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Abstract

Various fields of economic analysis (e.g., growth and productivity) and economic pol-

icy (e.g., monetary and social policy) rely on accurate measures of price change. Un-

fortunately, the price index formulae that most price statisticians consider as particu-

larly accurate – the superlative indices of Fisher, Törnqvist, and Walsh – are believed

to violate the property of consistency in aggregation. This property, however, is in-

dispensable for economic studies that attempt to disaggregate the overall result into

the contributions of individual entities such as sectors of the economy or groups of

products. The present paper introduces a thoroughly motivated formal definition of

consistency in aggregation and proves that, contrary to general perception, the three

superlative price indices can be considered as consistent in aggregation. Furthermore,

many other price indices are shown to be consistent in aggregation. The theoretical

findings are applied to the Swedish consumer price index.

Keywords: Consisten aggregation, index theory, superlative price index,

decomposition, CPI

JEL classification: C43, E31

1. Introduction

In most fields of applied economic analysis, the diversity of individual changes

must be aggregated into some single number measuring the average change. Promi-

nent examples are the changes in national income, unemployment, money supply, or

prices. To provide additional insights, the computation of the average change is often
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conducted in a two stage procedure, where on the first stage average changes of sub-

groups are computed and on the second stage these individual results are aggregated

into the overall change.

For example, some central banks and many financial analysts decompose the uni-

verse of consumer products into the “core products” (all products except for energy and

seasonal food) and the “non-core products” (energy and seasonal food). The average

price change of the core products is called the core inflation, whereas the average price

change of the non-core products could be denoted as the non-core inflation.

Core inflation is often considered as a measure of the long-run inflation trend, and

therefore, as a key indicator for monetary policy. Averaging the core inflation and the

non-core inflation yields the overall inflation rate of the economy. The overall inflation

rate is often used for indexing various types of contracts and for transforming nominal

values into real values (e.g., national income). The separate compilations of the core

inflation and the non-core inflation reveal how strongly the economy’s current overall

inflation is driven by its long-run inflation trend.1

Alternatively, the overall inflation rate could be directly computed from the com-

plete universe of products, without decomposing this universe into the core products

and the non-core products. This single stage computation is simpler, but provides fewer

insights.

The calculation of an average price change is accomplished by some price index

formula. It is considered as a major advantage of a price index formula, when it com-

putes the same overall inflation, regardless of whether it is applied in a single stage or

two stage calculation. When a price index formula satisfies this postulate, the formula

is denoted as consistent in aggregation.

The notion of consistency in aggregation has been alluded to by van Yzeren (1958).

Vartia (1976a, b) fleshed out this notion and Blackorby and Primont (1980) formalized

and generalized it. Stuvel (1989) and Balk (1995, 1996, 2008) take the position that in

the field of price measurement the general notion proposed by Blackorby and Primont

is not adequate. They suggests to revert to Vartia’s narrow notion. Auer (2004) con-

tests this position and advocates a definition of consistency of aggregation that is more

general than the definition of Balk and Vartia, but less general than that of Blackorby

and Primont. Pursiainen (2005, 2008) provides a rigorous formal treatment of Vartia’s

original notion.

All of these studies agree that consistency in aggregation of a price index not only

1There is a vivid controversy on the rationale for using the core inflation as a yardstick for monetary

policy (e.g., Crone et al., 2013). The present paper, however, is not concerned with this controversy, but

merely uses the notions of core-inflation and non-core inflation to illustrate the process and the benefits of a

two stage computation.
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requires that the single stage and the two stage computations yield the same outcome,

but also that three additional conditions (details are spelled out below) must be satisfied.

In the following, this common view is referred to as the “four consensus conditions” of

consistency in aggregation. As the above dispute suggests, however, endorsement of

the consensus conditions still leaves much space for disagreement.

The present paper’s first main contribution is an attempt to settle this dispute. For

this purpose it develops a thoroughly motivated new definition of consistency in ag-

gregation. It is more general than those proposed by Auer (2004, p. 390), Balk (1995,

p. 85; 1996, pp. 358-60), Pursiainen (2005, p. 21; 2008, p. 18), Stuvel (1989, p. 36),

van Yzeren (1958, p. 432), and Vartia (1976a, pp. 85-89; 1976b, p. 124). The analysis

reveals that several attractive price indices that, hitherto, have been perceived as violat-

ing the consensus conditions, turn out to be fully consistent with these conditions. In

other words, these price indices are consistent in aggregation, and therefore, perfectly

appropriate for multi stage computations in applied empirical analysis.

It would be useful, if among these price indices were a superlative one. The concept

of superlative price indices has been introduced by Diewert (1976). These indices are

often advocated as generating particularly reliable results and being firmly anchored

in economic theory. The most vehemently recommended superlative price indices are

the Fisher, Törnqvist, and Walsh indices. However, these indices have been perceived

as not being consistent in aggregation (e.g., Diewert, 2004a, pp. 349-350; Balk, 2008,

pp. 110-111). The present paper proves that this perception cannot be maintained in

the context of our new definition of consistency in aggregation. This is the second

contribution of this study. As a third contribution it shows that many other price indices

are consistent in aggregation.

This paper is organized as follows. Section 2 provides a more detailed account of

the consensus conditions. Section 3 leaves the field of price indices and develops a

precise mathematical definition of consistent aggregation rules. In Section 4 we re-

turn to the analysis of price indices and provide a rigorous mathematical definition of

price indices. In Section 5 we apply this definition to a multi stage computation of

the Swedish consumer price index. The results suggest that superlative price indices

may well be consistent in aggregation. Section 6 connects the theoretical concepts de-

veloped in Sections 3 and 4. It presents a rigorous mathematical definition of a price

index that is consistent in aggregation. In Section 7 we examine whether superlative

price indices exist that are consistent in aggregation. In Section 8 we show that many

(non-superlative) price indices are consistent in aggregation. An application to the

Swedish price data is presented in Section 9. For practical price measurement purposes

additional requirements can be attached to our definition of consistency in aggregation.

Section 10 explains these requirements, examines which price index formulae satisfy
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these requirements, and relates the new definition of consistency in aggregation to al-

ternative definitions proposed in the literature. Concluding remarks are contained in

Section 11.

2. Two Stage Computation of Price Changes

In an economy a vast number of goods and services are sold. The prices of these

“items” change over time. A price index attempts to measure the items’ average price

change between a base and a comparison period. It is assumed that during both periods

all N items are available and that their prices and quantities are correctly recorded. Let

D denote the finite set containing the N items’ prices and quantities. A price index

formula P (e.g., Laspeyres index) is usually considered as a function that maps the

recorded prices and quantities into a single positive number that indicates the N items’

average price change.

The single stage computation of the overall price change applies a given price in-

dex formula P to the complete set D. In contrast, a two stage computation starts by

partitioning the set D into several subsets Dk. For each of these subsets a price index

Pk is computed. In the second stage of this two stage procedure, the numbers Pk are

aggregated into the overall price change. Such a two stage computation provides im-

portant additional insights, because it allows to identify the individual forces driving

the overall result. Of course, the single stage and the two stage computations should be

“consistent”. The precise meaning of “consistency”, however, is difficult to define.

As pointed out before, some consensus conditions exist that spell out the meaning

of consistency in more detail. These consensus conditions relate only to price indices P
that are continuous in the prices and quantities (continuity axiom) and that are invariant

with respect to changes in the units in which the quantities are measured (commensu-

rability axiom).2 For such price indices the consensus conditions specify how a two

stage computation should be conducted and how it should relate to the single stage

computation (e.g., Auer, 2004, p. 385; Balk, 1995, p. 85; Balk, 1996, pp. 358-59; Balk,

2008, pp. 108-109; Vartia, 1976b, p. 124):

(i) For all possible partitions of the set D, the two stage computation of the overall price

change of D must yield the same index number as the single stage computation.

(ii) On both stages of the two stage computation the “same index formula” must be

2There is a large body of literature discussing the axioms a sensible price index formula should satisfy.

In his comprehensive survey Diewert (2004b, pp. 293-294) points out that the continuity axiom is informally

discussed in Fisher (1922, pp. 207-215) and that the commensurability axiom can be traced back to Jevons

(1865, p. 23) and Pierson (1896, p. 131).
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applied as in the single stage computation (only the number of variables can be

different).

(iii) In the first stage of the two stage computation, for each subset Dk, a price index

number Pk and one or more aggregate values are computed. The price index

numbers Pk and the aggregate value(s) depend only on the prices and quantities

of the items in subset Dk.

(iv) In the second stage of the two stage computation, the index number for the com-

plete set D depends only on the index numbers Pk and the aggregate values

computed in the first stage computations.

Unfortunately, these consensus conditions leave much space for ambiguity and dis-

agreement. It is therefore necessary to transform the four consensus conditions into a

thoroughly motivated formal definition of consistency in aggregation. As a preliminary

step we develop the notion of a consistent aggregation rule.

3. Consistent Aggregation Rules

An aggregation rule is a procedure which aggregates a finite set of data into a single

datum. The paradigmatic example is the sum of finitely many numbers (or vectors)

where, for each size of the data set, the procedure has the “same functional form”.

Formally, the expression “same functional form” does not make much sense as, e.g.,

the maps A2 : R2 → R, (d1, d2) �→ d1 + d2 and A3 : R3 → R, (d1, d2, d3) �→ d1 + d2 + d3

have different domains, and therefore, are totally different objects. The link between

A2 and A3 is the law of associativity

A3(d1, d2, d3) = A2(A2(d1, d2), d3) = A2(d1, A2(d2, d3)) ,

for all d1, d2, d3 ∈ R. As we will see, consistency of an aggregation rule is just a slight

generalization.

Let I be any set of possible data d (typically belonging to some Rk).

Definition 1. An aggregation rule for the set I is a sequence A = (An)n∈N of maps

An : In → I , (d1, . . . ,dn) �→ An(d1, . . . ,dn)

with A1(di) = di for all di ∈ I.

However, Definition 1 covers also meaningless aggregation rules such as

An(d1, . . . ,dn) = d1. To come closer to the intuitive idea of a meaningful aggrega-

tion rule, one needs further properties. In the first place, a meaningful aggregation rule
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requires that the ordering of the data vector (d1, . . . ,dn) ∈ In is irrelevant, that is, An are

symmetric. Secondly, one would expect that the aggregation of (d1, . . . ,dn) ∈ In in one

step, An(d1, . . . ,dn), yields the same result as the following procedure: (1) (d1, . . . ,dn)

is partitioned into two arbitrary “groups” (d1, . . . ,dm) ∈ Im and (dm+1, . . . ,dm+k) ∈ Ik,

with n = m + k; (2) Am(d1, . . . ,dm) and Ak(dm+1, . . . ,dm+k) are computed; (3) these

results are treated as new data and aggregated by A2.

These two requirements for a meaningful aggregation rule can be summarized in

the following definition:

Definition 2. An aggregation rule A = (An)n∈N is consistent, if it is symmetric and

An(d1, . . . ,dn) = A2(Am(d1, . . . ,dm), Ak(dm+1, . . . ,dm+k)) , (1)

for all m, k ∈ N with n = m + k, (d1, . . . ,dm) ∈ Im, and (dm+1, . . . ,dn) ∈ Ik.

As another example of an aggregation rule for I = R consider the calculation of a

product:

An(d1, . . . , dn) =

n∏
i=1

di , (2)

with d1, . . . , dn ∈ R. This aggregation rule is symmetric. Since for all m, n ∈ N,

n∏
i=1

di = (d1 · . . . · dm) · (dm+1 · . . . · dn) ,

the aggregation rule also satisfies condition (1). Therefore, it is a consistent aggregation

rule.

Recall that a binary operation ⊕ on I, i.e. a function I2 → I, (d1,d2) �→ d1 ⊕ d2, is

commutative and associative, if d1 ⊕ d2 = d2 ⊕ d1 and (d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3)

for all d1, d2, d3 ∈ I.

Proposition 1. A = (An)n∈N is a consistent aggregation rule for I, if and only if some
commutative and associative binary operation ⊕A exists, such that

An(d1, . . . ,dn) = d1 ⊕A d2 ⊕A · · · ⊕A dn , (3)

for all n ∈ N and d1, . . . ,dn ∈ I. For n = 1, the right hand side of (3) is interpreted as
d1.3

3This proposition resembles Theorem 1 in Pursiainen (2008, p. 8).
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Proof: For proving the necessity of (3) assume that A is consistent and define d1⊕Ad2 =

A2(d1,d2). The symmetry of A2 precisely means commutativity of ⊕A. Associativity

of ⊕A follows from

(d1 ⊕A d2) ⊕A d3 = A2((A2(d1,d2), A1(d3))

= A3(d1,d2,d3)

= A2(A1(d1), A2(d2,d3))

= d1 ⊕A (d2 ⊕A d3) .

The representation for the general case An is shown by induction on n ∈ N. For n = 1,

it follows from A1(d j) = d j. If the necessity of (3) is true for some n ∈ N we get

An+1(d1, . . . ,dn+1) = A2((An(d1, . . . ,dn), A1(dn+1))

= An(d1, . . . ,dn) ⊕A dn+1

= (d1 ⊕A · · · ⊕A dn) ⊕A dn+1 .

It is obvious that the existence of a commutative and associative binary operation

⊕A that satisfies (3) is sufficient for A = (An)n∈N to be a consistent aggregation rule. �

Multiplication is a commutative, and associative binary operation ⊕ of form (3).

This confirms that (2) is a consistent aggregation rule.

There is a simple but nevertheless quite general method to produce consistent ag-

gregation rules or, conversely, to prove consistency of some given aggregation rule. It

utilizes the concept of a “quasi-sum”.

Definition 3. Let M ⊆ Rk be a set which is stable under addition (i.e., m1 +m2 ∈ M
for all m1,m2 ∈ M). If Φ : I → M is any invertible map with inverse Φ−1 : M → I, we

define a quasi-sum of d1, . . . ,dn ∈ I by setting

d1 ⊕ · · · ⊕ dn = Φ
−1

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

Φ (di)

⎤⎥⎥⎥⎥⎥⎦ . (4)

Proposition 2. In the situation of Definition 3 the aggregation rule

An(d1, . . . ,dn) = d1 ⊕ · · · ⊕ dn

is consistent.
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Proof: In view of Proposition 1 it is to be shown that the binary operation ⊕ defined by

(4) is commutative and associative. Commutativity of ⊕ is obvious. For n = 3 one gets

(d1 ⊕ d2) ⊕ d3 = Φ
−1

[
Φ

[
Φ−1 [Φ (d1) + Φ (d2)]

]
+ Φ(d3)

]
= Φ−1 [Φ (d1) + Φ (d2) + Φ(d3)] (5)

= Φ−1
[
Φ (d1) + Φ

[
Φ−1 [Φ (d2) + Φ(d3)]

]]
= d1 ⊕ (d2 ⊕ d3) ,

which is associativity. �

It follows from Equation (5) that an aggregation rule A satisfies (4), if and only if

Φ(An(d1, . . . ,dn)) =

n∑
i=1

Φ(di) for all n ∈ N . (6)

An aggregation rule that satisfies Equation (6) is denoted here as quasi-additive.4

Proposition 2 says that quasi-additive aggregation rules are consistent. In order to ver-

ify that a given aggregation rule A is consistent, it is therefore sufficient to find some

invertible map Φ : I → M such that Equation (6) holds for all n ∈ N and di ∈ I.

Of course, the simple summation is additive and therefore also quasi-additive with

Φ (d) = d. As another example, consider aggregation rule (2). For I = R>0 it is

consistent, because with Φ (d) = log d Equation (6) is satisfied:

log

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

di

⎞⎟⎟⎟⎟⎟⎠ = n∑
i=1

log di .

We have emphasized the similarity between consistent aggregation rules and the

sum or product of numbers or vectors. Aggregating a finite set of data to a kind of

average or “typical value” is an alternative form of aggregation. A simple example is

the arithmetic mean

An(d1, . . . , dn) =
1

n

n∑
i=1

di , (7)

for d1, . . . , dn ∈ R. Although symmetric, this aggregation rule fails to be consistent,

because it is not associative:

1

3
(d1 + d2 + d3) �

1

2

[
1

2
(d1 + d2) + d3

]
,

4There is quite some literature on the question which aggregation rules are quasi-additive. A good

overview is given in the dissertation of Pursiainen (2005).
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except for special cases.

However, the aggregation rule

An((d1,w1), . . . , (dn,wn)) =

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

wi

⎞⎟⎟⎟⎟⎟⎠
−1 n∑

i=1

widi ,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

overcomes this problem. By “inflating” the set I from R to R × R>0 the aggregation

rule becomes a function of
∑n

i=1 widi and
∑n

i=1 wi. With Φ(d) = Φ (d,w) = (wd,w) we

get

Φ(An(d1, . . . ,dn)) = Φ

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

wi

⎞⎟⎟⎟⎟⎟⎠
−1 n∑

i=1

widi ,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

wi

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎠
−1 n∑

i=1

widi ,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

widi ,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎠
=

n∑
i=1

(widi,wi)

=

n∑
i=1

Φ(di) .

This verifies that aggregation rule (8) satisfies (6). Therefore, it is consistent. The

relation between (7) and (8) is that the arithmetic mean (7) is the first component of

An((d1, 1), . . . , (dn, 1)). This shows how consistency is only achieved after augmenting

the original aggregation rule.

Another simple example is the geometric mean

An(d1, . . . , dn) =

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

di

⎞⎟⎟⎟⎟⎟⎠
1/n

, (9)

for d1, . . . , dn ∈ R>0. Since

(d1d2d3)1/3 �
[
(d1d2)1/2 d3

]1/2
,

this aggregation rule is not associative. However, the aggregation rule

An((d1,w1), . . . , (dn,wn)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ n∏

i=1

dwi
i

⎞⎟⎟⎟⎟⎟⎠
1/

∑n
i=1 wi

,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10)
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is a function of
∏n

i=1dwi
i and

∑n
i=1 wi. With Φ(d) = Φ (d,w) =

(
w log d,w

)
we get

Φ(An(d1, . . . ,dn)) = Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ n∏

i=1

dwi
i

⎞⎟⎟⎟⎟⎟⎠
1/

∑n
i=1 wi

,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

wi

⎞⎟⎟⎟⎟⎟⎠ log

⎛⎜⎜⎜⎜⎜⎝ n∏
i=1

dwi
i

⎞⎟⎟⎟⎟⎟⎠
1/

∑n
i=1 wi

,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

wi log di ,

n∑
i=1

wi

⎞⎟⎟⎟⎟⎟⎠
=

n∑
i=1

(
wi log di , wi

)
=

n∑
i=1

Φ(di) .

This establishes consistency of aggregation rule (10). Then, the geometric mean (9) is

the first component of An((d1, 1), . . . , (dn, 1)) and n is its second component.

4. Price Indices and Their Attributes

Price index formulae, too, are maps that compute some kind of average, namely

the “overall price change”. Therefore, one can attempt to transform them into a con-

sistent aggregation rule. As a preliminary step, the concept of primary and secondary

attributes of a price index must be introduced. The actual transformation of a price

index into a consistent aggregation rule is deferred to Section 6.

Let S denote the set of integers i = 1, . . . ,N, where each integer represents one

of the N items of an economy. All items are available during the base period (t = 0)

and the comparison period (t = 1). The period t vector of prices is denoted by pt =

(pt
1
, . . . , pt

N), and the corresponding vector of quantities by xt = (xt
1
, . . . , xt

N). It is

customary to interpret a price index as a mapping of the N-dimensional vectors p0, x0,

p1, and x1 into a single positive number, P′(p0, x0,p1, x1).

In practical work, the prices and quantities p0
i , x0

i , p1
i , and x1

i are usually not known.

Instead, only the expenditures v0
i = p0

i x0
i and v1

i = p1
i x1

i as well as the price ratios

ri = p1
i /p

0
i are available.5 However, this does not represent a confinement as long

as the applied price index formulae satisfy the commensurability axiom. This axiom

postulates that

P′
(
p0Λ, x0Λ

−1
,p1Λ, x1Λ−1

)
= P′(p0, x0,p1, x1) ,

5In the price statistics literature, the variables v0
i and v1

i are usually denoted as “values”. However, in the

present paper the term “value”would have multiple meanings. To avoid confusion, we denote the variables

v0
i and v1

i as “expenditures”.
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where Λ is some arbitrary N × N diagonal matrix with positive entries λi (e.g., Auer,

2004, pp. 386-387). For a price index that satisfies this axiom, the information in the

four vectors p0, x0, p1, and x1 is equivalent to the information contained in the three

vectors r = (r1, . . . , rN), v0 = (v0
1
, . . . , v0

N), and v1 = (v1
1, . . . , v

1
N). Therefore, we get

P′(p0, x0,p1, x1) = P′(1, v0, r, v1/r) = P(r, v0, v1), where 1 = (1, . . . , 1). This is the

commensurability for λi = 1/p0
i .

As an example, consider the Walsh index:

P′Wa(p0, x0,p1, x1) =

∑
i∈S p1

i

√
x0

i x1
i∑

i∈S p0
i

√
x0

i x1
i

.

This price index satisfies the commensurability axiom. Therefore, it can be written in

the following form:

PWa(r, v0, v1) =
∑
i∈S

ri

√
v0

i v1
i /ri∑

j∈S
√

v0
j v

1
j/r j

. (11)

Just like the Laspeyres index,

PLa(r, v0, v1) =
∑
i∈S

ri
v0

i∑
j∈S v0

j

,

the Walsh index can be interpreted as a weighted arithmetic mean of the price ratios,

ri, where the weights represent expenditure weights. However, whereas the Laspeyres

weights use only base period expenditures, v0
i , the weights of the Walsh index are

geometric means of the base period expenditures, v0
i , and the “deflated” comparison

period expenditures, v1
i /ri.

It is well known that all sensible price index formulae satisfy the commensurability

axiom (e.g., Auer, 2004, p. 393). Therefore, any sensible price index can be written in

the form P(r, v0, v1) and we can take J = R3
>0

as the set of possible data, (ri, v0
i , v

1
i ), for

every item i.
It is customary to interpret a price index formula as a rule that aggregates a finite set

of data (r, v0, v1) ∈ JN into a single datum P(r, v0, v1) ∈ R>0, where it is understood that

for each size of the data set, this mapping has the “same functional form”. As pointed

out before, the expression “same functional form” is not quite appropriate, because

these mappings have different domains, and therefore, are totally different objects. As a

consequence, the customary definition of a price index formula is not fully satisfactory.

To account for different domains, we introduce the following definition of a price index

(see also Definition 3.1 in Pursiainen, 2005, p. 21).

11



Definition 4. A price index P for J = R3
>0

is a sequence P = (Pn)n∈N of symmetric and

continuous maps

Pn : Jn → R>0 , (r, v0, v1) �−→ Pn(r, v0, v1) ,

with P1(ri, v0
i , v

1
i ) = ri for all (ri, v0

i , v
1
i ) ∈ J.

The primary purpose of a price index formula is the computation of the overall price

change P of the items in set S , given the data set (r, v0, v1) ∈ JN . Restricting the set S
to a single item i, the “overall price change” should be the item’s price ratio, ri = p1

i /p
0
i .

Therefore, the price ratio ri is denoted here as the primary attribute of a price index.

A price index can be interpreted as a transformation of the primary attribute’s values r
into some aggregate value Pn. However, the value of Pn depends not only on r, but also

on v0 and v1. Therefore, we denote v0
i and v1

i as secondary attributes. More generally,

secondary attributes are defined in the following way:

Definition 5. A vector valued secondary attribute is a mapping

z =
(
z1, . . . , zQ

)
: J → M ⊆ RQ

>0
,

where Q ≥ 1 and J = R3
>0

is the set containing the original data (r, v0, v1).

This definition implies that a secondary attribute’s value corresponding to some

item i, zq
i (q = 1, . . . ,Q), exclusively depends on (ri, v0

i , v
1
i ). A price index can have

alternative vectors of secondary attributes. For example, the Walsh Index (11) is

a function of the primary attribute, ri, and the secondary attribute zi =
(
z1

i , z
2
i

)
=(

v0
i , v

1
i

)
. However, this index can be written also with a single secondary attribute:

zi =

√
v0

i v1
i /ri.

Before we move on to develop a rigorous definition of consistency in aggregation

of price indices, we present an empirical application of a two stage price index compu-

tation.

5. Application to Swedish Price Data: Part A

The underlying data of this empirical application have been acquired from Statistics

Sweden. They cover the base year 2010 (t = 0) and the comparison year 2011 (t = 1).

The informational set is (r, v0, v1) ∈ J360 where the elements v0
i and v1

i are annual

household expenditures on 360 basic headings i and the elements ri are the respective

12



price ratios. As pointed out before, for the purpose of computing a price index, this

informational set is as good as the set
(
p0, x0,p1, x1

)
.

Both the expenditure and price data are disaggregated at the four-digit level

COICOP classification. Table 1 shows an excerpt of the original data set. It lists

for each basic heading i the COICOP number, the product group number, the product

name, the price ratio ri, and the expenditures v0
i and v1

i . The last column can be ignored

for the moment.

Table 1: Numerical Illustration∗ - Two-Stage Aggregation of Walsh Index

Basic Heading Information Sec. Attrib.

i Coicop Group Product ri v0
i v1

i zi =

√
v0

i v1
i /ri

C
o
r
e
in
fl
at
io
n

(S
1
)

1 01.1.1 1113 Wheat Bread 1.0333 1524 1562 1517.8

2 01.1.1 1114 Danish Pastry 1.0318 203 208 202.3

3 01.1.1 1116 Cookies 1.0131 664 676 665.6

...
...

...
...

...
...

...
...

76 03.1 3206 Men Jacket 1.0774 3505 3571 3408.4

...
...

...
...

...
...

...
...

301 12.7 9704 Lawyer Fees 1.0282 1067 1085 1061.1

PWa
1
= 1.0264 Z1 = 1 257 744.8

N
o
n
-C
o
r
e
in
fl
at
io
n

(S
2
)

302 01.1.3 1307 Herring 1.0438 155 128 137.9

303 01.1.3 1314 Cod 0.9234 272 164 219.8

...
...

...
...

...
...

...
...

312 01.1.6 1617 Pears 0.9446 501 469 498.7

313 01.1.6 1618 Apples 1.0455 1354 1775 1516.2

...
...

...
...

...
...

...
...

356 04.5.x 4702 Fuel Oil 1.1278 2150 1765 1834.3

...
...

...
...

...
...

...
...

360 07.2.2 6225 E 85 Fuel 1.0479 1205 1245 1196.5

PWa
2
= 1.0355 Z2 = 178 317.6

∗ Source: Statistics Sweden, Consumer Price Index Data for 2010-2011.

In 2005, Statistics Sweden implemented the Walsh index (11) for the compilation

of its consumer price index (for details see Bäckström and Sammar, 2012, p. 2). There-

fore, the same price index is used here. A single stage computation of the Walsh index

13



(11) yields the index number PWa = 1.0275, that is, an overall inflation of 2.75%.6

For the two stage computation, the 360 items are partitioned into the two subsets S 1

(core inflation) and S 2 (non-core inflation), where the items i = 1, 2, .., 301 are assigned

to the subset S 1 while the items i = 302, . . . , 360 are assigned to the subset S 2. An

item’s price ratio, ri, is defined as its primary attribute and the term zi =

√
v0

i v1
i /ri is

chosen as the only secondary attribute of the Walsh index (therefore, at zi no superscript

is necessary). For each item i the value of its primary attribute is listed in Table 1 in

the column with the heading ri while the value of its secondary attribute zi =

√
v0

i v1
i /ri

is listed in the last column.

For each subset the value of its primary attribute (PWa
1

and PWa
2

) is computed by the

Walsh index formula

PWa
k =

∑
i∈S k

ri
zi∑

j∈Ak
z j
. (12)

This yields PWa
1
= 1.0264 and PWa

2
= 1.0355. In other words, the Swedish core inflation

is 2.64%, while the non-core inflation is 3.55%. Recall that the overall inflation rate

was 2.75%, that is, slightly larger than the core inflation rate. Note that formula (12) is

the same as (11), the formula applied for the single stage computation. The aggregate

values of the secondary attributes are

Z1 =
∑
i∈S 1

zi = 1 257 744.8 and Z2 =
∑
i∈S 2

zi = 178 317.6 .

These two numbers are also listed in Table 1.

The second stage index formula is

PWa =

K∑
k=1

PWa
k

Zk∑K
l=1 Zl

, (13)

with K = 2. This is again the same basic formula as in the single stage computation. In-

serting the results of the first stage computations
(
PWa

1
,Z1

)
and

(
PWa

2
,Z2

)
in the second

stage formula (13) yields the two stage index number PWa = 1.0275. This is exactly the

same index number as in the single stage computation (12). Furthermore, the Walsh

index (12) seems to satisfy all of the four consensus conditions. This suggests that the

Walsh index might be consistent in aggregation.

This is a remarkable conjecture, because “... something resembling a consensus has

emerged in the index number literature that inflation and growth should be measured

using superlative index number formulae ... (Hill, 2006, p. 27)”. The Walsh index is

6Our data and our price index formulae are not completely equivalent to the data and methodology un-

derlying the compilation of the official Swedish consumer price index.
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one of the three advocated superlative price indices, the others being the Fisher index,

PFi =

⎛⎜⎜⎜⎜⎝
∑

i∈S v0
i ri∑

i∈S v0
i

∑
i∈S v1

i∑
i∈S v1

i /ri

⎞⎟⎟⎟⎟⎠1/2

, (14)

and the Törnqvist index,

ln PTö =
∑
i∈S

ln (ri)
1

2

⎛⎜⎜⎜⎜⎜⎝ v0
i∑

j∈S v0
j

+
v1

i∑
j∈S v1

j

⎞⎟⎟⎟⎟⎟⎠ . (15)

The concept of superlative price indices was introduced by Diewert (1976). A price

index receives the title “superlative”, if an aggregator function (utility function or ex-

penditure function) with a “flexible” functional form exists, such that its corresponding

cost of living index yields the same result as the price index. An aggregator func-

tion is “flexible”, if it can provide a second-order approximation to an arbitrary twice

differentiable linearly homogeneous aggregator function.

It is well known that the superlative indices of Walsh, Fisher, and Törnqvist pos-

sess a number of desirable properties and that they approximate each other closely

(e.g., Hill, 2006, p. 27). However, there is a general perception that none of these su-

perlative price indices is consistent in aggregation (e.g., van Yzeren, 1958, p. 432-433;

Diewert, 1978, p. 889; Diewert, 2004a, p. 349-350; Auer, 2004, p. 397; Balk, 2008, pp.

107-108). Even though Diewert (1978, p. 889) shows that these indices are “approxi-

mately consistent in aggregation”, empirical studies that conduct a multi stage analysis

usually avoid superlative price indices. Apparently, a superlative index that is merely

approximately consistent in aggregation, is not considered as suitable for a multi stage

analysis. The empirical application of the present paper suggests that, contrary to gen-

eral perception, at least one of the (superlative) indices is consistent in aggregation. In

the remaining sections, this conjecture is verified.

6. Consistent Aggregation of Price Indices

A price index P in the sense of Definition 4 is not an aggregation rule in the sense

of Definition 1, because the maps Pn have values in R>0 instead of J = R3
>0

. However,

a price index formula P can be transformed to become an aggregation rule in the sense

of Definition 1. The first step is to transform the original data set:
(
ri, v0

i , v
1
i

)
�−→ di =

(ri, zi) ∈ I = R>0×M ⊆ RQ
>0

, i = 1, . . . , n, where z : J → M is a secondary attribute and

zi = z
(
ri, v0

i , v
1
i

)
. In a second step, an aggregation rule must be specified in the sense of

Definition 1, An (d1, . . . ,dn).

For example, the Walsh index (11) can be transformed into an aggregation rule

AWa
n (d1, . . . ,dn) with di = (ri, zi) and zi = zi =

√
v0

i v1
i /ri. This aggregation rule has
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two components. The first one is the price index formula (11). It maps the data set In

into R>0, that is, into some aggregated value of the primary attribute. This aggregate

value depends on the individual values of the primary and secondary attribute. The

aggregation rule’s second component is a mapping that transforms the individual values

of the secondary attribute zi into some aggregate value
∑n

i=1 zi. This aggregate value

exclusively depends on the individual values of the secondary attribute. Finally, the

two components are combined to

AWa
n (d1, . . . ,dn) =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

ri
zi∑n

j=1 z j
,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ , (16)

with di = (ri, zi) = (ri, zi) =
(
ri,

√
v0

i v1
i /ri

)
. The maps AWa

n form an aggregation rule

A for I = R2
>0 in the sense of Definition 1. The superscript “Wa” emphasizes that this

aggregation rule corresponds to the Walsh Index.

As a second example, consider the Fisher index (14) and define the secondary at-

tribute zi =
(
z1

i , z
2
i , z

3
i , z

4
i

)
=

(
v0

i , v
1
i , v

0
i ri, v1

i /ri

)
. The Fisher index PFi can be transformed

into the aggregation rule

AFi
n (d1, . . . ,dn) =

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
∑n

i=1 z3
i∑n

i=1 z1
i

∑n
i=1 z2

i∑n
i=1 z4

i

⎞⎟⎟⎟⎟⎠1/2

,

n∑
i=1

z1
i ,

n∑
i=1

z2
i ,

n∑
i=1

z3
i ,

n∑
i=1

z4
i

⎞⎟⎟⎟⎟⎟⎟⎠ , (17)

with di = (ri, zi) =
(
ri, z1

i , z
2
i , z

3
i , z

4
i

)
=

(
ri, v0

i , v
1
i , v

0
i ri, v1

i /ri

)
.7 This aggregation rule has

five components. The first one is the price index formula (14). In contrast to the first

component of AWa
n , the first component of AFi

n does not depend on the values of the

primary attribute, but only on the values of the secondary attribute zi.

In Definitions 4 and 5 a price index P and its secondary attribute z were defined.

Consistency of an aggregation rule was defined in Definition 2. Building on these three

Definitions, we define consistency of aggregation of a price index formula P with an

explicit reference to its secondary attribute:

Definition 6. A price index P = (Pn)n∈N is consistent in aggregation with respect to a

secondary attribute z : J → M, if there is a consistent aggregation rule A = (An)n∈N for

I = R>0 × M with continuous An such that Pn(r, v0, v1) with (r, v0, v1) ∈ Jn is the first

component of An (d1, . . . ,dn) for all n ∈ N and di = (ri, zi) ∈ I with i = 1, . . . , n, where

zi = z
(
ri, v0

i , v
1
i

)
.

This definition emphasizes the continuity of the consistent aggregation rule A. In

7We owe this insight to Bjørn Kjos-Hanssen.
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the Appendix (Proposition 7) it is shown that a neglect of continuity has absurd conse-

quences.

In Definition 6 the phrase “with respect to a secondary attribute z” is important,

because the definition allows for a wide range of possible secondary attributes and not

all of them may appear appealing. Different views on what constitutes an admissable

secondary attribute have given rise to a wide variety of definitions of consistency in

aggregation (discussed in Section 10). However, a discussion of what constitutes an

admissable secondary attribute, is deferred to Section 10. For the time being, we ex-

amine whether price indices exist that are consistent in aggregation with respect to

some secondary attribute z in the broad sense of Definition 6. We begin with the three

superlative price indices (Fisher, Törnqvist, Walsh).

7. Consistency of Superlative Price Indices

To prove that some price index is consistent in aggregation with respect to some

z one has to transform the price index in an aggregation rule that is consistent. For

example, consider again the weighted arithmetic mean defined by (8). We know that

this aggregation rule is consistent. The transformed Walsh index (16) is a special case

of (8) with di = ri and wi = zi =

√
v0

i v1
i /ri. The first component of (16) is the

Walsh index PWa
n (r, v0, v1). Therefore, the Walsh index is consistent in aggregation

with respect to the secondary attribute zi =

√
v0

i v1
i /ri.

For some aggregation rules, Proposition 2 provides an elegant route to prove the

rule’s consistency. A similar route exists for proving that a price index is consistent in

aggregation with respect to some secondary attribute z.

Proposition 3. Let P = (Pn)n∈N be a price index with a secondary attribute z : J →
M ⊆ RQ

>0
, where M is stable under addition. Set I = R>0 × M and assume that there

is a continuous function f : I → L (where L is either R>0 or R) such that, for each
m ∈ M, the partial function r �→ f (r,m) is invertible on R>0 and that

f

⎛⎜⎜⎜⎜⎜⎝Pn

(
r, v0, v1

)
,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ = n∑
i=1

f (ri, zi) (18)

for all n ∈ N, (r, v0, v1) = (ri, v0
i , v

1
i )i≤n ∈ Jn, and zi = z

(
ri, v0

i , v
1
i

)
. Then P is consistent

in aggregation with respect to z.

Proof: We define Φ : I → L × M by Φ(r,m) = ( f (r,m),m). The invertibility of

r �→ f (r,m) implies that Φ is also invertible. For di = (ri,mi), we can define the
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quasi-sum

d1 ⊕A d2 = Φ
−1(Φ(d1) + Φ(d2)) .

It follows from Proposition 2 that An(d1, . . . ,dn) = d1 ⊕A · · · ⊕A dn is a consistent

aggregation rule for I. The continuity of f implies that of An. It is left to be shown that

Pn

(
r, v0, v1

)
is the first component of An(d1, . . . ,dn). Using the definition of Φ and the

assumptions on f , we have

Φ

⎛⎜⎜⎜⎜⎜⎝Pn

(
r, v0, v1

)
,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝ f

⎛⎜⎜⎜⎜⎜⎝Pn

(
r, v0, v1

)
,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ , n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

f (ri, zi) ,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠
=

n∑
i=1

( f (ri, zi) , zi)

=

n∑
i=1

Φ(di) .

This gives ⎛⎜⎜⎜⎜⎜⎝Pn

(
r, v0, v1

)
,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ = Φ−1

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

Φ(di)

⎞⎟⎟⎟⎟⎟⎠
= d1 ⊕A · · · ⊕A dn

= An(d1, . . . ,dn) ,

as required. �

Utilizing Proposition 3, it is easy to show the first part of the following result:

Proposition 4. The Walsh index (11) is consistent in aggregation with respect to the
secondary attribute z =

√
v0v1/r. The Fisher index (14) is consistent in aggregation

with respect to the secondary attribute z =
(
v0, v1, v0r, v1/r

)
.

Proof: Multiplying both sides of Equation (11) by
∑N

j=1

√
v0

j v
1
j/r j, the Walsh index,

PWa
n , can be expressed as in Equation (18) with

f

⎛⎜⎜⎜⎜⎜⎝PWa
n (d1, . . . ,dn) ,

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ = PWa
N (d1, . . . ,dn)

N∑
i=1

√
v0

i v1
i /ri

and

f (di) = f
(
ri,

√
v0

i v1
i /ri

)
= ri

√
v0

i v1
i /ri .
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The function f satisfies the assumptions stated in Proposition 3. For the Fisher index,

PFi
n , it suffices to point out that aggregation rule (17) is consistent and satisfies the

properties stated in Definition 6. �

The Törnqvist index (15) is another prominent superlative price index. It turns

out that this index is consistent in aggregation with respect to the secondary attribute

z = (r, v0, r, v1). To show this, we write this index in the following form:

PTö =
√

P̂P̃

with

ln P̂ =
∑
i∈S

ln(ri)
v0

i∑
j∈S v0

j

and ln P̃ =
∑
i∈S

ln(ri)
v1

i∑
j∈S v1

j

.

These two simpler indices are consistent in aggregation with respect to z = v0

and z = v1, respectively (as is easily seen by Proposition 3 with f (di) = zi ln ri).

Consistency in aggregation of the Törnqvist index is thus implied by the following:

Proposition 5. Let P̂ and P̃ be two price indices which are consistent in aggregation
with respect to the secondary attributes ẑ : J → M̂ and z̃ : J → M̃ and corresponding
aggregation rules Ân (̂d1, . . . , d̂n) = d̂1⊕̂ · · · ⊕̂ d̂n and Ãn (̃d1, . . . , d̃n) = d̃1⊕̃ · · · ⊕̃ d̃n.

Then the geometric mean Pn =

√
P̂nP̃n and the arithmetic mean Pn =

(
P̂n + P̃n

)
/2 are

consistent in aggregation with respect to z(r, v0, v1) =
(
r, ẑ(r, v0, v1), r, z̃(r, v0, v1)

)
.

Proof: We show the statement for the geometric mean. Given

d j =
(
r j, x̂ j, m̂ j, x̃ j, m̃ j

)
∈ Î = R>0 × R>0 × M̂ × R>0 × M̃,

we set

â =
(
x̂1, m̂1

) ⊕̂ (
x̂2, m̂2

)
and ã =

(
x̃1, m̃1

) ⊕̃ (
x̃2, m̃2

)
and define

d1 ⊕ d2 =

(√
π1

(̂
a
)
π1

(̃
a
)
, â , ã

)
,

where π1 (·) denotes the first component of a vector. The aggregation rule

An(d1, . . . ,dn) = d1 ⊕ · · · ⊕ dn is consistent by Proposition 1, since commu-

tativity and associativity of ⊕̂ and ⊕̃ transfer to ⊕. Moreover, it is clear that

19



√
P̂n

(
(ri, v0

i , v
1
i )i≤n

)
P̃

(
(ri, v0

i , v
1
i )i≤n

)
is the first component of An(d1, . . . ,dn) for di =(

ri, z(ri, v0
i , v

1
i )
)
. �

Applying this proof to the Törnqvist index, the transformed data di =

(ri, ri, v0
i , ri, v1

i ) are aggregated according to

d1 ⊕ · · · ⊕ dn =

⎛⎜⎜⎜⎜⎜⎝Pn, P̂n,

n∑
i=1

v0
i , P̃n,

n∑
i=1

v1
i

⎞⎟⎟⎟⎟⎟⎠ .
The Törnqvist index is consistent in aggregation with respect to the secondary at-

tribute z = (r, v0, r, v1). In this case the price ratios, ri, represent not only the primary

attribute, but at the same time two secondary attributes. This reinforces a point that we

made before: Definition 6 leaves a lot of, perhaps too much, scope of discretion in our

choice of secondary attributes. In Section 10 we will return to this issue. There we

discuss additional requirements that restrict the set of admissable secondary attributes

and the way these attributes are aggregated.

8. Consistency of Other Price Indices

Besides the superlative price indices of Fisher, Törnqvist, and Walsh, numerous

other price indices exist that are consistent in aggregation with respect to some sec-

ondary attribute z.

Proposition 6. The price index formulae P listed in Tables 2 and 3 are consistent in
aggregation with respect to the secondary attributes specified in the last column of
these tables.

Proof: Tables 2 and 3 list for each price index the corresponding function f (ri, zi) and

the secondary attributes zq
i . Via Proposition 3, the function f (ri, zi) yields an explicit

construction for the aggregation rule A required in the definition of consistency. �

Table 2 lists a number of traditional price indices, whereas many indices that Auer

(2014) categorizes as generalized unit value indices are listed in Table 3.
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Table 2: Traditional Price Indices and Their Secondary Attributes

Name Price Index Formula Function

f (ri, z1
i , ..., z

Q
i )

Secondary

Attributes zq
i

Laspeyres PLa =

∑
v0

i ri∑
v0

i

ri zi v0
i

Paasche PPa =

∑
v1

i∑
v1

i /ri
r−1

i zi v1
i

Marshall-

Edgeworth

PME =
∑

ri
v0

i + v1
i /ri∑(

v0
i + v1

i /ri

) ri zi (v0
i + v1

i /ri)

Walsh-2 ln PWa2 =
∑

ln ri

√
v0

i v1
i∑ √

v0
j v

1
j

ln (ri) zi

√
v0

i v1
i

Walsh-

Vartia

ln PWV =
∑

ln ri

√
v0

i√∑
v0

j

√
v1

i√∑
v1

j

ln (ri)
√

z1
i z2

i v0
i , v1

i

Theil ln PTh =
∑

ln ri

3

√
1
2
(v0

i + v1
i )v0

i v1
i∑

3

√
1
2
(v0

j + v1
j )v

0
j v

1
j

ln (ri) zi
3

√
1
2
(v0

i +v1
i )v0

i v1
i

Vartia∗ ln PVa =
∑

ln ri
L(v0

i , v
1
i )

L(
∑

v0
i ,

∑
v1

i )
with

L(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b − a

ln b − ln a
for a � b

a for a = b

ln (ri) L(z1
i , z

2
i ) v0

i , v1
i

∗ See Vartia (1976b, pp. 122-123). The index is sometimes called the Montgomery-Vartia

index (e.g., Balk, 2008, p. 87).
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Table 3: Generalized Unit Value Indices and Their Secondary Attributes

Name Price Index Formula Function

f (ri, z1
i , ..., z

Q
i )

Secondary

Attributes zq
i

Banerjee

(GUV-3)∗∗
PBa =

∑
v1

i∑
v0

i

∑
v0

i (1 + ri)∑
v1

i (1 + 1/ri)
ri

z1
i

z2
i

z3
i v0

i , v
1
i , v

1
i

1 + ri

ri

Davies

(GUV-4)∗∗
PDa =

∑
v1

i∑
v0

i

∑
v0

i
√

ri∑
v1

i

√
1/ri

ri
z1

i

z2
i

z3
i v0

i , v
1
i , v

1
i /
√

ri

(GUV-5)∗∗ PGUV-5 =

∑
v1

i∑
v0

i

∑
v0

i

(
1 + r−1

i

)−1

∑
v1

i (1 + ri)
−1

ri
z1

i

z2
i

z3
i v0

i , v
1
i , v

1
i /(ri + 1)

(GUV-6)∗∗ PGUV-6 =

∑
v1

i∑
v0

i

∑
v0

i r
v1

i /(v0
i +v1

i )
i∑

v1
i r
−v0

i /(v0
i +v1

i )
i

ri
z1

i

z2
i

z3
i v0

i , v
1
i , v

1
i ri

−v0
i

v0
i+v

1
i

Lehr

(GUV-7)∗∗
PLe=

∑
v1

i∑
v0

i

∑
v0

i

(
v0

i + v1
i

)(
v0

i + v1
i /r

)
∑

v1
i

(
v0

i + v1
i

)(
v0

i ri + v1
i

) ri
z1

i

z2
i

z3
i v0

i , v
1
i , v

1
i

v0
i +v1

i

riv0
i +v1

i

∗∗ See Auer (2014, pp. 850-52).

9. Application to Swedish Price Data: Part B

The three superlative price indices and all price indices listed in Tables 2 and 3

have been applied to the Swedish data set described in Section 5. Table 4 reports the

Swedish overall, core, and non-core inflation rates as measured by the various price

indices. In the last four columns the table shows the aggregate values of the respective

secondary attributes.

The various index formulae produce very similar results for the overall inflation

(second column). The same is true for the core inflation as well as for the non-core in-

flation (fourth column). As expected, the largest values are produced by the Laspeyres

index, whereas the Paasche index generates the smallest values.
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Table 4: Numerical Illustration∗ - Comparison of One- and Two Stage Aggregation

Name One-Stage

Aggregation

Two-Stage Aggregation

Secondary Attributes Zq
k

k Pk Z1
k Z2

k Z3
k Z4

k

Fisher 1.027496
1 1.026370 1 243 742 1 306 914 1 277 026 1 273 822

2 1.035407 182 775 180 275 189 468 174 315

Törnqvist 1.027699
1 1.026586 1.023309 1 243 742 1.029874 1 306 914

2 1.035481 1.034459 182 775 1.036504 180 275

Walsh 1.027516
1 1.026388 1 257 745 - - -

2 1.035471 178 318 - - -

Laspeyres 1.028025
1 1.026761 1 243 742 - - -

2 1.036621 182 775 - - -

Paasche 1.026968
1 1.025979 1 306 914 - - -

2 1.034194 180 275 - - -

Marshall-
1.027492

1 1.026365 2 517 564 - - -

Edgeworth 2 1.035436 357 090 - - -

Walsh-2 1.027465
1 1.026329 1 273 094 - - -

2 1.035476 181 355 - - -

Walsh-
1.027425

1 1.026291 1 243 742 1 306 914 - -

Vartia 2 1.035443 182 775 180 275 - -

Theil 1.027563
1 1.026441 1 273 834 - - -

2 1.035475 181 411 - - -

Vartia 1.027564
1 1.026442 1 243 742 1 306 914 - -

2 1.035475 182 775 180 275 - -

Banerjee
1.027503

1 1.026375 1 243 742 1 306 914 2 580 736 -

(GUV-3)∗∗ 2 1.035428 182 775 180 275 354 590 -

Davies
1.027547

1 1.026419 1 243 742 1 306 914 1 289 079 -

(GUV-4)∗∗ 2 1.035449 182 775 180 275 177 170 -

(GUV-5)∗∗ 1.027589
1 1.026463 1 243 742 1 306 914 643 902 -

2 1.035469 182 775 180 275 88 523 -

(GUV-6)∗∗ 1.027457
1 1.026333 1 243 742 1 306 914 1 291 609 -

2 1.035437 182 775 180 275 177 237 -

Lehr
1.027500

1 1.026376 1 243 742 1 306 914 1 290 319 -

(GUV-7)∗∗ 2 1.035458 182 775 180 275 177 113 -

∗ Source: Statistics Sweden, Consumer Price Index Data for 2010-2011

∗∗ See Auer (2014, pp. 850-52).
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10. Some Additional Requirements and Related Literature

The studies of Vartia (1976a, b) are the first formal treatments of consistency in

aggregation. A more general definition of consistency in aggregation is proposed by

Blackorby and Primont (1980, p. 96) who also introduce the notion of primary and

secondary attributes. We take their definition as a starting point for the following dis-

cussion.

As in our Definition 6, Blackorby and Primont (1980, p. 96) postulate that a sec-

ondary attribute of some item i must exclusively use information that specifically re-

lates to this item. In contrast to Definition 6, however, they allow only for quasi-

additive aggregation of secondary attributes and they do not preclude “external infor-

mation”, that is, information other than prices and quantities (e.g., quality of an item).

Blackorby and Primont (1980, p. 96) are well aware of the (too) general nature of their

approach. They conclude: “Thus, unless there is some a priori notion of how the at-

tributes are defined, this generalized consistency-in-aggregation notion does not seem

helpful.”

The present paper has argued that in the specific context of price measurement

such an a priori notion exists. In a price index computation, the only available pieces

of information are those in the informational set I. The secondary attributes must

exclusively use information from set I, that is prices and quantities, or equivalently,

price ratios, ri, and expenditures, v0
i and v1

i . Accordingly, Definition 6 precludes any

“external information”.

Nevertheless, some practitioners may still regard Definition 6 as too general, be-

cause it neglects some additional requirements that one possibly wants to attach to

the secondary attributes and their aggregation. We discuss four increasingly restrictive

requirements (Requirements A to D).

In Sections 7 and 8 we listed fifteen price indices that are consistent in aggregation

with respect to some secondary attribute z in the sense of Definition 6. Adding the new

requirements reduces the number of price indices that are considered as consistent in

aggregation. Only four out of the fifteen price indices satisfy all four requirements.

Unfortunately, there is no agreement as to which requirements are sensible and nec-

essary and which are not. So far, the different positions are not thoroughly related to

each other and it would be overoptimistic to expect a complete agreement on the is-

sue. However, our formalized exposition adds more structure to the dispute and, as

a result, may create a greater consensus. Definition 6 in conjunction with the list of

additional requirements enables us to pinpoint the differences in past attempts of defin-

ing consistency in aggregation. Therefore, the following discussion also provides a

comprehensive review of the price index literature on consistency in aggregation.
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From an economic perspective, aggregating the quantities of different items (e.g.,

cornflakes and cars) is a meaningless operation. However, it makes sense to aggre-

gate the monetary values of such items. Therefore, the secondary attributes should be

measured in monetary units. The following requirement formalizes this postulate.

Requirement A. All secondary attributes are linearly homogeneous with respect to

the expenditures:

zq(ri, λv0
i , λv

1
i ) = λzq(ri, v0

i , v
1
i ) ,

for q = 1, . . . ,Q.

For example, the secondary attributes v0
i ,

√
v0

i v1
i , or

√
v0

i v1
i /ri represent monetary units,

whereas ri,
√

v0
i , and v0

i v1
i do not. All price indices listed in Tables 2 and 3 fulfill Re-

quirement A. This is true also for the superlative indices of Fisher and Walsh. However,

the Törnqvist index utilizes ri as a secondary attribute. Therefore, it violates Require-

ment A.

A price index that is consistent in aggregation with respect to a secondary attribute

z, is a consistent aggregation rule, An, that determines how the individual values of each

secondary attribute, zq
i (q = 1, . . . ,Q and i = 1, . . . , n), are transformed into the respec-

tive aggregated value, Zq. It seems reasonable to postulate that in this transformation an

aggregated value, Zq, depends only on the individual values of the secondary attribute

q: zq
1
, . . . , zq

n. Which types of transformation are acceptable? Since the secondary at-

tributes, zq
i , must be expressed in monetary units (Requirement A), one may demand

that also the aggregated values of the secondary attributes, Zq
k , must be expressed in

monetary units. Simple summation of the individual zq
i -values preserves the units of

measurement. Therefore, the preceeding demands can be combined in the following

requirement:

Requirement B. The secondary attributes are aggregated additively:

An

(
(r1, z1

1, . . . , z
Q
1

), . . . , (rn, z1
n, . . . , z

Q
n )

)
=

⎛⎜⎜⎜⎜⎜⎝Pn,

n∑
i=1

z1
i , . . . ,

n∑
i=1

zQ
i

⎞⎟⎟⎟⎟⎟⎠ .

This precludes other quasi-additive aggregator functions such as multiplication. Again,

all listed price indices, except for the Törnqvist index, satisfy Requirement B.

Consensus condition (ii) stated that on both stages of a two stage computation the

“same functional form” must be applied. As an extensive interpretation of this condi-

tion one may postulate that any functional relationship between the secondary attributes

of the individual items must carry over to the aggregated secondary attributes. For ex-

ample, consider the four secondary attributes of the Fisher index (14). They are linked
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by

z3
i = riz1

i and z4
i = z2

i /ri .

Let Z1 =
∑

i∈S z1
i , Z2 =

∑
i∈S z2

i , Z3 =
∑

i∈S z3
i , and Z4 =

∑
i∈S z4

k denote the aggregate

values of the secondary attributes. Since

Z3 � PZ1 and Z4 � Z1/P ,

the relationships between the secondary attributes of the Fisher index (14) do not carry

over to their aggregated counterparts. More formally, the postulate can be stated in the

following way:

Requirement C. If a map g exists, such that zq
i = g(ri, z−q

i ), where z−q
i is the vector

of all secondary attributes except for attribute q, then Zq = g(P,Z−q), where Zq is the

aggregate value of all zq
i with i ∈ S , P is the price index with respect to set S , and Z−q

are the aggregated values of all secondary attributes except for attribute q.

The Walsh index (11) has only one secondary attribute: zi =

√
v0

i v1
i /ri. Therefore, no

violation of Requirement C can arise. A price index with two secondary attributes may

or may not satisfy Requirement C. For example, the Walsh-Vartia index,

ln PWV =
∑
i∈S

√
v0

i√∑
j∈S v0

j

√
v1

i√∑
j∈S v1

j

ln ri ,

can be interpreted as a price index with the two secondary attributes v0
i and v1

i . Between

these two attributes no functional relationship exists. Accordingly, Requirement C

is fulfilled. In contrast, when a price index has more than two secondary attributes

(e.g., all price indices listed in Table 3 and the Fisher index), Requirement C is usually

violated. The Walsh index and all price indices listed in Table 2 fulfill Requirements

A, B, and C.

Some former studies on consistency of aggregation added to Requirements A, B,

and C an even more restrictive requirement (van Yzeren, 1958, p. 432; Vartia 1976a, p.

89; 1976b, pp. 124-125; Stuvel, 1989, p. 36; Balk, 1995, p. 85; 1996, p. 360; 2008, p.

109; Pursiainen, 2005, p. 21; 2008, p. 18):

Requirement D. Only the secondary attributes v0
i and v1

i are admissable.

Since the Walsh, Marshall-Edgeworth, Walsh-2, and Theil indices violate Requirement

D, the only remaining price indices are the Laspeyres, Paasche, Walsh-Vartia, and Var-

tia indices.
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Is it possible to provide some justification for Requirement D? In an extremely ex-

tensive interpretation of consensus condition (ii) one may postulate that the relationship

between a secondary attribute zq
i and the three basic variables ri, v0

i , and v1
i from which

this attribute is computed, must carry over to the aggregated values. For example, the

Marshall-Edgeworth index, PME, has the secondary attribute zi = v0
i + v1

i /ri. However,

for the aggregate value Z =
∑

i∈S zi we get Z � V0+V1/PME, with Vt =
∑

i∈S vt
i. There-

fore, the relationship for the individual items does not carry over to their aggregated

counterparts. In fact, formal correspondence between the computation of a zq
i -value and

the computation of its aggregated counterpart Zq requires that z1
i = v0

i and/or z2
i = v1

i ,

that is, Requirement D.

Auer (2004, pp. 386-391) criticises Requirement D as being too restrictive and pro-

poses a milder version. Besides v0
i and v1

i he allows also for the “hybrid” secondary

attributes v0
i ri = p1

i x0
i and v1

i /ri = p0
i x1

i . With these four admissable secondary at-

tributes, the Marshall-Edgeworth index would re-enter the list of price indices that are

consistent in aggregation.

Definition 6 does not award the label “consistent in aggregation”. Instead, it awards

the label “consistent in aggregation with respect to a secondary attribute z”. We pro-

pose to reserve the label “consistent in aggregation” for those price indices that satisfy

Definition 6 and from Requirements A to D those that are deemed as indispensable.

Unfortunately, there is no consensus on the list of indispensable requirements. In

Table 4 we demonstrated for each of the fifteen price indices that they compute the

overall inflation in a consistent two stage procedure. Therefore, some index users may

reject all four requirements. Then, all price indices listed in Table 4 are consistent in

aggregation.

Some index users may consider Requirements A to B as indispensable, but not

the other two requirements. This would delete the Törnqvist index from the list of

price indices that are consistent in aggregation. If Requirements A to C are deemed

as compulsory, the Fisher index and all price indices listed in Table 3 drop out. If

index users regard all four requirements as indispensable, then the Walsh, the Marshall-

Edgeworth, the Walsh-2, and the Theil indices would no longer qualify for the label

“consistent in aggregation”.

The latter four indices share with the Laspeyres and the Paasche indices another

property that is often appreciated in applied work. The indices can be written in the

following form:

P − 1 =

K∑
k=1

(Pk − 1)
Zk∑K
l=1 Zl

, (19)

with Zk =
∑

i∈S k
zi. For example, in Sections 5 and 9 we applied the Walsh index to

the Swedish consumer price index data and obtained PWa = 1.0275, that is, an overall
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inflation of 2.75%. In applied work one may want to decompose these 2.75% into the

contribution of the core inflation and the contribution of the non-core inflation. We

know from our calculations that the core inflation was 2.64% (PWa
1
= 1.0264) and the

non-core inflation 3.55% (PWa
2
= 1.0355). To compute the individual contributions,

though, these two numbers are not sufficient. We also need weights that reflect the

importance of the items assigned to core inflation relative to the items assigned to non-

core inflation. These weights can be obtained from the secondary attribute. In Equation

(19) the weight of each subset k is quantified by Zk

/∑K
l=1 Zl . In our Swedish example,

Equation (19) becomes

PWa − 1 =
(
PWa

1 − 1
) Z1

Z1 + Z2

+
(
PWa

2 − 1
) Z2

Z1 + Z2

. (20)

The aggregated values of the secondary attributes were Z1 = 1 257 744.8 and Z2 =

178 317.6. Inserting all numbers in (20) yields

2.75 = 2.31 + 0.44 .

Even though the core inflation is much smaller than the non-core inflation, the con-

tribution of the core inflation to the overall inflation of 2.75% is 2.31%, whereas the

contribution of the non-core inflation is merely 0.44%. A detailed exposition of the

decomposition properties of price indices can be found in Balk (2008, pp. 140-151).

11. Concluding Remarks

The computation of the overall price change is often conducted in a two stage (or

multi stage) procedure, where on the first stage price changes of subgroups are com-

puted and on the second stage the price changes of the subgroups are aggregated into

the overall price change. In the literature it has been postulated that the price index

formula applied in such a multi stage analysis should be consistent in aggregation. The

present paper has argued that consistency in aggregation is a complex concept that

requires a careful definition. Following Blackorby and Primont (1980), the definition

distinguishes between the primary attribute of a price index and its secondary attributes.

Combining this distinction with the general concept of a consistent aggregration rule,

yields a thoroughly motivated basic definition of consistency in aggregation, specifi-

cally designed for the context of price measurement.

Surprisingly many price index formulae satisfy this basic definition of consistency

in aggregation. Among these are the superlative price indices of Fisher, Törnqvist, and

Walsh. This is a remarkable finding, because these indices are known as superlative

price indices. In the literature there has been a general perception that superlative

price indices are particularly reliable for single stage computations, but that they are
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not consistent in aggregation and therefore unsuitable for multi stage computations.

Our findings show that this perception cannot be sustained in the context of our new

definition of consistency in aggregation.

It was argued that further requirements can be added to the basic definition of con-

sistency in aggregation. Such additional requirements shrink the list of price indices

that are consistent in aggregation. Four such requirements were discussed, with Re-

quirements A and B being the most obvious ones, and Requirement D being the most

contentious one. From an applied perspective, Requirements A to C appear particularly

relevant. The Törnqvist index satisfies none of them, the Fisher index satisfies Require-

ments A and B, whereas the Walsh index satisfies all three requirements. Therefore,

empirical researchers that regard superlative price indices as particularly reliable and

want to compile some overall price change by a multi stage procedure, may apply the

Walsh index for this purpose.
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Appendix

Proposition 7. Without the continuity requirement in Definition 6, every symmetric
price index would be consistent in aggregation with respect to some secondary at-
tribute.

Proof. Considered as a Q-vector space the reals are R-dimensional and using the

axiom of choice as well as the fact that J = R3
>0

and R have the same cardinality we

can thus take a Hamel basis {ea : a ∈ J} of R. Let M be the set of all finite linear

combinations of elements ea with (strictly positive) integer coefficients and define z :

I → M by z(a) = ea.

The linear independence then implies for all a1, . . . , an, b1, . . . , bm ∈ J that

n∑
i=1

z(ai) =

m∑
i=1

z(bi) ⇒ n = m and ai = bπ(i) for some permutation π.

In order to apply Proposition 3 (more precisely, the version neglecting the continuity

aspects), we want to define a function f : R>0 × M → R>0 such that

f

⎛⎜⎜⎜⎜⎜⎝Pn(a1, . . . , an),

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ = n∑
i=1

f (ri, zi)

for all n ∈ N, ai = (ri, v0
i , v

1
i ) ∈ J, and zi = z(ai) so that all partial functions r �→ f (r,m)

are invertible.

Given m ∈ M there are (up to the order) unique a1, . . . , an ∈ J with m = z(a1)+ · · ·+
z(an). We then set α(m) = Pn(a1, . . . , an), β(m) = r1 + · · · + rn (where, as previously, ri

is the first component of ai), and

f (r,m) = rβ(m)/α(m).

Of course, the partial functions r �→ f (r,m) are invertible on R>0.

In order to show the condition of Proposition 3 we take n ∈ N and ai = (ri, v0
i , v

1
i ) ∈

J. For zi = z(ai) we have α(zi) = P1(a1) = r1 and β(zi) = ri so that

f (ri, zi) = riri/ri = ri.

Moreover, for m = z1 + · · · + zn and � = Pn(a1, . . . , an) we have α(m) = � and β(m) =

r1 + · · · + rn and hence

f

⎛⎜⎜⎜⎜⎜⎝Pn(a1, . . . , an),

n∑
i=1

zi

⎞⎟⎟⎟⎟⎟⎠ = �β(m)/α(m) =

n∑
i=1

ri =

n∑
i=1

f ((ri, zi))

which completes the proof. �
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