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Introduction

The VAR is a standard tool for investigating multivariate time series
in economics and �nance (forecasting, IRF, Granger causality).

However, it is subject to the curse of dimensionality.

Several solutions were proposed, following either

the dimension reduction approach (e.g. reduced-rank VAR, FAVAR)
the regularization paradigm (e.g. BVAR, Lasso).

This paper is on the �rst type of solution.
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Continued. . .

Lam et al. (2011) and Lam and Yao (2012) showed how to
decompose a large multivariate time series Yt into two parts:

a linear function of a small scale dynamic component xt and
a static component εt that is unpredictable from the past.

No loss of information.

We go a step further...

G. Cubadda, A. Hecq (UniRoma2, UniMaas) Dimension Reduction for HD VARs February 24, 2022 3 / 36



Continued. . .

We assume that Yt is generated by a large VAR and provide the
conditions under which the dynamic component xt is generated by a
small scale VAR.

We show that it is required that the large VAR model of series Yt is
endowed with both

the serial correlation common feature (Engle and Kozicki, 1993)
and an index structure (Reinsel, 1983).
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Continued. . .

Based on the eigenanalysis ( Lam et al. (2011), Lam and Yao (2012)
as well as IC) , we provide statistical tools to verify whether there
exists in series Yt a dynamic component xt that is generated by such
a small scale VAR model and to estimate the associated parameters.

Prety cool:

This allows to obtain forecasts of the large time series Yt using those
of the dynamic component xt only,
to recover the structural shocks from the reduced form shocks of the
dynamic component only.

In this paper: Monte Carlo analysis and by an empirical applications
on US macroeconomic series.
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Model representation

The n-vector time series Yt is generated by the stationary VAR(p)

Yt =
p

∑
j=1

ΦjYt�j + ut ,

where t = 1, ...,T , and ut is an n-vector of innovations.

Condition 1 (Serial Correlation Common Feature, SCCF): For
Φ = [Φ1, ...,Φp ]0 it holds that Φ0 = ĀΩ̄0, where Ā is a full rank n� r
(r < n ) matrix and Ω̄ = [ω̄0

1, ..., ω̄
0
p ]
0 is a full rank np � r matrix.

SCCF: Common left null space (reduced rank) in all Φj matrices

Yt = Āω̄0
1Yt�1 + ...+ Āω̄0

pYt�p + ut
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Continued. . .

We can always use the equivalent factorization Φ0 = AΩ0, where
A = Ā(Ā0Ā)�1/2 and Ω = Ω̄(Ā0Ā)1/2, we assume without loss of
generality that A is an orthogonal matrix with A0A = Ir
Under Condition 1 we can decompose series Yt using
In = AA

0
+ A?A

0
?as

Yt = Axt + εt ,

where xt = A0Yt , εt = A?A0?ut ,

such that E(Yt+k jzt ) = AE(xt+k jzt ) for k > 0, and zt is the
natural �ltration of process Yt .
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Continued. . .

Notice that under Condition 1 (SCCF) the dynamic component xt is
generated as

xt =
p

∑
j=1

ω0
jYt�j + A

0ut|{z}
ξt

,

No loss of information (vs. e.g. PCA).

We could have stop here. This is what inter alia my coauthors and I
do for many years (common features, reduced rank) but that is not a
small-scale model since the number of parameters grows with n
(although not with n2 as in the unrestricted VAR).
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Continued. . .

It wouldn�t matter much for small n but it is a challenge for high
dimensional systems.

We add a right null space condition.

Condition 2: For any j = 1, ..., p it holds that ωj = Aα0j , where αj is
a r � r matrix. In words, the lags of the same linear combinations of
Yt that are unpredictable from the past are also irrelevant predictors
of the dynamic component xt .
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Continued. . .

Under Condition 2, the dynamic component xt is then generated as

xt =
p

∑
j=1

ω0
jYt�j + ξt =

p

∑
j=1

αjxt�j + ξt ,

Under Condition 1 and 2, the VAR model of series Yt can be
rewritten as

Yt =
p

∑
j=1
AαjA0Yt�j| {z }

xt�j

+ ut . (1)

Model (1) is interesting since it combines the features of the
reduced-rank VAR model with those of the multivariate autoregressive
index (MAI) model proposed by Reinsel (1983)
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Continued. . .

Remark 1: The reduced-rank VAR and the MAI have been
considered separately in the literature, whereas Conditions 1 and 2
reveal that the combination of the two models allows for an important
dimension reduction in large VARs.

In what follows, we call Model (1) as the dimension-reducible VAR
model (DRVAR).

G. Cubadda, A. Hecq (UniRoma2, UniMaas) Dimension Reduction for HD VARs February 24, 2022 11 / 36



Continued. . .

Remark 2: If we invert the polynomial coe¢ cient matrix of the small
VAR we can write the Wold representation of series Yt as

Yt = Aγ(L)ξt + εt , (2)

where γ(L)�1 = In �∑p
j=1 αjLj . Moreover, by linearly projecting εt

on ξt , we can decompose the static component as εt = ρξt + νt ,
where ρ = A?A0?ΣuA(A0ΣuA)�1, and then rewrite Equation (2) as

Yt = C (L)ξt + νt � χt + νt , (3)

where C0 = A+ ρ and Cj = Aγj for j > 0.
Representation (3) highlights that the system dynamics are entirely
generated by errors ξt . Hence, we label χt as the common
component of Yt and νt as the ignorable errors, as we assume the
latter are not endowed with a structural interpretation. Since the
errors ξt and νt are uncorrelated at any lead and lag, it is then
possible to recover the structural shocks solely from the reduced form
errors ξt of the common component χt .
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Continued. . .

Any of the procedures that are commonly employed in structural VAR
analysis may be used. For instance, one may obtain the structural
shocks as ut = C�1Dξt and the impulse response functions from
Ψ(L) = C (L)D�1C , where D is the matrix formed by the �rst r rows
of C0 and C = Chol(DA0ΣuAD 0). Notice that the �rst r rows of
Ψ(0), being equal to C , form a lower triangular matrix, thus allowing
for the usual interpretation of the structural shocks ut as long as the
s (s � r) variables of interest are placed and properly ordered in the
�rst s elements of Yt .
It is always possible to identify the structural shocks from the reduced
form errors of the large VAR. However, the advantage of the structural
DRVAR is that it requires to identify r shocks only instead of n of
them. Hence, the number of structural shocks is (much) smaller than
the number of variables, as it is typical in both structural factor
models (see e.g. Forni et al, 2009) and dynamic stochastic general
equilibrium models (see e.g. Fernández-Villaverde et al., 2016).
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Statistical inference (reduced rank in large systems)

Let us indicate with V̂q the matrix formed by the eigenvectors
associated with the q (� n) largest eigenvalues of the matrix

M̂ =
p0

∑
j=1

Σ̂y (j)Σ̂y (j)0,

where Σ̂y (j) denotes the sample autocovariance matrix of Yt at lag j .
Under regularity conditions that are compatible with our Conditions,
V̂r estimates A (up to an orthonormal transformation) with the
standard

p
T rate when r is �xed, n,T ! ∞, and the factors are

strong, i.e. ā0i āi = O(n) for i = 1, ..., r , where Ā = [ā1, ..., ār ] (see
Theorem 1 of Lam et al., 2011).
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Continued. . .

Moreover, Lam and Yao (2012) provided the following consistent
estimator of r

r̂ = arg min
i=1,..R

�
λ̂i+1/λ̂i

	
,

where R is a constant such that r < R < n and λ̂i is the i�th largest
eigenvalue of matrix M̂.

However, this procedure takes into account Condition 1 only and not
Condition 2.
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Continued. . .

In order to estimate the parameters of the DRVAR assuming that r is
known and having �xed A equal to V̂r , let�s rewrite the model in its
matrix form

Y = ZαA0 + u,

where Y = [yp+1, ..., yT ]
0, u = [up+1, ..., ut ]

0, zt =
h
x 0t , ..., x

0
t�p+1

i0
,

and Z = [zp , ..., zT�1]
0. Then the OLS estimator of Vec(α) is:

Vec(α̂) = [A0 
 (Z 0Z )�1Z 0]Vec(Y ).

which is equivalent to OLS on the small-scale VAR of xt .
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Continued. . .

The GLS estimator of Vec(α) takes instead the following form:

Vec(α̃) =
h�
A0Σ�1u A

��1
A0Σ�1u 


�
Z 0Z

��1 Z 0iVec(Y ). (4)

The relation, in terms of e¢ ciency, between these estimators is
provided in the following theorem.

Theorem: Assuming that A and Σu are known, the GLS Estimator of
Vec(α) has a MSE matrix, conditionally on Z , that is not larger that
the one of the OLS estimator. The two estimators have the same
MSE matrix when A0ut and A0?ut are not correlated.

We o¤er a switching algorithm to compute a FGLS estimator of
Vec(α). A practical issue that arises when n is large is that the
estimate of matrix Σu is (nearly) singular. We solve this problem by
ignoring the error cross-correlations, i.e. we use a diagonal matrix ∆u
with the same diagonal as Σu in place of Σu itself.
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Continued. . .

In order to identify the number of factors r , for q = 1, ...,R(� r) we
estimate either by OLS or FGLS the models

Yt =
p

∑
j=1
V̂qαj ,qV̂ 0qYt�j + ut (q),

where αj ,q is a q � q matrix for j = 1, ..., p, and estimate r as the
index br that minimizes an information criterion, where the measure of
�t is trace(ln(∆u)), and the overall number of parameters is
k = nq + (p � 1)q2.
Proposition: Under conditions such that OLS and FGLS estimate the
DRVAR parameters (up to an orthonormal transformation) with the
standard

p
T rate as n,T ! ∞, and assuming that

γ = lim
n!∞

�
n
∏
i=1

σ2i

�1/n

exists, where diag[σ21, ..., σ
2
n ] = ∆u , the BIC

and HQIC provide weakly consistent estimators for the number of
dynamic components r but not for the overall number of the DRVAR
parameters k.
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Monte Carlo analysis

We consider the following n-dimensional stationary VAR(2) process

Yt = Ādiag(δ1)Ā+| {z }
Φ1

Yt�1 + Ādiag(δ2)Ā+| {z }
Φ2

Yt�2 + ut , (5)

where Ā is a n� r matrix such that its columns are generated by r
i.i.d. Nn(0, In), Ā+ = (Ā0Ā)�1Ā0 is the Moore�Penrose pseudo
inverse of the matrix Ā, δ1 = 2diag(m) cos(ω), m is a r�vector
drawn from a Ur [0.3, 0.9], ω is a r�vector drawn from a Ur [0,π],
δ2 = �m2, and ut are i.i.d. Nn(0,Σu).
The covariance matrix of the VAR errors Σu is not diagonal. This
allows us to evaluate the performances of both the FGLS estimator
and the information criteria when ln(det(Σu)) is not equal to
trace(ln(∆u)).
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Continued. . .

We generate 1000 VAR(2) systems of n = 150, 300, 600, 1200
variables with r = 3, 9 dynamic components, and T = 1

2n, n, 1.5n.
We look at two statistics:(i) the percentage with which the true
number of dynamic components r is correctly identi�ed using both
the test by Lam and Yao (2012) (LY) and by the usual information
criteria (IC); (ii) the Frobenius distance between the estimates of
Φ = [Φ0

1,Φ
0
2]
0 and the true ones relative to the Frobenius norm of Φ.

The main results are: (i) all the methods perform better as both n
and T get larger; (ii) OLS and FGLS perform quite similarly; (iii)
HQIC identi�es the correct model better than the competitors but in
3 cases where BIC performs best; (iv) LY [AIC] systematically
underestimates [overestimates] the true r ; (iv) models identi�ed by
the BIC [AIC] provide estimates of Φ that are more [less] accurate
than those obtained by the other criteria over all the settings.
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Continued. . .

Table: MC results, r = 3, N = 150, 300, OLS estimator

T/n n = 150 n = 300
%br = 3 br RFD %br = 3 br RFD

T = n
2 LY 40.8 2.100 - 53.7 2.389 -

BIC 67.2 2.605 39.46 78.6 2.748 27.55
HQ 72.6 3.094 74.88 86.6 2.993 42.44
AIC 29.1 5.983 274.27 42.5 4.801 192.21

T = n LY 52.8 2.311 - 62.3 2.493 -
BIC 80.3 2.784 26.94 90.0 2.898 18.56
HQ 86.2 3.002 38.11 92.7 2.992 23.72
AIC 45.1 4.633 144.22 51.1 4.444 122.71

T = 1.5n LY 55.8 2.328 - 64.3 2.555 -
BIC 83.6 2.824 22.15 91.8 2.917 14.916
HQ 91.6 3.005 27.93 95.0 3.003 19.140
AIC 53.5 4.245 105.08 52.8 4.217 99.841
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Continued. . .

Table: MC results, r = 3, n = 600, 1200, OLS estimator

T/n n = 150 n = 300
%br = 9 br RFD %br = 9 br RFD

T = n
2 LY 59.9 2.560 - 65.7 2.734 -

BIC 89.6 2.882 18.39 94.0 2.936 12.89
HQ 92.5 3.017 29.07 95.5 3.003 17.84
AIC 51.5 4.286 147.14 52.8 4.171 137.20

T = n LY 67.7 2.683 - 73.2 2.815 -
BIC 94.0 2.944 13.06 97.6 2.976 8.85
HQ 96.8 3.009 16.31 97.4 3.010 12.36
AIC 52.2 4.167 110.85 52.0 4.176 112.70

T = 1.5n LY 73.5 2.755 - 77.5 2.819 -
BIC 96.5 2.964 10.54 99.1 2.991 7.27
HQ 96.4 3.021 15.08 97.7 3.025 11.72
AIC 50.8 4.162 98.16 52.3 4.127 94.88
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Continued. . .

Table: MC results, r = 9, N = 150, 300, OLS estimator

T/n n = 150 n = 300
%br = 9 br RFD %br = 9 br RFD

T = n
2 LY 22.7 3.639 - 39.2 4.753 -

BIC 44.7 7.781 59.54 50.0 8.135 38.57
HQIC 63.1 9.262 109.20 85.7 8.946 48.29
AIC 18.7 10.405 202.09 35.2 10.059 153.15

T = n LY 34.5 4.443 - 47.1 5.389 -
BIC 47.9 8.108 39.41 61.4 8.459 27.38
HQ 83.0 8.928 46.82 91.4 8.958 30.55
AIC 41.3 9.911 115.60 45.5 9.836 100.99

T = 1.5n LY 42.7 5.075 - 56.8 6.019 -
BIC 59.8 8.386 32.17 74.3 8.681 22.04
HQIC 90.2 8.940 34.47 94.8 8.974 23.45
AIC 48.9 9.765 88.17 51.4 9.729 78.47
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Continued. . .

Table: MC results, r = 9, n = 600, 1200, OLS estimator

T/n n = 600 n = 1200
IC %br = 9 br RFD %br = 9 br RFD

T = n
2 LY 51.1 5.534 - 59.5 6.162 -

BIC 61.1 8.442 27.03 73.3 8.676 18.96
HQIC 91.7 8.953 30.69 96.1 8.970 19.98
AIC 41.6 9.893 131.91 46.9 9.800 119.15

T = n LY 64.4 6.540 - 74.2 7.164 -
BIC 76.2 8.719 18.83 88.9 8.873 13.16
HQIC 96.8 8.984 19.85 99.5 8.998 13.47
AIC 48.8 9.760 90.40 45.6 9.818 93.59

T = 1.5n LY 64.9 6.559 - 75.7 7.285 -
BIC 83.1 8.809 15.25 93.1 8.927 10.58
HQIC 97.9 8.986 15.54 99.5 9.001 10.97
AIC 51.1 9.746 74.52 48.0 9.800 76.15
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Co-movements in quarterly US time series

We use n = 211 variables with T = 242 quarterly observations
(1959Q3-2019Q4) from the FRED-QD database, to which we added
the total factor productivity time series corrected for utilization
produced by Fernald (2012).

Series are �rst stationarized then corrected for outliers and �nally
demeaned and standardized.

We �x p0 = 5, a rather typical lag length of a VAR model for
quarterly data, and R = 14 as the upper bound of the dimension of
the dynamic component.

In order to determine the largest VAR order, we use the traditional
information criteria to estimate the lag length in a VAR model for
series V̂ 0RYt . We get p = 1 according to the BIC, p = 2 according to
the HQIC, and p = 4 according to the AIC. Consequently, we
consider successively p = 1, ..., 4 lags when estimating r through the
information criteria.
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Continued. . .

We estimate a VAR(2) with r = 8, which is the indication coming
from the BIC [HQIC] when it is used to determine r [p].

We compute two statistics in order to evaluate the �t of the model to
the data. First, we consider the coe¢ cients of determination of each
element of Yt as obtained by the reduced form DRVAR. Second, we
compute the squared correlation coe¢ cients between each element of
Yt and its counterpart in the common component χt . We denote the
former statistic as R2Y ,Z and the latter as R

2
Y ,Ξ. It is easy to see that

R2Y ,Ξ � R2Y ,Z .

Whereas R2Y ,Z has the usual interpretation in terms of predictability,
R2Y ,Ξ indicates the fraction of the variability of each element of Yt
that is explained by a linear projection on the present and past values
of the dynamic errors ξt . Hence, R

2
Y ,Ξ measures the importance of

the common component χt in the variability of each series.
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Continued. . .

Based on the FGLS estimates of the coe¢ cients of the DRVAR
model, we report the averages as well as the quartiles of the empirical
distributions of both R2Y ,Z and R

2
Y ,Ξ. in the followimg table

Table: Average and quartiles of the measures of �t

Mean Q1 Q2 Q3
R2Y ,Z 0.30 0.11 0.25 0.47
R2Y ,Ξ 0.53 0.34 0.56 0.73

As expected, the estimates of R2Y ,Ξ are considerably larger than those
of R2Y ,Z .
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Continued. . .

Moreover, we report the estimates of both R2Y ,Z and R
2
Y ,Ξ for nine

key macroeconomic variables: Gross Domestic Product (GDP),
Consumption (Con), Investment (Inv), Unemployment Rate, (UR),
Worked Hours (Hours), In�ation Rate (Inf), Interest Rate (IR), Labor
Productivity, (LP), and Total Factor Productivity (TFP):

Table: Measures of �t for 9 key aggregate variables

GDP Con Inv UR Hours Inf IR LP TFP
R2Y ,Z 0.40 0.38 0.40 0.64 0.61 0.22 0.28 0.20 0.10
R2Y ,Ξ 0.83 0.71 0.73 0.89 0.85 0.90 0.68 0.66 0.37

Remarkably, the role of the common component of TFP is smaller
than the one of the other key variables. This �nding may re�ect the
partial exogenous nature of TFP, as well as the presence of large
estimation errors in a variable that it is not directly observable.
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Identi�cation of the shock driving the business cycle

Based on Angeletos et al. (2020), we identify the unique shock that
is responsible for most of the common volatility at the business cycle
frequency band. In this way, we also �lter out the e¤ect of the
ignorable errors, which cannot generate cyclical �uctuations.

We compute the matrix that measures the (co-)volatility of the
common component χt at the frequency band [v0,v1],

Θ(v0,v1) =
Z v1

v0

ReF{(v)dv

where F{(v) is spectral density matrix of the common component χt
Let Q be the matrix formed by the eigenvectors that are associated
with the �rst r non-increasing eigenvalues of the matrix Θ(v0,v1),
then the linear combinations Q 0χt represent the (static) principal
components of χt at the frequency band [v0,v1].
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Continued. . .

We label the (standardized) shock of the �rst principal components of
χt at frequencies [2π/32, 2π/6] as the Main Business Cycle
Common Shock (MBCCS). The associated impulse response function
(IRF) for series Yt is

Ψ�1(L) = C (L)D�1C�1,

where D = Q 0C0, C = Chol(DA0ΣuAD 0), and C�1 is the �rst column
of C .

Given the frequency domain nature of our identi�cation scheme, we
evaluate the e¤ects of the MBCCS by its contribution to the
variability of the i�th series at frequencies [π/16,π/3] and 0.
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Paper (updated version) at http://arxiv.org/abs/2009.03361
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Continued. . .

Table: Contributions of the MBCCS to the variability of the 9 key series at
frequencies [π/16,π/3] and 0

Period GDP Con Inv UR Hours Inf IR LP TFP
6� 32 40.2

(15.0)
15.3
(14.0)

47.9
(14.7)

44.2
(12.2)

43.7
(12.1)

8.7
(15.6)

28.9
(18.1)

21.0
(13.5)

5.4
(15.7)

∞ 33.3
(12.1)

16.8
(12.9)

35.8
(12.0)

39.4
(11.7)

37.7
(12.4)

7.2
(12.3)

19.4
(15.3)

14.4
(12.2)

2.4
(12.5)

Note: bootstrap standard errors in brackets
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Continued. . .

The MBCCS triggers a procyclical e¤ect on GDP and Inv peaking
with one quarter delay, on Con with no delay, as well as on UR [Hours
and IR] with a peak at two [three] quarters. Moreover, it explains a
large fraction of the cyclical variability of Inv, Hours, UR and GDP.
These results corroborate the claim that the considered shock is the
main driver of the business cycle �uctuations.

However, it has a limited positive impact on Inf, which peaks at one
quarter and quickly dies out, and it marginally a¤ects both LP and,
especially TFP. Moreover, it explains a small portion of the cyclical
movements of both Inf and TFP.
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Continued. . .

Regarding the long-run scenario, the MBCCS explains around 35% of
the zero-frequency variability of UR, Hours, Inv, and GDP, whereas it
has negligible explanatory power for the permanent variation in Inf
and TFP. Surprisingly, the MBCCS is responsible for almost the same
portion of variability of Con (around 14%) both in the long and short
run.

All in all, the �ndings above seem to preclude the interpretation of
the MBCCS as either a productivity or a news shock on the one hand,
and a traditional demand shock on the other hand. However, a
meticulous interpretation of the empirical results of this application,
in particular by means of a rigorous comparison with DSGE models, is
beyond the scope of the present paper.
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Continued. . .

Table: Information criteria of the DRVAR and FAVAR partial models of the key
series

BIC HQIC AIC
DRVAR -7.52 -8.62 -9.37
FAVAR -6.62 -8.48 -9.73
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Conclusions

We propose a dimensional reduction approach such that both a
common right space and a common left null space are present in the
coe¢ cient matrices of a large VAR model. This speci�cation allows to
detect a small dimensional VAR that is responsible to generate the
whole dynamics of the system.

This approach has many potential applications such as forecasting big
data from a small scale VAR without loosing relevant information,
structural VAR analysis, realized covariance matrices modelling, etc.

We document the practical value of our approach by both a Monte
Carlo study and an empirical application to 211 aggregate economic
variables.
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