RBC Model

Policy 0000 Appendix 000000000

### Turbulent Business Cycles<sup>1</sup>

#### Ding Dong<sup>1</sup>, Zheng Liu<sup>2</sup>, Pengfei Wang<sup>3</sup>

<sup>1</sup>Hong Kong University of Science and Technology

<sup>2</sup>Federal Reserve Bank of San Francisco

<sup>3</sup>Peking University HSBC School of Business

Dec 13, 2021

<sup>&</sup>lt;sup>1</sup>The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Background

- Turbulence rises in recession
  - Product churn (Aghion, el al 2021; Bernard and Okubo 2016)
  - Productivity ranking churn (Bloom, et al 2018)
- This paper:
  - 1. Documents evidence of macro and reallocation effects of turbulence
  - 2. Studies transmission mechanism
  - 3. Evaluates alternative policy interventions

Policy

Appendix 000000000

### What's turbulence?

• Firm-level TFP follows the process

$$z_{j,t+1} = egin{cases} z_{j,t} & ext{with prob} & 
ho_t, \ ilde{z} & ext{with prob} & 1-
ho_t, \end{cases}$$

where  $\tilde{z}$  is i.i.d. drawn from  $\tilde{G}(z)$ 

• Time-varying turbulence:  $1 - \rho_t$ 

- $\rho_t = 1$ : permanent shock
- $\rho_t = 0$ : i.i.d. shock
- $1 \rho_t \uparrow \Rightarrow$  high-(low-) productivity firm less likely to remain productive (unproductive)  $\Rightarrow$  turbulence  $\uparrow$
- Time-invariant cross-sectional distribution of z

• 
$$Pr(z_t = z_j) = \pi_j \rightarrow Pr(z_{t+1} = z_j) = \rho_t \pi_j + (1 - \rho_t) \pi_j = \pi_j$$

Policy

ヘロト ヘ回ト ヘヨト ヘヨト

æ

Appendix 000000000

#### Countercyclical turbulence



Figure: Measured turbulence is countercyclical details

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Turbulence generates recession and reallocation



Figure: One standard deviation turbulence shock reduces real GDP by at least 0.5%: turbulence quantitatively important details

Appendix 000000000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

#### Reallocation effects of turbulence

| Dep. Var.                                  | Employme  | nt growth | Capital   | Capital growth |  |
|--------------------------------------------|-----------|-----------|-----------|----------------|--|
|                                            | (1)       | (2)       | (3)       | (4)            |  |
| Turb <sub>t</sub> * High_TFP <sub>it</sub> | -0.313*** | -0.098**  | -0.228*** | -0.216***      |  |
| - ,                                        | (0.046)   | (0.039)   | (0.055)   | (0.055)        |  |
| constant                                   | 0.061***  | 0.059***  | 0.071**** | 0.071***       |  |
|                                            | (0.002)   | (0.002)   | (.002)    | (.002)         |  |
| Firm Fixed Effect                          | Yes       | Yes       | Yes       | Yes            |  |
| Year Fixed Effect                          | Yes       | Yes       | Yes       | Yes            |  |
| Observations                               | 25,955    | 24,288    | 25,955    | 24,288         |  |

•  $High_TFP_{it} = 1$  iff firm TFP above median;

Column (2): lagged dummy High\_TFP<sub>jt-1</sub> replacing High\_TFP<sub>jt</sub>

details

Policy 0000 Appendix 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Summary of evidence

- Turbulence rises in recessions
- Increase in turbulence associated with
  - 1. declines in aggregate TFP and firm value,
  - 2. synchronized and persistent declines in aggregate activity,
  - 3. reallocation from high- to low-productivity firms, and
  - 4. reallocation effects working through financial frictions details
- Turbulence is quantitatively important: one std increase in turbulence reduces real GDP by 0.5%

Policy

# RBC model: overview

- Heterogeneous firms
  - productive firm: turbulence  $\uparrow \rightarrow$  future profit  $\downarrow$  more
- Working capital constraint
  - borrow against firm value (equity) to finance N and K
  - firm value: discounted future profit
  - productive firm: borrow  $\downarrow \rightarrow N \& K$  share  $\downarrow$  (misallocation)
- Misallocation channel of turbulence
  - turbulence  $\uparrow \rightarrow$  misallocation  $\uparrow \rightarrow$  TFP  $\downarrow \rightarrow$  Y  $\downarrow$
  - synchronized declines: C, I, N  $\downarrow$

# Firms [1]

• CRS technology, renting capital  $(k_{jt})$  and labor  $(n_{jt})$ 

$$y_{jt} = A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha}$$
(2)

•  $z_{jt}$ : idiosyncratic prod. subject to turbulence shock to  $\rho_t$ 

$$z_{j,t+1} = \begin{cases} z_{jt} & \text{with prob} \quad \rho_t, \\ \tilde{z} & \text{with prob} \quad 1 - \rho_t, \end{cases}$$
(3)

Bellman equation:

$$V_t(z_{jt}, \tau_{jt}) = \max_{k_{jt}, n_{jt}} \tau_{jt} A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha} - R_t k_{jt} - W_t n_{jt} + \mathbb{E}M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1})$$

s.t. working capital constraints

$$R_t k_{jt} - W_t n_{jt} \le \theta \mathbb{E} M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1}) \equiv \theta B_{jt}$$
(4)

where  $\tau_j \sim F(\tau)$ : i.i.d. distortion (Hsieh-Klenow 2009; Buera-Shin 2013)

Appendix 000000000

### Production decisions



- Active firms:  $\{\tau, z\}$  above threshold curve  $\tau_t^* \propto \frac{R_t^{\alpha} W_t^{1-\alpha}}{A_t z_t}$  details
- Higher average turbulence (lower p
  ): high z firms less likely to remain productive, lowering wages and shifting down threshold curve

# Equilibrium

• Household's problem:

$$\max_{C_t, N_t, K_{t+1}} \mathsf{E} \sum_{t=0}^{\infty} \beta^t \left\{ \ln C_t - \psi \frac{N_t^{1+\gamma}}{1+\gamma} \right\}$$
(5)

• s.t. budget constraint

$$C_t + K_{t+1} = (R_t + 1 - \delta)K_t + W_t N_t + D_t + T_t$$
 (6)

• Factor market clearing

$$N_t = \sum_j \pi_j n_{jt} \equiv \sum_j \pi_j \frac{(1-\alpha)\theta B_{jt}}{W_t} \left[ 1 - F(\tau_{jt}^*) \right]$$
(7)

$$K_t = \sum_j \pi_j k_{jt} \equiv \sum_j \pi_j \frac{\alpha \theta B_{jt}}{R_t} \left[ 1 - F(\tau_{jt}^*) \right]$$
(8)

Goods market clearing

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t \tag{9}$$

#### IRF: turbulence shock



Figure: Impulse responses to one std turbulence shock

calibration

### Counterfactual: turbulence shock



Figure: Counterfactual: "Quasi-fixed" borrowing limit (red lines)

$$R_t k_{jt} + W_t n_{jt} \le \theta E_t M_{t+1} \left[ \rho_t \overline{V}_j^{ss} + (1 - \rho_t) \sum_{i=1}^J \pi_i \overline{V}_i^{ss} \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Turbulence vs micro-level uncertainty shock

• Uncertainty shock:

$$\ln(\sigma_{\tau,t}) = (1 - \rho_{\sigma}) \ln(\sigma_{\tau}) + \rho_{\sigma} \ln(\sigma_{\tau,t-1}) + \sigma_{\sigma} \varepsilon_t^{\sigma},$$

- Similar to uncertainty, turbulence increases conditional vol of productivity
  - conditional variance of z<sub>jt+1</sub>

$$\operatorname{var}(z_{jt+1}) = (1 - \rho_t)^2 \operatorname{var}(\tilde{z}) \tag{10}$$

- strictly decreasing in  $\rho_t$  for all j
- Different from uncertainty, turbulence preserves ex ante productivity distribution

$$G_{t+1}(z) = \Pr(z_{t+1} \le z)$$
  
=  $\Pr(z_t \le z)\rho_t + \Pr(\tilde{z} \le z)(1-\rho_t)$   
=  $G_t(z)\rho_t + \tilde{G}(z)(1-\rho_t) = G_t(z)$ 

#### IRF: uncertainty shock



Figure: Impulse responses to micro uncertainty shock  $\sigma_{\tau t}$ 

Uncertainty expands right tail of  $\tau$  distribution, raising average subsidy for active firms and increasing labor demand

Appendix 000000000

æ

#### Model vs data



Figure: Impulse response to turbulence shock: Model vs. data One std turbulence shock reduces aggregate output about 0.5%, both in annual model (blue line) and in data (black line)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Two types of policy interventions

• Policy I: Borrowing subsidy

s.t. 
$$(1 - \omega_{1t})(R_t k_{jt} + W_t n_{jt}) \le \theta B_{jt}$$
 (11)

Policy II: Credit easing

s.t. 
$$R_t k_{jt} + W_t n_{jt} \le \theta (1 + \omega_{2t}) B_{jt}$$
 (12)

- Both policies incur resource costs (gov't inefficiency); both financed by lump-sum taxes
- Policy interventions triggered by turbulence shock, with same persistence as shock

Appendix 000000000

æ



Figure: Stabilizing effects of policy interventions

Both policies effective for stabilizing output fluctuations
 Borrowing subsidy exacerbates misallocation; credit easing improves it

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Conclusion

- Firm-level evidence shows that countercyclical turbulence has important macro and reallocation effects
  - Financial frictions are important in reallocation effects
- RBC model with firm heterogeneity and financial frictions highlights reallocation channel for transmitting turbulence over business cycles
- Credit policies can stabilize turbulence-drive recessions, but implications for reallocation depend on policy
  - Borrowing subsidies amplify misallocation whereas credit easing mitigates it.

RBC Model

Policy

Appendix 000000000

(日)

# THANK YOU !

Policy 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Measuring turbulence

 Construct firm-level TFP following literature (Syverson, 2004; Foster, et al 2008), using data from Compustat and NBER-CES (1958-2016)

$$tfp_{ijt} = y_{ijt} - \alpha_{it}k_{ijt} - (1 - \alpha_{it})n_{ijt}$$
(13)

- Calculate Spearman rank correlation of firm-level TFP between year t and  $t + 1 \Rightarrow \rho_t$
- Turbulence measured by  $1 \rho_t$

back

Policy

Appendix

### Macro effects of turbulence

Local projections (Jorda, 2005)

 $x_{t+h} - x_{t-1} = \beta_0^h + \beta_1^h turb_t + \beta_2^h turb_{t-1} + \beta_3^h dx_{t-1} + \epsilon_{t+h},$ (14)

- $x_t$  denotes macro variable of interest (log level of GDP, C, I, H,  $IQR_n$ , and  $IQR_k$ );  $turb_t$  denotes turbulence in log units  $(log(1 \rho_t))$
- $\beta_1^h$  measures IRFs to turbulence shock at horizon h (years)
- Sample: Annual time series from 1958 to 2015

### Reallocation effects of turbulence [1]

• Estimate the regression:

$$x_{jt} = \beta_0 + \beta_1 Turb_t * High_TFP_{jt} + \mu_j + \eta_t + \epsilon_{jt}, \quad (15)$$

- 1.  $x_{jt}$ : growth of N (or K) in firm j at year t;
- 2. Turb<sub>t</sub>: turbulence at year t;
- 3. *High\_TFP<sub>jt</sub>*: binary dummy of high TFP firms (> median)
- 4. Robustness: quartile dummies replacing binary dummy
- β<sub>1</sub>: additional effects of turbulence on high-productivity firms
  - $\beta_1 < 0$ : high-productivity firms more sensitive to turbulence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Reallocation effects of turbulence: robustness

| Dep. Var.                             | Employme              | ent growth            | Capital growth        |                       |
|---------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                       | (1)                   | (2)                   | (3)                   | (4)                   |
| Turb <sub>t</sub> * z <sub>2,it</sub> | -0.186***             | -0.061                | -0.182***             | -0.127***             |
|                                       | (0.054)               | (0.044)               | (0.052)               | (0.049)               |
| Turb <sub>t</sub> * z <sub>3.it</sub> | -0.338***             | -0.098*               | -0.283***             | -0.256* <sup>**</sup> |
|                                       | (0.064)               | (0.047)               | (0.072)               | (0.070)               |
| Turb <sub>t</sub> * z <sub>4.it</sub> | -Ò.658* <sup>**</sup> | -Ò.242* <sup>**</sup> | -Ò.512* <sup>**</sup> | -Ò.412* <sup>**</sup> |
|                                       | (0.093)               | (0.062)               | (0.092)               | (0.084)               |
| constant                              | 0.076***              | 0.055****             | 0.085****             | 0.081* <sup>**</sup>  |
|                                       | (0.005)               | (0.003)               | (0.005)               | (0.005)               |
| Firm Fixed Effect                     | Yes                   | Yes                   | Yes                   | Yes                   |
| Year Fixed Effect                     | Yes                   | Yes                   | Yes                   | Yes                   |
| Observations                          | 24,288                | 24,288                | 24,288                | 24,288                |

- $z_{2,jt} = 1$ ,  $z_{3,jt} = 1$ ,  $z_{4,jt} = 1$  when firm j's TFP ranking is in 50th, 75th and 100th quartile;
- Column (2): lagged dummy  $z_{2,jt-1}, z_{3,jt-1}, z_{4,jt-1}$  replacing  $z_{2,jt}, z_{3,jt}, z_{4,jt}$

### Reallocation effects: role of financial friction

| Dep. Var.                                 | IQR of Employment |           | IQR of              | Capital              |
|-------------------------------------------|-------------------|-----------|---------------------|----------------------|
|                                           | (1)               | (2)       | (3)                 | (4)                  |
| High_FF <sub>it</sub>                     | 0.682**           | 0.435     | 0.962**             | 0.724*               |
|                                           | (0.315)           | (0.340)   | (0.368)             | (0.406)              |
| Turb <sub>t</sub> * High_FF <sub>it</sub> | -5.789**          | -3.805    | -8.151**            | -6.256*              |
|                                           | (2.863)           | (3.055)   | (3.397)             | (3.634)              |
| constant                                  | 2.008****         | 2.036**'* | 2.15** <sup>*</sup> | 2.174** <sup>*</sup> |
|                                           | (0.043)           | (0.045)   | (0.040)             | (0.043)              |
| Industry Fixed Effect                     | Yes               | Yes       | Yes                 | Yes                  |
| Year Fixed Effect                         | Yes               | Yes       | Yes                 | Yes                  |
| Observations                              | 2,505             | 2,421     | 2,505               | 2,421                |

- $High_FF_{it} = 1$  if industry *i*'s external financing dependence is above the median.
- Column (2): lagged dummy High\_FF<sub>it-1</sub> replacing High\_FF<sub>it</sub>

back

# Firms [2]

- At each productivity  $z_{jt}$ , firms are active iff  $\tau_{jt} \geq \tau_{jt}^*$
- Break-even threshold

$$\tau_{jt}^* = \frac{R_t^{\alpha} W_t^{1-\alpha}}{\alpha^{\alpha} (1-\alpha)^{1-\alpha} A_t z_{jt}}$$
(16)

Labor demand

$$n_t(z_{jt}, \tau_{jt}) = \begin{cases} \frac{(1-\alpha)\theta B_{jt}}{W_t}, & \text{if } \tau_{jt} \ge \tau_{jt}^* \\ 0, & \text{otherwise} \end{cases}$$
(17)

• Capital demand

$$k_{t}(z_{jt}, \tau_{jt}) = \begin{cases} \frac{\alpha \theta B_{jt}}{R_{t}}, & \text{if } \tau_{jt} \ge \tau_{jt}^{*} \\ 0, & \text{otherwise} \end{cases}$$
(18)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# Misallocation effect of turbulence in steady state

#### Proposition 1

Given the steady-state factor prices R and W, an increase in average turbulence reduces the share of labor hours allocated to high-productivity firms.

$$rac{\partial \eta_{ji}}{\partial ar{
ho}} > 0,$$

where  $\eta_{ji} \equiv \frac{N_j}{N_i}$  denotes relative labor hours allocated to firms with  $z_j > z_i$ .

• Higher turbulence reduces expected value of high-productivity firms, tightening their credit constraints and reallocating N to low-productivity firms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Calibration [1]

- Turbulence shock  $1 \rho_t$ 
  - Calibrated based on Spearman correlation of firm-level TFP in annual data 1960-2015, converted to quarterly
  - TFP in data is revenue based, corres. to  $TFP_{jt} = z_{jt}\tau_{jt}$  in model
  - $\tau_{jt}$  is i.i.d.  $\Rightarrow$  Spearman correlation of true productivity  $z_{jt}$  same as that of  $TFP_{jt}$
- Idiosyncratic production distortion τ<sub>jt</sub>
  - Average dispersion  $\sigma_{\tau} = 0.6$  to match IQR of employment (17) in 1960-2015 data
  - Mean value of normalized such that  $\mathbb{E} au_{jt} = 1$
- Calibrate process for  $z_{jt}$  based on  $tfp_{jt} = \log(z_{jt}) + \log(\tau_{jt})$ 
  - Measured TFP has std  $\sigma_{tfp} = 0.607$
  - $\log(z_{jt})$  and  $\log(\tau_{jt})$  independent  $\Rightarrow \sigma_z = \sqrt{\sigma_{tfp}^2 \sigma_{\tau}^2} = 0.05$

RBC Model

Policy

Appendix

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

# Calibration [2]

|                 | Parameter Description     | Value | Target                          |
|-----------------|---------------------------|-------|---------------------------------|
| β               | Discount factor           | 0.99  | Annual real rate of 4% per year |
| ά               | Capital share             | 0.34  | Ave. cost share of capital      |
| δ               | Capital depreciation rate | 0.025 | Annual depreciation rate of 10% |
| $\gamma$        | Inverse Frisch elasticity | 5     | Frisch elasticity of 0.2        |
| $\dot{\theta}$  | Loan to value ratio       | 0.35  | Working K to equity (Compustat) |
| $\bar{\rho}$    | Ave persistence           | 0.974 | Compustat and NBER-CES          |
| $\rho_{\rho}$   | AR(1) of turbulence       | 0.882 | Compustat and NBER-CES          |
| $\sigma_0$      | std of turbulence shock   | 0.124 | Compustat and NBER-CES          |
| $\mu_{\tau}$    | Average distortion        | -0.18 | Compustat and NBER-CES          |
| $\sigma_{\tau}$ | std of distortion         | 0.60  | Compustat and NBER-CES          |
| $\sigma_z$      | std of firm-level TFP     | 0.05  | Compustat and NBER-CES          |

back

RBC Model

Policy

Appendix 000000000

### IRF: TFP shock



Figure: Impulse responses to negative aggregate TFP shock.

1. Decline in TFP shrinks set of active firms; 2. Lower prod. firms more likely to go inactive, improving allocation efficiency (cleansing effect)