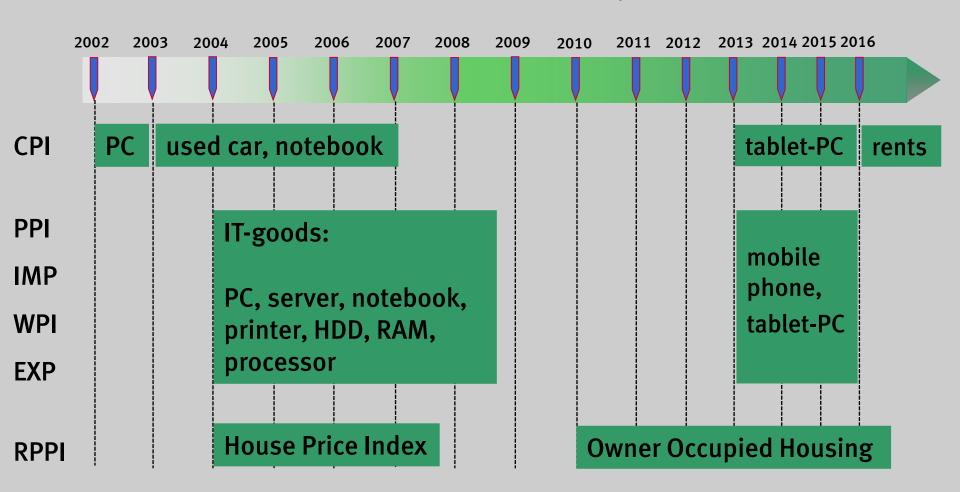


New developments in hedonic quality adjustment in German price statistics


Timm Behrmann, Bernhard Goldhammer

15th Meeting of the Ottawa Group on Price Indices

10. - 12. May 2017 in Eltville am Rhein

Hedonic methods in German prices statistics

Legal Basis

- Commission regulation (EU) 93/2013
 - Legal obligation to calculate House Price Indices
 - Net acquisition approach
 - Transaction prices (building + property)
 - Quality adjustment: hedonic methods are recommended
 - Indices for newly built and existing properties
 - Indices at least quarterly with a delivery deadline of t+85
 - Yearly updating of the weighting scheme
 - Data published since 2008, for 14 states since 2005

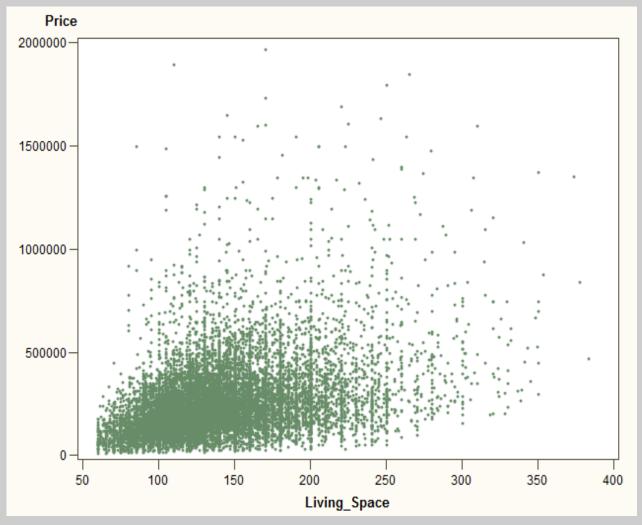
Data Source: ECPVs

ECPVs

- Expert Committees for Property Valuation
- Organised on different regional levels
- Administrative data
- All transactions
- Transaction prices
- Sales price collection

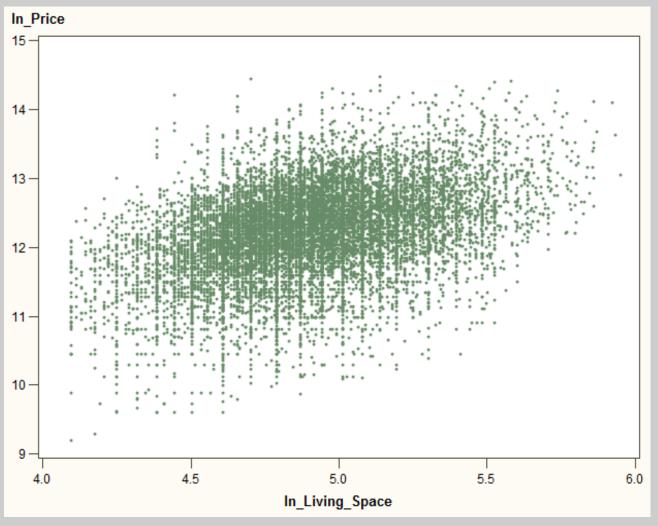
Characteristics of residential property

@ ArTo - Fotolia.com


Hedonic regression analysis

- OLS regression
- Four regression models:
 - Existing + newly built houses
 - Existing + newly built flats
- Log-Log model
- Regression for the whole country
- Formula for existing houses:

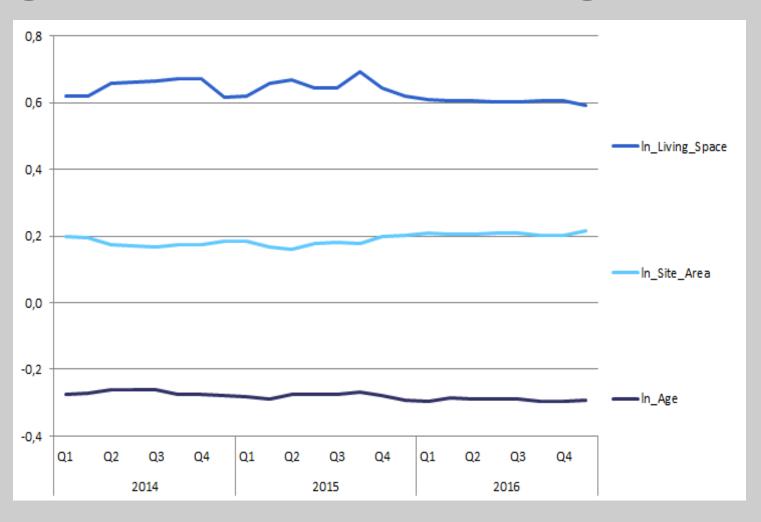
$$\ln(p) = \beta_0 + \beta_1 \cdot \ln(\text{living space}) + \beta_2 \cdot \ln(\text{site area}) + \beta_3 \cdot \ln(\text{age}) + \sum_i \beta_i \cdot d(SLV_i) + \varepsilon$$



Scatter plot: existing houses 2016Q4

Scatter plot: existing houses 2016Q4

Regression output: existing houses 2016Q4


Varianzanalyse						
		Summe der				
Quelle	DF	Quadrate	Quadrat	F-Statistik	Pr > F	
Modell	10	4211.37259	421.13726	3634.93	<.0001	
Error	13344	1546.01312	0.11586			
Corrected Total	13354	5757.38571				

Root MSE	0.34038	R-Quadrat	0.7315
Dependent Mean	12.23899	Adj R-Sq	0.7313
Coeff Var	2.78111		

Parameter Estimates							
		Parameter-					Varianz
Variable	DF	schätzer	fehler	t-Wert	Pr > t	Quadrat; Semi-partiell; Korr. Typ I	Inflation
Intercept	1	9.09926	0.05417	167.97	<.0001		0
In_living_space	1	0.59305	0.01095	54.17	<.0001	0.16385	1.21095
In_site_area	1	0.21654	0.00574	37.75	<.0001	0.02601	1.40487
In_age	1	-0.29297	0.00423	-69.19	<.0001	0.08711	1.04408
SLV_1	1	-0.76400	0.00921	-82.94	<.0001	0.18376	1.40435
SLV_2	1	-0.35602	0.00845	-42.14	<.0001	0.11845	1.36256
SLV_4	1	0.35879	0.00827	43.39	<.0001	0.00717	1.35399
SLV_5	1	0.71910	0.01427	50.38	<.0001	0.03344	1.12216
SLV_6	1	0.97752	0.02098	46.59	<.0001	0.03676	1.05612
SLV_7	1	1.22124	0.03755	32.53	<.0001	0.01939	1.01572
SLV_8	1	1.52485	0.02903	52.53	<.0001	0.05554	1.02871

Regression coefficients: existing houses

Hedonic Imputation Method

O Daniel Berkmann - Fotolia.com

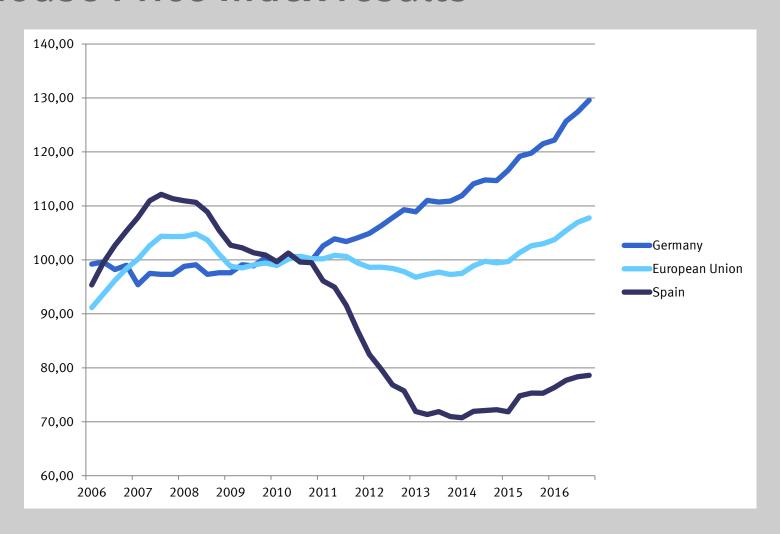
$$\hat{p} = f(X_A, \hat{\beta}_{t=0})$$

$$\hat{p} = f(X_B, \hat{\beta}_{t=0})$$

$$\Rightarrow \hat{p} = f(X_A, \hat{\beta}_{t=1})$$

$$\hat{p} = f(X_B, \hat{\beta}_{t=1})$$

© KB3 - Fotolia.com


Index calculation

- Aggregation on elementary level
 - Jevons-Index, geometric mean
 - Equal weighting of observations

$$I_{t,T}^{Jevons} = \frac{\sqrt[n]{\prod_{n} p_{T}}}{\sqrt[n]{\prod_{n} p_{t}}} = \sqrt[n]{\prod_{n} \frac{p_{T}}{p_{t}}}$$

House Price Index results

The German rental sample for consumer price statistics

- Weight: 21% (CPI, with rental equivalence approach), 10.4% (HICP)
- Size: 20,000 dwellings, stratified according to
 - Type of dwelling
 - Type of landlord
 - Regional dimension
- New recommendation by Eurostat for Quality adjustment
- Quality adjustment approach so far:

Situation	Approach used	Approach recommended	In-line with recommendation?
Modernization	Supported judgmental	Hedonic (A), Bridged overlap, Supported judgmental (B)	✓
Replacement	Index neutrality	Hedonic (A), Bridged overlap (B)	*

=> Need for improvement: hedonic quality adjustment

Surveyed characteristics for rented dwellings

Characteristic	Purpose	Price relevance
Address	Identification	No
Dwelling number	Identification	No
Location of Dwelling in the building	Identification	No
Municipality -> Type of district	Differentiation	Yes
Type of landlord	Differentiation	Yes
Energy consumption/need	Quality	Yes
Quality of residential area	Quality	Yes
Quality of furnishings	Quality	Yes
Date of rental contract	Modification	Yes
Other furnishings: balcony, garage, fitted	Quality	Yes
kitchen		
Type of financing/end of funding period	Differentiation	Yes
Year of construction	Differentiation/Quality	Yes
Living space (m ²)	Differentiation/Quality	Yes

These characteristics should be tested for a price estimation

Hedonic model for rented dwellings

$$\begin{split} \ln p_i &= \beta_0 + \sum_{j=2}^3 \beta_{1j} v_{ij} + \sum_{k=1}^3 \beta_{2k} d_{ik} + \sum_{l \in PR} \beta_{3l} r_{il} + \beta_4 \ln e n_i + \beta_5 e c_i + \sum_{m=2}^4 \beta_{6m} q a_{im} \\ &+ \sum_{n=2}^3 \beta_{7n} q f_{in} + \beta_8 b c_i + \beta_9 g a r_i + \beta_{10} f k_i + \beta_{11} \ln a g e_i + \beta_{12} \ln l s_i \\ &+ \beta_{14} \ln d c_i + \beta_{15} f f_i + u_i \end{split}$$

Continuous variables

- en_i energy consumption or need (kWh/m²*a)
- age_i current age of dwelling in years (today-year of construction)
- ls_i living space (size of dwelling) in m^2
- dc_i duration of rental contract in days (today-concluding date of contract)

Hedonic model for rented dwellings

$$\begin{split} \ln p_i &= \beta_0 + \sum_{j=2}^3 \beta_{1j} v_{ij} + \sum_{k=1}^3 \beta_{2k} d_{ik} + \sum_{l \in PR} \beta_{3l} r_{il} + \beta_4 \ln e n_i + \beta_5 e c_i + \sum_{m=2}^4 \beta_{6m} q a_{im} \\ &+ \sum_{n=2}^3 \beta_{7n} q f_{in} + \beta_8 b c_i + \beta_9 g a r_i + \beta_{10} f k_i + \beta_{11} \ln a g e_i + \beta_{12} \ln l s_i \\ &+ \beta_{14} \ln d c_i + \beta_{15} f f_i + u_i \end{split}$$

Dummy variables

- v_{ij} type of landlord, $j \in \{2,3\}$
- d_{ik} type of district, $k \in \{1,2,3\}$
- r_{il} region (96 planning regions)
- ec_i type of energy performance certificate (consumption)
- qa_{im} quality of residential area, $m \in \{2,3,4\}$

Hedonic model for rented dwellings

$$\begin{split} \ln p_i &= \beta_0 + \sum_{j=2}^3 \beta_{1j} v_{ij} + \sum_{k=1}^3 \beta_{2k} d_{ik} + \sum_{l \in PR} \beta_{3l} r_{il} + \beta_4 \ln e n_i + \beta_5 e c_i + \sum_{m=2}^4 \beta_{6m} q a_{im} \\ &+ \sum_{n=2}^3 \beta_{7n} q f_{in} + \beta_8 b c_i + \beta_9 g a r_i + \beta_{10} f k_i + \beta_{11} \ln a g e_i + \beta_{12} \ln l s_i \\ &+ \beta_{14} \ln d c_i + \beta_{15} f f_i + u_i \end{split}$$

Dummy variables

- qf_{in} quality of furnishing, $n \in \{2,3\}$
- bc_i , gar_i , fk_i dwelling equipped with balcony, garage, fitted kitchen
- ff_i type of financing: free-financed
- u_i residual

Estimation results for the hedonic

model

Number of <i>Länder</i> included	12
Number of observations	16798
Number of observations used for regression	14314
R^2	0.767
R ² adjusted	0.766
Sum of squared residuals	495.5
Standard error of the regression (σ)	0.187

Variables not significant:

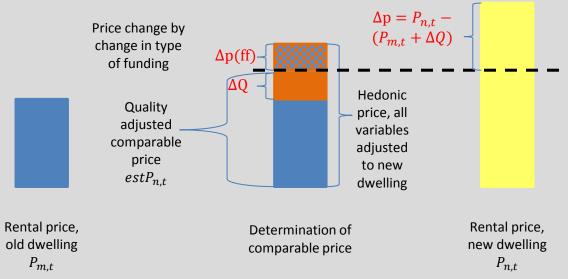
- d_{i3} =>no difference in rents in both types of rural districts
- ec_i =>both ways of calculation of energy performance lead to comparable results
- gar_i => disturbing finding, probably coding error. Coefficient estimated last year used: $\beta(gar_i)$ =0.033

standard error of the regression (o)	0.107				
Variable Variable	Coefficient	Standard Error	Variable	Coefficient	Standard Erro
Type of landlord			Quality of furnishing		
v_{i2}	-0.070***	0.006	$qf_{i,2}$	0.041***	0.004
v_{i3}	0.037***	0.006	$qf_{i,3}$	0.130***	0.007
Regional dimension: type of district			Other furnishings		
d_{i1}	0.137***	0.005	bc_i	0.018***	0.004
d_{i2}	0.042***	0.042	gar_i	-0.006	0.006
Regional dimension: planning region	า		fk_i	0.080***	0.007
$r_{i,910}$	0.424***	0.007	Year of construction (age)		
$r_{i,810}$	0.297***	0.010	age_i	-0.032***	0.003
(52 other regions w	rith significant coeffic	ient)	Living space		
$r_{i,911}$	-0.149***	0.019	ls_i	0.868***	0.006
$r_{i,914}$	-0.220***	0.023	Date of contract (duration)		
Energy consumption/need			dc_i	-0.048***	0.001
en_i	-0.043***	0.004	Type of financing (free-financed)		
Quality of residential area			ff_i	0.134***	0.005
$qa_{i,2}$	0.047***	0.006			
$qa_{i,3}$	0.094***	0.006			
	0.161***	0.009			
$qa_{i,4}$	0.101	0.003			

From regression equation to quality adjustment (1)

Transformation of double-logarithmic estimation results into level results

- Remember: $\ln p_i = \beta_0 + \sum_{j=2}^3 \beta_{1j} v_{ij} + \dots + u_i \Rightarrow e^{\ln p_i} = e^{\beta_0 + \sum_{j=2}^3 \beta_{1j} v_{ij} + \dots + u_i}$
- $E(e^{u_i}) = e^{\frac{\sigma^2}{2}} \neq e^0$ (Wooldridge, 2009, p. 211) => adjustment factor needed
- $\hat{p}_i = \exp(\frac{\sigma^2}{2}) \cdot \exp(\widehat{\ln p_i}) = \alpha_0 \cdot \exp(\widehat{\ln p_i})$
- Three approaches for determination of α_0 :
 - Use of estimated standard error of regression: $\tilde{\alpha}_0 = exp(\frac{\hat{\sigma}^2}{2})$
 - Use of estimated residuals: $\hat{\alpha}_0 = \frac{1}{n} \sum_{i=1}^n exp(\hat{u_i}')$
 - Minimization of sum of squared estimateted residuals:


$$\check{\alpha}_0 = \left(\sum_{i=1}^n exp(\widehat{\ln p_i})^2\right)^{-1} \cdot \left(\sum_{i=1}^n exp(\widehat{\ln p_i}) \cdot p_i\right)$$

- \Rightarrow First approach is used: $\tilde{\alpha}_0 = 1.0175$
- \Rightarrow Without $\tilde{\alpha}_0$, underestimation by 1.8%

From regression equation to quality adjustment (2)

Treatment of variables relevant to the price, but not to the quality

- Type of financing, duration of rental contract
- Remember ceteris paribus comparison: change the quality, keep all other things constant

- ⇒ For quality valuation, keep old value constant
- ⇒ The impact of the change of this variables is seen as price change

From regression equation to quality adjustment (3)

Interpretation of dummy variables in a double-logarithmic estimation

- What happens with dummy variables during re-transformation?
- Easy example, x continuous variable, y dummy variable, no residual: $\ln p_i = \beta_1 \ln x_i + \beta_2 y_i$
- Re-transformation:

$$p_{i} = e^{\beta_{1} \ln x_{i} + \beta_{2} y_{i}} = e^{\beta_{1} \ln x_{i}} \cdot e^{\beta_{2} y_{i}} = x_{i}^{\beta_{1}} \cdot e^{\beta_{2} y_{i}} = \begin{cases} x_{i}^{\beta_{1}} & \text{if } y_{i} = 0 \\ x_{i}^{\beta_{1}} \cdot e^{\beta_{2}} & \text{if } y_{i} = 1 \end{cases}$$

- Dummy variables lead to a multiplicative adjustment of the price estimated with continuous variables
 - Appropriate for characteristics that apply to the dwelling as a whole, e.g. quality of furnishing or quality of area
 - Problematic for characteristics that show a certain feature, e.g. garage

⇒ Awareness of this limitation, but lack of solution

Estimation of ΔQ : difference approach

Value of the quality difference = difference between the estimated prices

- Estimate the price for the old/not modernized dwelling and the new/modernized dwelling with the regression equation
- Value of the quality difference:

$$\Delta Q = estP_{n,t} - estP_{m,t}$$

$$= \alpha_0 * (e^{\beta_0 + \sum \beta_i \ln x_{i,n} + \sum \gamma_j d_{j,n}} - e^{\beta_0 + \sum \beta_i \ln x_{i,m} + \sum \gamma_j d_{j,m}})$$

- + Increases and decreases of the same degree of quality have the same value
- + Value is independent of the price of the good
- Value depends on variables not relevant to quality, but to the price of the good (need to be constant for both estimations)

Estimation of ΔQ : ratio approach

Value of the quality difference expressed by ratio of estimated prices

- Estimate the price for the old/not modernized dwelling and the new/modernized dwelling with the regression equation
- Value of the quality difference:

$$\Delta Q = P_{m,t} * (\frac{estP_{n,t}}{estP_{m,t}} - 1) = P_{m,t} * (e^{\sum \beta_i \ln \frac{x_{i,n}}{x_{i,m}} + \sum \gamma_j (d_{j,n} - d_{j,m})} - 1)$$

- + Value depends not on variables not relevant to quality, but to the price of the good (if constant)
- Value depends on the price of the good
- Increases and decreases of the same degree of quality have
 different values => downward bias of the index

Hedonic for rentals - conclusion

- Difference approach is used
- Introduction of hedonics in German rental statistics:
 - Modernization: between 2016 and 2018
 - Replacement: 2018 => especially important for the inclusion of newly constructed dwellings
- Lessons learned for other projects regarding the "hedonic quality adjustment method"
 - Use of adjustment factor α_0
 - Treatment of variables influencing the price, but not the quality of a product
 - Influence of dummy variables in a double-logarithmic environment
 - Determining the value of the quality difference: use difference of estimated prices, not ratio

THANK YOU FOR YOUR **ATTENTION!**

Timm Behrmann timm.behrmann@destatis.de **Bernhard Goldhammer** bernhard.goldhammer@ecb.europa.eu

