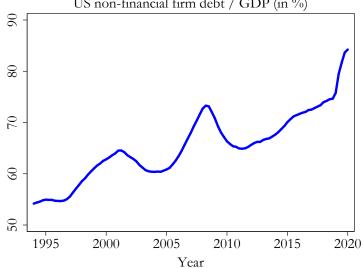
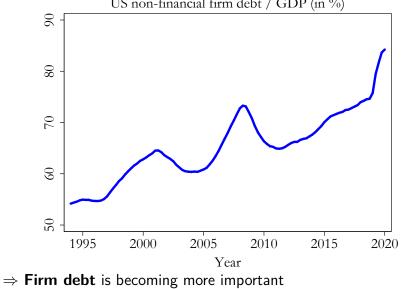
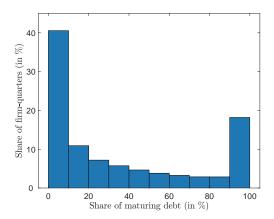
Corporate Debt Maturity Matters For Monetary Policy

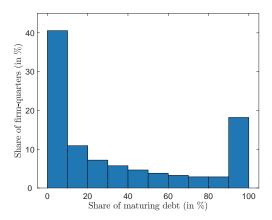

Joachim Jungherr¹ Matthias Meier² Timo Reinelt² Immo Schott³


¹University of Bonn

²University of Mannheim

³Université de Montréal and CIREQ


Danmarks Nationalbank. Deutsche Bundesbank. Norges Bank: 8th Conference on New Developments in Business Cycle Analysis Tuesday, December 14th, 2021



Maturing debt share (firm-level, Compustat): debt maturing within next 12 months / total firm debt

Maturing debt share (firm-level, Compustat): debt maturing within next 12 months / total firm debt

Maturing debt share (firm-level, Compustat): debt maturing within next 12 months / total firm debt

 \Rightarrow Large heterogeneity in **maturing debt share** across firms

Theoretically ambiguous:

Theoretically ambiguous:

1. Short-term debt requires high roll-over per period

Theoretically ambiguous:

1. Short-term debt requires high roll-over per period

 \Rightarrow Short-term debt should increase investment response to monetary policy (roll-over risk)

Theoretically ambiguous:

1. Short-term debt requires high roll-over per period

 \Rightarrow Short-term debt should increase investment response to monetary policy (roll-over risk)

 Interest rates and inflation have stronger effect on real burden of nominal debt if remaining maturity is longer (Gomes-Jermann-Schmid AER 2016)

Theoretically ambiguous:

1. Short-term debt requires high roll-over per period

 \Rightarrow Short-term debt should increase investment response to monetary policy (roll-over risk)

 Interest rates and inflation have stronger effect on real burden of nominal debt if remaining maturity is longer (Gomes-Jermann-Schmid AER 2016)

 \Rightarrow Long-term debt should increase investment response to monetary policy (debt overhang)

Empirical analysis:

We merge bond-level information with firm-level balance sheet data and monetary policy shocks

Empirical analysis:

We merge bond-level information with firm-level balance sheet data and monetary policy shocks

Result:

Firm investment responds more strongly to monetary policy shocks when share of maturing bonds is larger

Model:

- New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

Model:

- ► New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

Results:

 Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads

Model:

- New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

- Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads
- In line with our empirical results, firms respond more strongly when maturing bond share is larger

Model:

- New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

- Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads
- In line with our empirical results, firms respond more strongly when maturing bond share is larger
 - Roll-over risk is small

Model:

- New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

- Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads
- In line with our empirical results, firms respond more strongly when maturing bond share is larger
 - Roll-over risk is small
 - **Debt overhang** important

Model:

- ► New Keynesian heterogeneous firm model
- financial frictions and endogenous debt maturity

- Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads
- In line with our empirical results, firms respond more strongly when maturing bond share is larger
 - Roll-over risk is small
 - **Debt overhang** important

- 1. Introduction
- 2. Empirical Evidence
- 3. Model Results

1. Introduction

2. Empirical Evidence

3. Model Results

Merge bond-level information from Fixed Income Securities Database (FISD) with quarterly firm-level balance sheet data from Compustat Merge bond-level information from Fixed Income Securities Database (FISD) with quarterly firm-level balance sheet data from Compustat

Baseline sample:

- Listed non-financial US firms with outstanding bonds
- Non-callable and fixed-coupon bonds
- 35,000 firm-quarters from 1995Q1 to 2017Q4
- ▶ 50% of US non-financial firm debt
- Average firm in sample: 62% of debt are bonds
- Average bond maturity at issuance: 8 years
- ▶ 50% of maturing bonds re-financed within same quarter

Key variable: Maturing bonds share of firm i in quarter t

$$\mathcal{M}_{it} = rac{\mathsf{maturing bonds (in \$)}_{it}}{\mathsf{total debt (in \$)}_{it-1}} imes 100$$

Key variable: Maturing bonds share of firm i in quarter t

$$\mathcal{M}_{it} = rac{\mathsf{maturing bonds (in \$)}_{it}}{\mathsf{total debt (in \$)}_{it-1}} imes 100$$

Distribution

high frequency identification

- high frequency identification
- price change of three-months-ahead Federal Funds Futures between 10 min before and 20 min after FOMC announcement (Gertler-Karadi AEJ:Macro 2015)

- high frequency identification
- price change of three-months-ahead Federal Funds Futures between 10 min before and 20 min after FOMC announcement (Gertler-Karadi AEJ:Macro 2015)
- aggregated to quarterly frequency

- high frequency identification
- price change of three-months-ahead Federal Funds Futures between 10 min before and 20 min after FOMC announcement (Gertler-Karadi AEJ:Macro 2015)
- aggregated to quarterly frequency
- excluding unscheduled FOMC meeting

- high frequency identification
- price change of three-months-ahead Federal Funds Futures between 10 min before and 20 min after FOMC announcement (Gertler-Karadi AEJ:Macro 2015)
- aggregated to quarterly frequency
- excluding unscheduled FOMC meeting
- sign-restrictions (Jarocinski-Karadi AEJ:Macro 2020)

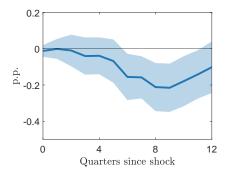
Baseline Estimation

Panel local projections:

 $\log K_{it+h} - \log K_{it-1} = \alpha_i^h + \alpha_{st}^h + \beta_0^h \mathcal{M}_{it} + \beta_1^h \mathcal{M}_{it} \varepsilon_t^{\mathsf{MP}} + \nu_{it}^h$

- ► firm-level capital K_{it}
- forecast horizon $h \ge 0$
- firm-fixed effect α_i^h , sector-quarter-fixed effect α_{st}^h
- maturing bonds share \mathcal{M}_{it}
- monetary policy shock $\varepsilon_t^{\text{MP}}$

Panel local projections:

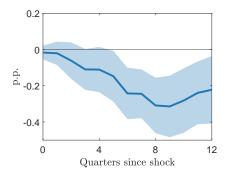

 $\log K_{it+h} - \log K_{it-1} = \alpha_i^h + \alpha_{st}^h + \beta_0^h \mathcal{M}_{it} + \beta_1^h \mathcal{M}_{it} \varepsilon_t^{\mathsf{MP}} + \nu_{it}^h$

► firm-level capital K_{it}

- forecast horizon $h \ge 0$
- firm-fixed effect α_i^h , sector-quarter-fixed effect α_{st}^h
- maturing bonds share \mathcal{M}_{it}
- monetary policy shock $\varepsilon_t^{\text{MP}}$
- key coefficient: β_1^h

Baseline Estimation

Estimated coefficient β_1^h :

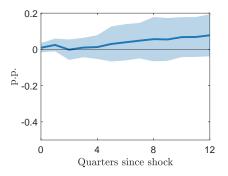


• contractionary 1-std MP shock $\varepsilon_t^{\text{MP}}$

- if *M_{it}* is 1 std (1.6pp) higher at time of MP shock, 8 quarters later firm capital is 0.2 pp smaller
 ⇒ if *M_{it}* is 10 pp higher at time of MP shock, 8 quarters later
 - firm capital is 1.25 pp smaller
- ► 95% confidence intervals

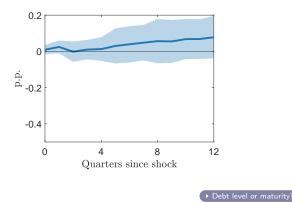
Robustness

Estimated coefficient β_1^h :


- Substitute \mathcal{M}_{it} by within-firm deviation from firm-specific mean: $\mathcal{M}_{it} - \overline{\mathcal{M}}_i$
- Add within-firm deviations of control variables: assets, leverage, liquidity, sales growth, distance to default, average maturity of outstanding bonds

Empirical Evidence

► Use maturing bond share in preceding quarter: M_{it-1} instead of M_{it}


► Use maturing bond share in preceding quarter: M_{it-1} instead of M_{it}

Estimated coefficient β_1^h :

► Use maturing bond share in preceding quarter: M_{it-1} instead of M_{it}

Estimated coefficient β_1^h :

Summary Empirical Results

firm investment responds more strongly to monetary policy shocks when maturing bonds share M_{it} is larger

- firm investment responds more strongly to monetary policy shocks when maturing bonds share M_{it} is larger
- ▶ 1 std higher maturing bonds share M_{it} at time of 1-std MP shock ⇒ 8 quarters later firm capital response is stronger by 0.2 pp

- 1. Introduction
- 2. Empirical Evidence
- 3. Model Results

- 1. New Keynesian model
 - Sticky prices and Taylor rule

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks
- 3. Equity vs. debt
 - Tax advantage of debt + equity issuance costs

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks
- 3. Equity vs. debt
 - Tax advantage of debt + equity issuance costs vs. expected default costs

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks
- 3. Equity vs. debt
 - Tax advantage of debt + equity issuance costs vs. expected default costs

4. Endogenous debt maturity:

Long-term debt saves debt issuance costs

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks
- 3. Equity vs. debt
 - Tax advantage of debt + equity issuance costs vs. expected default costs

4. Endogenous debt maturity:

Long-term debt saves debt issuance costs but creates future debt overhang...

- 1. New Keynesian model
 - Sticky prices and Taylor rule
- 2. Heterogeneous firms
 - Firms receive idiosyncratic productivity and capital quality shocks
- 3. Equity vs. debt
 - Tax advantage of debt + equity issuance costs vs. expected default costs

4. Endogenous debt maturity:

Long-term debt saves debt issuance costs but creates future debt overhang...

Solution method

oration 🚺 🕨 Dis

Introduction

Model: Debt overhang

The price of a bond sold by a firm depends on the firm's future default risk

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)
- When a firm issues a long-term bond, it would like to promise to keep future leverage low

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)
- When a firm issues a long-term bond, it would like to promise to keep future leverage low
- After the firm has sold the bond, it will still internalize all benefits of higher leverage

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)
- When a firm issues a long-term bond, it would like to promise to keep future leverage low
- After the firm has sold the bond, it will still internalize all benefits of higher leverage but not expected default costs borne by existing bondholders

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)
- When a firm issues a long-term bond, it would like to promise to keep future leverage low
- After the firm has sold the bond, it will still internalize all benefits of higher leverage but not expected default costs borne by existing bondholders
- \Rightarrow Commitment problem:

- The price of a bond sold by a firm depends on the firm's future default risk
- The firm can control default risk through leverage (= debt / capital)
- When a firm issues a long-term bond, it would like to promise to keep future leverage low
- After the firm has sold the bond, it will still internalize all benefits of higher leverage but not expected default costs borne by existing bondholders

\Rightarrow Commitment problem:

leverage ex-post higher than optimal ex-ante

Mistorts future leverage

- i... distorts future leverage
- ... reduces bond prices and increases credit spreads today

- i... distorts future leverage
- ... reduces bond prices and increases credit spreads today

Effect is stronger if...

- Mistorts future leverage
- ... reduces bond prices and increases credit spreads today

Effect is stronger if...

 ... long-term debt has longer maturity (Myers JFE 1977, Gomes-Jermann-Schmid AER 2016)

- Mistorts future leverage
- ... reduces bond prices and increases credit spreads today

Effect is stronger if...

- ... long-term debt has longer maturity (Myers JFE 1977, Gomes-Jermann-Schmid AER 2016)
- ▶ ... ex-ante **default risk** is higher

Smaller firms...

Smaller firms...

▶ ... are less profitable (fixed cost of operation)

Smaller firms...

- ▶ ... are less profitable (fixed cost of operation)
- ▶ ... have higher **default risk**

Smaller firms...

- ▶ ... are less profitable (fixed cost of operation)
- ► ... have higher **default risk**
- ► ... pay higher **credit spread**

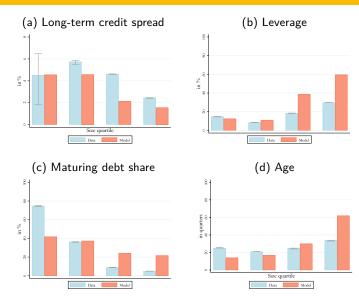
Cross-section in model:

Smaller firms...

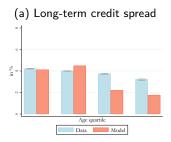
- ... are less profitable (fixed cost of operation)
- ► ... have higher **default risk**
- ► ... pay higher credit spread
- ► ... choose lower **leverage**

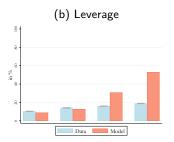
Cross-section in model:

Smaller firms...

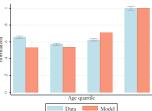

- ... are less profitable (fixed cost of operation)
- ► ... have higher **default risk**
- ► ... pay higher credit spread
- ... choose lower leverage
- ... choose lower share of long-term debt

Cross-section in model:

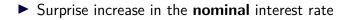

Smaller firms...

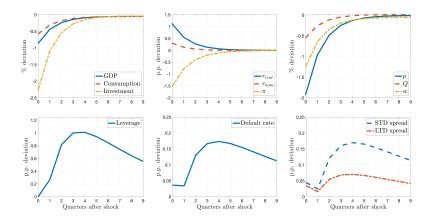

- ... are less profitable (fixed cost of operation)
- ► ... have higher **default risk**
- ► ... pay higher credit spread
- ... choose lower leverage
- ... choose lower share of long-term debt
- ▶ ... have higher maturing debt share

Model Results: Cross-Section by Firm Size



Model Results: Cross-Section by Firm Age





(d) Size

- Surprise increase in the **nominal** interest rate
- ▶ Prices are sticky ⇒ **real** interest rate increases

- Surprise increase in the **nominal** interest rate
- ▶ Prices are sticky ⇒ **real** interest rate increases
- Lower benefit of investment for all firms

Maturing bonds share matters for firms' investment response...

Maturing bonds share matters for firms' investment response...

1. Roll-over risk

Maturing bonds share matters for firms' investment response...

- 1. Roll-over risk
- 2. Debt overhang

(1.) Roll-over risk:

(1.) Roll-over risk:

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

(1.) Roll-over risk:

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

Contractionary MP shock lowers bond prices

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

- Contractionary MP shock lowers **bond prices**
- ► Short-term debt requires high roll-over ⇒ higher pass-through to cash flow

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

- Contractionary MP shock lowers bond prices
- ► Short-term debt requires high roll-over ⇒ higher pass-through to cash flow
- ► Long-term debt matures more slowly \Rightarrow less **roll-over** \Rightarrow **insurance** against roll-over risk

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

- Contractionary MP shock lowers bond prices
- ► Short-term debt requires high roll-over ⇒ higher pass-through to cash flow
- ► Long-term debt matures more slowly \Rightarrow less **roll-over** \Rightarrow **insurance** against roll-over risk

\Rightarrow Higher maturing bonds share related to stronger investment response

$$k = q + e + \tilde{b}^{S} \cdot p^{S} \downarrow + \left(\tilde{b}^{L} - \frac{b}{\pi}\right) \cdot p^{L} \downarrow$$

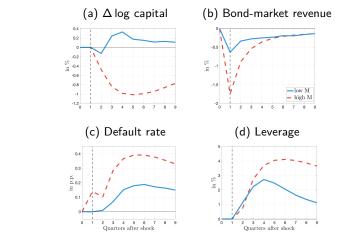
- Contractionary MP shock lowers bond prices
- ► Short-term debt requires high roll-over ⇒ higher pass-through to cash flow
- ► Long-term debt matures more slowly \Rightarrow less **roll-over** \Rightarrow **insurance** against roll-over risk

 \Rightarrow Higher maturing bonds share related to stronger investment response but quantitatively small

(2.) **Debt overhang**:

• Contractionary MP shock reduces market value of **capital** Qk and **inflation** π

- Contractionary MP shock reduces market value of **capital** Qk and **inflation** π
- This increases **real burden** of existing **nominal** long-term debt $b/\pi \Rightarrow$ **default risk** increases for all firms

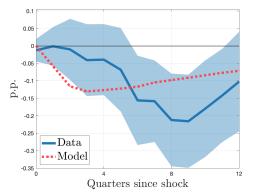

- Contractionary MP shock reduces market value of **capital** Qk and **inflation** π
- This increases **real burden** of existing **nominal** long-term debt $b/\pi \Rightarrow$ **default risk** increases for all firms
- Default risk increases more strongly for firms with higher ex-ante default risk

- Contractionary MP shock reduces market value of **capital** Qk and **inflation** π
- ► This increases **real burden** of existing **nominal** long-term debt $b/\pi \Rightarrow$ **default risk** increases for all firms
- Default risk increases more strongly for firms with higher ex-ante default risk
- These firms also have higher maturing bonds share

(2.) Debt overhang:

- Contractionary MP shock reduces market value of **capital** Qk and **inflation** π
- ► This increases **real burden** of existing **nominal** long-term debt $b/\pi \Rightarrow$ **default risk** increases for all firms
- Default risk increases more strongly for firms with higher ex-ante default risk
- These firms also have higher **maturing bonds share**

 \Rightarrow Higher maturing bonds share related to stronger investment response


High \mathcal{M}_{it} :

- larger increase in default risk
- larger drop of investment

Run local projections from empirical part on **simulated model data**

Run local projections from empirical part on **simulated model data**

Estimated coefficient B^h:

 \Rightarrow Peak estimate about 60% of empirical counterpart

Empirical Evidence

- 1. Introduction
- 2. Empirical Evidence
- 3. Model Results

Conclusion

• Empirical: firms react more strongly when maturing bonds share is larger

- Empirical: firms react more strongly when maturing bonds share is larger
- ► Model: roll-over risk and debt overhang together can explain 60% of empirical estimate

- Empirical: firms react more strongly when maturing bonds share is larger
- ► Model: roll-over risk and debt overhang together can explain 60% of empirical estimate

Work in progress:

implications for monetary policy design

► ...

Question: How does debt maturity matter for the effectiveness of monetary policy?

- Empirical: firms react more strongly when maturing bonds share is larger
- ► Model: roll-over risk and debt overhang together can explain 60% of empirical estimate

Work in progress:

implications for monetary policy design

...

Maturing debt share over time

Thank you!

Appendix: Literature

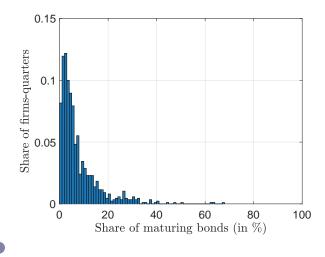
Empirical evidence on debt maturity and financial crises:

Duchin-Ozbas-Sensoy (2010), Almeida-Campello-Laranjeira-Weisbenner (2012), Kalemli-Ozcan-Laeven-Moreno (2018),

Benmelech-Frydman-Papanikolaou (2019), Buera-Karmakar (2021), ...

Empirical evidence on monetary policy and firm heterogeneity:

Gertler-Gilchrist (1994), Cloyne-Ferreira-Froemel-Surico (2018), Ippolito-Ozdagli-Perez-Orive (2018), Jeenas (2019), Anderson-Cesa-Bianchi (2020), Ottonello-Winberry (2020), ...

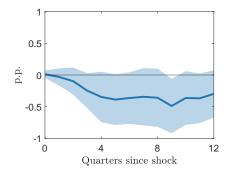

► Heterogeneous firm models with financial frictions:

Bernanke-Gertler-Gilchrist (1999), Cooley-Quadrini (2001), Khan-Thomas (2013), Gomes-Jermann-Schmid (2016), Crouzet (2018), Arellano-Bai-Kehoe (2019), Ottonello-Winberry (2020), ...

▶ back

Appendix: Maturing Bonds Share

- 6% of firm-quarters with $\mathcal{M}_{it} > 0$
- Histogram conditional on $\mathcal{M}_{it} > 0$:

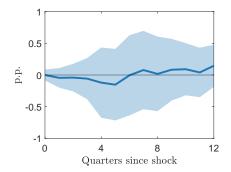


back

Appendix: Debt level or debt maturity?

Does higher **leverage** at time of MP shock imply stronger investment response?

Estimation without \mathcal{M}_{it} : Interaction with leverage



Appendix: Debt level or debt maturity?

Does higher **leverage** at time of MP shock imply stronger investment response?

Estimation with \mathcal{M}_{it} : Interaction with leverage

Appendix: Firm Problem

$$V(q, b, z, S) = \max_{\phi(q, b, z, S) = \{k, e \ge \underline{e}, \tilde{b}^S, \tilde{b}^L\}} - e - G(e) - H\left(\tilde{b}^S, \tilde{b}^L, b/\pi\right)$$

$$+ \mathbb{E}\Lambda \int_{\bar{\varepsilon}}^{\infty} \left[(1 - \kappa) V\left(q', b', z', S'\right) + \kappa \left(q' - \frac{b'}{\pi'} g(q', b', z', S')\right) \right] \varphi(\varepsilon) d\varepsilon$$
s.t.: $q' = Q'k - \frac{\tilde{b}^S}{\pi'} - \frac{\gamma \tilde{b}^L}{\pi'} + (1 - \tau) \left[py - wl + (\varepsilon - \delta)Q'k - f - \frac{c(\tilde{b}^S + \tilde{b}^L)}{\pi'} \right]$

$$y = z \left(k^{\psi}l^{1 - \psi}\right)^{\zeta}, \quad \text{where:} \quad l = \left(\zeta(1 - \psi)pzk^{\psi\zeta}/w\right)^{\frac{1}{1 - \zeta(1 - \psi)}}$$

$$\bar{\varepsilon}: \quad (1 - \kappa) \hat{\mathbb{E}} V\left(q', b', z', S'\right) + \kappa \left(q' - \frac{b'}{\pi'} \hat{\mathbb{E}} g(q', b', z', S')\right) = 0$$

$$Qk = q + e + \tilde{b}^S \rho^S + \left(\tilde{b}^L - \frac{b}{\pi}\right) \rho^L$$

$$b' = (1 - \gamma)\tilde{b}^L$$

$$p^S = \mathbb{E}\Lambda \left[[1 - \Phi(\bar{\varepsilon})] \frac{1 + c}{\pi'} + \frac{(1 - \xi)}{\tilde{b}^S + \tilde{b}^L} \int_{-\infty}^{\bar{\varepsilon}} \underline{q} \, \varphi(\varepsilon) d\varepsilon \right]$$

$$p^L = \mathbb{E}\Lambda \left[\int_{\bar{\varepsilon}}^{\infty} \frac{\gamma + c + (1 - \gamma)g(q', b', z', S')}{\pi'} \varphi(\varepsilon) d\varepsilon + \frac{(1 - \xi)}{\tilde{b}^S + \tilde{b}^L} \int_{-\infty}^{\bar{\varepsilon}} \underline{q} \, \varphi(\varepsilon) d\varepsilon \right]$$

Reiter (2009):

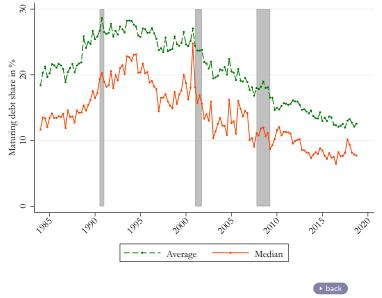
- 1. global solution of steady state
 - idiosyncratic firm-level shocks
 - stationary firm distribution $\mu(q, b, z)$
 - computational challenge in models of risky long-term debt: p^L
 - value function iteration and interpolation
- 2. perturbation for aggregate dynamics
 - aggregate monetary policy shock
 - first-order linear approximation

▶ back

Table: Externally calibrated parameters

Parameter	Description	Value
β	preference parameter	0.99
С	debt coupon	1/eta-1
θ	inverse Frisch elasticity	0.5
ζ	production technology	0.75
ψ	production technology	0.33
δ	depreciation rate	0.025
γ	repayment rate long-term debt	0.05
au	corporate income tax	0.4
ho	demand elasticity retail goods	10
λ	price adjustment cost parameter	90
ϕ	capital goods technology	4
$arphi_{m}$	Taylor rule	1.25
$ ho_m$	Taylor rule	0.5

Table: Internally calibrated parameters


Param.	Value	Target	Data	Model
σ_{ε}	0.66	Av. firm leverage	34.4%	29.3%
ξ	0.90	Av. credit spread on long-term debt	3.1%	3.3%
η	0.0045	Av. share of maturing debt	35.5%	33.6%
ν	0.0005	Av. annual equity issuance / assets	11.4%	14.7%
ρ_z	0.983	Median of av. capital growth (quart.)	1.0%	1.2%
σ_z	0.184	Median of s.d. of capital growth (quart.)	8.3%	9.7%
κ	0.0151	Total exit rate (quarterly)	2.2%	2.3%
f	0.274	Steady state value of entry $V(0, 0, z^e, S)$	-	0

▶ back

	Mean	F	Percentile					
		25	50	75				
Data								
Leverage	34.4	1.0	19.4	40.3				
Credit spread on long-term debt	3.1	1.6	3.1	4.3				
Share of maturing debt	35.5	1.8	18.1	67.2				
Model								
Leverage	29.3	11.2	16.2	45.1				
Credit spread on long-term debt	3.3	1.8	4.0	4.6				
Share of maturing debt	33.6	23.1	33.1	39.2				

back

Appendix: Time trend

Model Results