 1.8420 1.7766 1.7285 2.9253 1.7896 1.9868 0.9289 
33 2.2560 2.2133 2.2110 2.0547 2.0053 3.6870 2.4491 2.6565 0.9493 
34 2.3634 2.3393 2.3401 2.2650 2.2110 3.9361 2.4260 2.6634 0.9717 
35 2.3039 2.2950 2.2802 2.2769 2.2261 3.7888 2.1920 2.3749 0.9883 
36 2.1827 2.1617 2.1449 2.1611 2.1049 3.4972 2.1311 2.2771 0.9873 
 
The single regression and the adjacent period overall property price indexes Pt and PCHt 
are plotted on Chart 3 along with our final geometric depreciation property price index 
P7t and the mean and median price indexes PMean and PMedian for comparison purposes. 
 

 
 

Chart 3: Alternative Overall Property Price Indexes for  
Richmond 
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From viewing Chart 3, it can be seen that the two traditional log price time dummy 
property price indexes, Pt and PCHt, can barely be distinguished from our final geometric 
depreciation property price index P7t. This is a very encouraging result: it means that it is 
possible for the traditional time dummy log price hedonic regressions to generate overall 
property price indexes that are consistent with the overall indexes generated by the 
builder’s model. From Chart 3, it is also evident that simple mean and median property 
price indexes do capture the trends in property prices to a reasonable degree of 
approximation but the volatility of these indexes as compared to the hedonic indexes is 
apparent.  
 
Finally, Chart 4 plots the three land price indexes listed in Table 9, PLt, PCHLt and P7Lt, as 
well as the three constant quality structure price indexes listed in Table 9, PSt, PCHSt and 
P7St.  
 

 
 
Viewing Chart 4, it can be seen that the builder’s Model 7 land price series, P7Lt, lies far 
above the counterpart log price time dummy series PLt and PCHLt. These last two series 
approximate each other very closely and are fairly smooth. On the other hand, the 
builder’s Model 7 structure price series, P7St, lies far below the counterpart log price time 
dummy series PSt and PCHSt. These last two series approximate each other fairly closely 
up to the final 10 quarters of our sample period when the chained index moves well 
above its single regression counterpart. Interestingly, these two structure price indexes 
based on traditional time dummy hedonic regressions are much more volatile than their 
counterpart time dummy land price indexes while the Statistics Canada structure price 
index, P7St, is extremely smooth. Note that, as predicted, the structure and land price 
indexes based on traditional time dummy hedonic regressions are all basically similar. 
 
Given our knowledge of the Greater Vancouver property market, we conclude that our 
imputation procedure applied to traditional log price time dummy regressions does not 

Chart 4: Alternative Land and Structure Price Indexes 
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generate reasonable housing price subindexes for the land and structure components of 
overall property price.  
 
8. Conclusion 
     
Some of the conclusions we can draw from the paper are as follows: 
 

 The builder’s model can generate reasonable overall house price indexes along 
with reasonable land and structure subindexes using just four characteristics: the 
land plot area L, the structure floor space area S, the age of the structure A and the 
location of the property (typically the postal code). 

 Introducing spline segments for the land and structure area of a property does lead 
to a massive improvement in the fit of the builder’s model. 

 It is useful to introduce multiple depreciation rates for different ages of the 
structure in terms of improving the fit of the model. However, a single geometric 
depreciation rate does provide an adequate approximation to the more complex 
models for the Richmond data. 

 Once we introduce multiple age dependent depreciation rates, the geometric and 
piecewise linear depreciation models generate virtually identical indexes. This 
conclusion does not hold if we have only a single depreciation rate for both types 
of model. 

 In countries with rapidly rising residential land prices (such as Australia and 
Canada), the inflation rate that is generated by estimating a sales price index will 
tend to understate the corresponding house price inflation rate for the stock of 
housing.  

 Simple mean and median property price indexes generated property price indexes 
that captured the trend in our constant quality property price indexes.47 However, 
these indexes are much more volatile than our hedonic property price indexes (as 
is well known). 

 The traditional log price time dummy hedonic regression approach generated 
overall property price indexes which were virtually identical to our builder’s 
model overall property price indexes when both types of model used the 
maximum number of characteristics.48 

 The traditional log price time dummy hedonic regression approach generated an 
implied geometric structure depreciation rate which was virtually identical to the 
single geometric depreciation rate generated by the builder’s model. This is a very 
encouraging result.  

 However, our demand side utility interpretation of the traditional log price time 
dummy hedonic regression approach did not generate reasonable land and 

                                                 
47 This conclusion does not always hold but it is somewhat encouraging that it can hold given that many 
published property price indexes are essentially trimmed mean or median sales price indexes.  
48 This result is useful in the context of trying to use existing information on residential property price 
indexes along with information on the capital stock of residential structures in order to provide a complete 
decomposition of residential property value into land and structure subcomponents; see Davis and 
Heathcote (2007) for a possible methodology. 
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structure subindexes (and we explained why this result holds). The builder’s 
supply side model seems to generate much more reasonable results. 

 
We conclude the paper with a cautionary comment: In order to obtain sensible results 
from a hedonic property price regression, it is essential to trim the tails of the 
distributions of both the dependent and independent variables. If this is not done, 
nonsensical results can emerge from the regressions. 
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