Redistribution and the Monetary-Fiscal Policy Mix

Saroj Bhattarai UT Austin Jae Won Lee Seoul National Univ. Choongryul Yang Federal Reserve Board

New Developments in Business Cycles Conference Dec 13-14 2021

The views expressed in this presentation are solely our own and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any person associated with the Federal Reserve System.

Motivation

- Two severe post-war US contractions—the Great Recession and the COVID recession
- Fiscal policy responses included significant *transfer* components
 - The American Recovery and Reinvestment (ARRA) Act of 2009
 - The Coronavirus Aid, Relief, and Economic Security (CARES) Act of 2020

Motivation

- Two severe post-war US contractions—the Great Recession and the COVID recession
- Fiscal policy responses included significant *transfer* components
 - The American Recovery and Reinvestment (ARRA) Act of 2009
 - The Coronavirus Aid, Relief, and Economic Security (CARES) Act of 2020
- Revived interest in the effectiveness of transfer policies for macroeconomic stabilization

Motivation

- Two severe post-war US contractions—the Great Recession and the COVID recession
- Fiscal policy responses included significant *transfer* components
 - The American Recovery and Reinvestment (ARRA) Act of 2009
 - The Coronavirus Aid, Relief, and Economic Security (CARES) Act of 2020
- Revived interest in the effectiveness of transfer policies for macroeconomic stabilization
- Ongoing debates on the rapid increase in public debt and inflationary pressures
- These large-scale transfer programs eventually require *fiscal and/or monetary adjustments* to finance them

Questions

- What are the macroeconomic effects of policies that transfer resources from unconstrained to constrained agents?
- What are the determinants of the transfer multiplier?
- What are the welfare implications of such redistribution policies?

This Paper

- Focus on the source and role of financing of redistribution
- A transfer policy redistributes resources toward "Hand-to-mouth" households and away from "Ricardian" households that own nominal government bonds
- Two distinct ways to finance transfers

This Paper

- Focus on the source and role of financing of redistribution
- A transfer policy redistributes resources toward "Hand-to-mouth" households and away from "Ricardian" households that own nominal government bonds
- Two distinct ways to finance transfers
 - Under the *monetary regime*, the government raises taxes and inflation is then stabilized in the usual way by the central bank (conventional tax financed transfers)

This Paper

- Focus on the source and role of financing of redistribution
- A transfer policy redistributes resources toward "Hand-to-mouth" households and away from "Ricardian" households that own nominal government bonds
- Two distinct ways to finance transfers
 - Under the *monetary regime*, the government raises taxes and inflation is then stabilized in the usual way by the central bank (conventional tax financed transfers)
 - Under the *fiscal regime*, the government does not adjust taxes and the central bank allows inflation to rise to stabilize the real value of debt (inflation tax financed transfers)

Preview of Results

- In an analytical two-agent model show:
 - Transfer policy is inflationary in both regimes
 - It generates greater and more persistent inflation in the fiscal regime

Preview of Results

- In an analytical two-agent model show:
 - Transfer policy is inflationary in both regimes
 - It generates greater and more persistent inflation in the fiscal regime
- In a quantitative two-sector TANK model applied to the COVID recession and the CARES Act show:
 - Inflation-financed transfers lead to high output and consumption multipliers
 - Welfare of both household types is higher under the fiscal regime
 - Inflation-financed transfers can lead a Pareto improvement relative to no-transfer case

Related Literature

- Fiscal-monetary interactions literature (RANK model)
 - Leeper (1991), Sims (1994), Woodford (1994), Cochrane (2001)
- Two-agent models (Monetary regime)
 - Galí, López-Salido and Vallés (2007), Bilbiie (2018)
 - Transfer multipliers in a TANK model : Bilbiie et al. (2013)
- Macroeconomic effects of the COVID crisis (Monetary regime)
 - Two-sector, two-agent model: Guerrieri, Lorenzoni, Straub and Werning (2020)
 - Effects of fiscal policy in a model with household heterogeneity: Faria-e-Castro (2021), Bayer, Born, Luetticke and Müller (2020), Kaplan, Moll and Violante (2020)
- Fiscal regime and transfers in a TANK model (No recession and financing trade-offs)
 - Bhattarai, Lee, Park and Yang (2020), Bianchi, Faccini and Melosi (2020)

Outline

Simple Model

- 2 Quantitative Model
- ③ Data and Calibration
- ④ Quantitative Results

⑤ Conclusion

Simple Model

- Two types of households: Ricardian (R) and Hand-To-Mouth (HTM)
- R households, of measure 1λ , choose $\{C_t^R, L_t^R, b_t^R\}$ to maximize

$$\sum_{t=0}^{\infty} \beta^t \left[\log C_t^R - \chi \frac{\left(L_t^R\right)^{1+\varphi}}{1+\varphi} \right]$$

subject to a sequence of flow budget constraints

$$C_t^R + b_t^R = R_{t-1} \frac{1}{\Pi_t} b_{t-1}^R + w_t L_t^R + \Psi_t^R - \tau_t^R,$$

where $b_t^R = \frac{B_t^R}{P_t}$ is the real value of nominal debt and $\Pi_t = \frac{P_t}{P_{t-1}}$ is inflation

Hand-to-Mouth (HTM) Households and Firms

• HTM households, of measure λ , consume government transfers, s_t^H , every period:

$$C_t^H = s_t^H.$$

• A representative firm chooses L_t to maximize profits:

$$\Psi_t = Y_t - w_t L_t,$$

subject to the production function

$$Y_t = L_t.$$

Government

• Government budget constraint (GBC) is

$$b_t = \frac{R_{t-1}}{\Pi_t} b_{t-1} - \tau_t + s_t,$$
 (GBC)

where $b_t = \frac{B_t}{P_t}$ is the real value of nominal debt, s_t is transfers, and τ_t is taxes

• Transfer, s_t , is exogenous and deterministic

Government

• Government budget constraint (GBC) is

$$b_t = \frac{R_{t-1}}{\Pi_t} b_{t-1} - \tau_t + s_t,$$
 (GBC)

where $b_t = \frac{B_t}{P_t}$ is the real value of nominal debt, s_t is transfers, and τ_t is taxes

- Transfer, s_t , is exogenous and deterministic
- Monetary and tax policy rules are

 $\frac{R_t}{\bar{R}} = \left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\phi},$ (Monetary policy rule) $(\tau_t - \bar{\tau}) = \psi(b_{t-1} - \bar{b}),$ (Tax policy rule)

where ϕ and ψ are feedback policy parameters that govern the regimes

Transfer Multipliers

- $s_t > \bar{s}$ until time period T; $s_t = \bar{s}$ for $t \ge T + 1$
- The "transfer multipliers" are independent of monetary-fiscal policy mix

$$\frac{dY(s_t)}{ds_t} = \frac{1}{1 + (1 - \lambda)^{1 + \varphi} \frac{\varphi}{\chi} Y_t^{-(1 + \varphi)}} \in [0, 1],$$
$$\frac{dC^R(s_t)}{ds_t} = \frac{1}{1 - \lambda} \left[\frac{dY(s_t)}{ds_t} - 1 \right] \le 0,$$
$$\frac{dC^H(s_t)}{ds_t} = \frac{1}{\lambda}.$$

• Inflation dynamics depend on the monetary-fiscal policy mix

Effects of Redistribution–Inflation

• The equilibrium path $\{\Pi_t, b_t\}$ satisfies:

$$\lim_{t \to \infty} \left[\beta^t \frac{1}{C_t^R} b_t \right] = 0, \qquad \text{(Transversality condition)}$$

$$\left(\frac{\Pi_{t+1}}{\overline{\Pi}} \right) = \frac{C_t^R}{C_{t+1}^R} \left(\frac{\Pi_t}{\overline{\Pi}} \right)^{\phi}, \qquad \text{(How } \Pi_{t+1} \text{ depends on } \Pi_t \text{ and the real rate)}$$

$$\left(b_t - \overline{b} \right) = \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \psi \right] \left(b_{t-1} - \overline{b} \right) + \left(s_t - \overline{s} \right) + \beta^{-1} \left[\frac{C_t^R}{C_{t-1}^R} - 1 \right] \overline{b}, \qquad \text{(GBC: } t \ge 1)$$

$$\left(b_0 - \overline{b} \right) = \beta^{-1} \left(\frac{\overline{\Pi}}{\Pi_0} - 1 \right) \overline{b} + \left(s_0 - \overline{s} \right). \qquad \text{(GBC: } t = 0)$$

Effects of Redistribution—Inflation

• The equilibrium path $\{\Pi_t, b_t\}$ satisfies:

$$\lim_{t \to \infty} \left[\beta^t \frac{1}{C_t^R} b_t \right] = 0, \qquad (\text{Transversality condition})$$

$$\left(\frac{\Pi_{t+1}}{\bar{\Pi}} \right) = \frac{C_t^R}{C_{t+1}^R} \left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\phi}, \qquad (\text{How } \Pi_{t+1} \text{ depends on } \Pi_t \text{ and the real rate})$$

$$\left(b_t - \bar{b} \right) = \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \psi \right] \left(b_{t-1} - \bar{b} \right) + \left(s_t - \bar{s} \right) + \beta^{-1} \left[\frac{C_t^R}{C_{t-1}^R} - 1 \right] \bar{b}, \qquad (\text{GBC: } t \ge 1)$$

$$\left(b_0 - \bar{b} \right) = \beta^{-1} \left(\frac{\bar{\Pi}}{\Pi_0} - 1 \right) \bar{b} + \left(s_0 - \bar{s} \right). \qquad (\text{GBC: } t = 0)$$

• How the TVC is satisfied *depends* on the fiscal policy parameter ψ

- When $\psi > 0$, debt dynamics satisfies the TVC regardless of the value of b_{T+1}
- When $\psi \leq 0$, the TVC requires $b_{T+1} = \overline{b}$, which can be achieved when monetary policy allows inflation to adjust by the required amount

Effects of Redistribution–Inflation: Monetary Regime

- Under the monetary regime, $\psi > 0$ and $\phi > 1$
- Inflation for $t \ge T + 1$ is

 $\Pi_t = \bar{\Pi}, \quad \forall t \ge T+1$

• Pin down Π_t from t = 0 to T along the saddle path and derive initial inflation:

$$\frac{\Pi_0}{\bar{\Pi}} = C^R \left(\bar{s}\right)^{\frac{1}{\phi^T + 1}} \left[\frac{1}{C^R \left(s_T\right) C^R \left(s_{T-1}\right) \cdots C^R \left(s_0\right)} \right]^{\frac{1}{\phi}} = \prod_{t=0}^T \left[\frac{C^R \left(\bar{s}\right)}{C^R \left(s_t\right)} \right]^{\frac{1}{\phi}}$$

Effects of Redistribution–Inflation: Monetary Regime

- Under the monetary regime, $\psi > 0$ and $\phi > 1$
- Inflation for $t \ge T + 1$ is

 $\Pi_t = \bar{\Pi}, \quad \forall t \ge T+1$

• Pin down Π_t from t = 0 to T along the saddle path and derive initial inflation:

$$\frac{\Pi_0}{\bar{\Pi}} = C^R (\bar{s})^{\frac{1}{\phi^{T+1}}} \left[\frac{1}{C^R (s_T) C^R (s_{T-1}) \cdots C^R (s_0)} \right]^{\frac{1}{\phi}} = \prod_{t=0}^T \left[\frac{C^R (\bar{s})}{C^R (s_t)} \right]^{\frac{1}{\phi}}$$

• An increase in transfers is *inflationary* as $C^{R}(s_{t})$ declines below the pre-transfer level

Effects of Redistribution–Inflation: Monetary Regime

- Under the monetary regime, $\psi > 0$ and $\phi > 1$
- Inflation for $t \ge T + 1$ is

 $\Pi_t = \bar{\Pi}, \quad \forall t \ge T+1$

• Pin down Π_t from t = 0 to T along the saddle path and derive initial inflation:

$$\frac{\Pi_0}{\bar{\Pi}} = C^R (\bar{s})^{\frac{1}{\phi^T + 1}} \left[\frac{1}{C^R (s_T) C^R (s_{T-1}) \cdots C^R (s_0)} \right]^{\frac{1}{\phi}} = \prod_{t=0}^T \left[\frac{C^R (\bar{s})}{C^R (s_t)} \right]^{\frac{1}{\phi}}$$

- An increase in transfers is *inflationary* as $C^{R}(s_{t})$ declines below the pre-transfer level
- The effect is *transitory*

Effects of Redistribution–Inflation: Fiscal Regime

- Under the *fiscal regime*, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)

Effects of Redistribution–Inflation: Fiscal Regime

- Under the fiscal regime, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

Effects of Redistribution–Inflation: Fiscal Regime

- Under the fiscal regime, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

• To achieve this, Π_0 adjusts as given from GBC at t = 0:

$$\frac{\Pi_0}{\bar{\Pi}} = \frac{1}{1 - \frac{\beta}{\bar{b}} \left(s_0 - \bar{s}\right) - \beta \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \psi\right]^{-1} \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \beta^{-1}\right]}$$

• Redistribution policy is more inflationary under fiscal regime than monetary regime

Effects of Redistribution—Inflation: Fiscal Regime

- Under the fiscal regime, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

• To achieve this, Π_0 adjusts as given from GBC at t = 0:

$$\frac{\Pi_0}{\bar{\Pi}} = \frac{1}{1 - \frac{\beta}{\bar{b}} \left(s_0 - \bar{s}\right) - \beta \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \psi\right]^{-1} \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \beta^{-1}\right]}$$

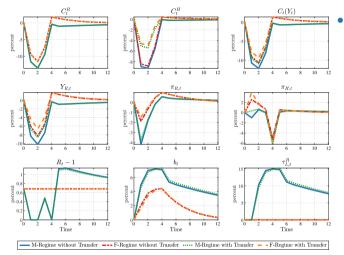
- Redistribution policy is more inflationary under fiscal regime than monetary regime
- One-time transitory increase in transfers has *persistent* effects on inflation

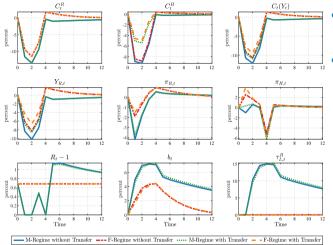
Outline

Simple Model

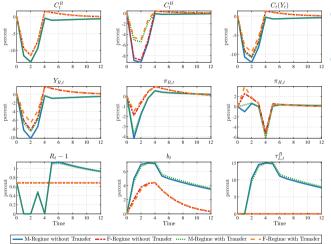
- **2** Quantitative Model
- ③ Data and Calibration
- ④ Quantitative Results

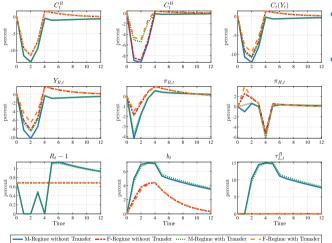
⑤ Conclusion

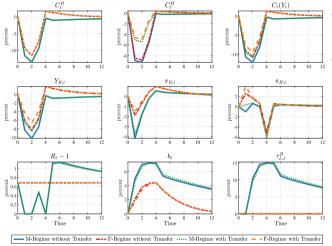

Quantitative Model


- A quantitative model with an application to the COVID recession
 - Transfer policy, as embedded in the CARES Act
- A two-sector production structure, sticky prices, and labor taxes
 - Two distinct sectors where the two types of households work
 - Sticky prices under Calvo friction
 - Distortionary labor taxes on the Ricardian household
 - Three shocks: HTM household labor supply shock; R household discount factor shock; and HTM sector demand shock
- Analyze positive and normative implications of redistribution

Data and Calibration


- Pick parameter values based on long-run averages or from the literature
- Calibrate the three shocks to match exactly sectoral employment and inflation dynamics during the COVID crisis in the monetary regime
- Decompose the U.S. economy into two sectors
 - HTM sector: transportation, recreation, and food service sector
 - Ricardian sector: the rest of the economy
- Calibrate the size of transfers using the CARES Act (3.4 percent of GDP)
 - One-time tax rebates and expansion of unemployment benefits
 - Transfers to state and local governments


Short-run contractions in output and consumption and a decline in inflation


- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities
- ② Binding ZLB leads to a bigger drop in the monetary regime

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities
- ② Binding ZLB leads to a bigger drop in the monetary regime
- ③ The redistribution program is more inflationary in the fiscal regime

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.081	1.159	-0.028	4.713	2.586	2.775	1.751	5.320
4-Year Cumulative Multipliers	1.076	1.149	-0.036	4.718	5.989	6.358	5.746	6.788

- Multipliers computed with monetary regime and no transfers as baseline
- Aggregate and Ricardian sector output multipliers both above 1 in the monetary regime due to the binding ZLB and sticky prices

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.081	1.159	-0.028	4.713	2.586	2.775	1.751	5.320
4-Year Cumulative Multipliers	1.076	1.149	-0.036	4.718	5.989	6.358	5.746	6.788

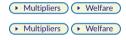
- Multipliers computed with monetary regime and no transfers as baseline
- Aggregate and Ricardian sector output multipliers both above 1 in the monetary regime due to the binding ZLB and sticky prices
- Multipliers are even higher in the fiscal regime
 - $\circ\ C^R$ multiplier is positive due to sticky prices and persistent inflation dynamics

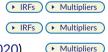
Welfare Effects of Transfer Policy

	Monetar	y Regime	Fiscal	Regime
	Long-run	Short-run	Long-run	Short-run
		($t=4$)		(t = 4)
Ricardian Household	-0.013	-0.633	0.075	0.890
HTM Household	0.086	2.977	0.125	3.451

• The values are the % point deviation from the welfare of the model under monetary regime and no transfers

Welfare Effects of Transfer Policy


	Monetar	y Regime	Fiscal	Regime
	Long-run	Short-run	Long-run	Short-run
		($t=4$)		(t = 4)
Ricardian Household	-0.013	-0.633	0.075	0.890
HTM Household	0.086	2.977	0.125	3.451


- The values are the % point deviation from the welfare of the model under monetary regime and no transfers
- *Given* the redistribution program, inflation taxes (fiscal regime) produce better welfare outcomes than labor taxes (monetary regime)
- Redistribution policy under fiscal regime generates a *Pareto improvement*

Mechanism, Alternative Calibrations, and Sensitivity Analysis

- Mechanism
 - Decomposition of Transfer Multipliers
 - Transfer multipliers without COVID shocks
 - Different duration of the redistribution program
- Alternative calibrations
 - Model with transfer policy
 - Above steady-state initial debt
- Sensitivity analysis
 - Different cross-sector elasticity of substitution ($\varepsilon = 0.8$)
 - Different tax rule response parameter ($\psi_L = 0.1$)
 - Exclude \$600 individual tax rebates in the CARES Act (Coibion et al., 2020)

Conclusion

- How transfers are ultimately financed is key for their effectiveness
 - Inflation-financed transfers are significantly more effective than tax-financed transfers
 - The fiscal regime produces high and persistent inflation through the direct and the indirect (interest rate) channels
 - Quantitative exercise shows that inflation-financed transfers fight deflationary pressures in a COVID-recession-like environment
 - Such inflation-induced expansionary effects produce a Pareto improvement
- Future work
 - A richer form of heterogeneity across sectors as well as households
 - Long-term debt and effects on long-term yields

Model: Ricardian Sector: Households

• Ricardian (R) households, of measure $1 - \lambda$, solve

$$\max_{\{C_t^R, L_t^R, b_t^R\}} \sum_{t=0}^{\infty} \beta^t \exp(\eta_t^{\xi}) \left[\frac{\left(C_t^R\right)^{1-\sigma}}{1-\sigma} - \chi \frac{\left(L_t^R\right)^{1+\varphi}}{1+\varphi} \right]$$

subject to a sequence of flow budget constraints

$$C_t^R + b_t^R = R_{t-1} \frac{1}{\prod_t^R} b_{t-1}^R + (1 - \tau_{L,t}^R) w_t^R L_t^R + \Psi_t^R$$

- η_t^{ξ} is a discount factor shock; $\tau_{L,t}^R$ is labor tax
- C_t^R is a CES aggregator of the goods produced in the two sectors

$$C_t^R = \left[(\alpha)^{\frac{1}{\varepsilon}} \left(C_{R,t}^R \right)^{\frac{\varepsilon - 1}{\varepsilon}} + (1 - \alpha)^{\frac{1}{\varepsilon}} \left(\exp(\zeta_{H,t}) C_{H,t}^R \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

 $\circ \zeta_{H,t}$ is a demand shock that is specific for HTM goods

Model: HTM Sector: Households

- HTM-households' labor endowment is exogenous and can change with a shock
- In each period, they consume wage income and government transfers

$$C_t^H = w_t^H \overline{L^H} (1 + \eta_t^{\xi}) + s_t^H,$$

where η_t^{ξ} is a HTM labor supply shock

• C_t^H is a CES aggregator of the goods produced in the two sectors

$$C_t^H = \left[(1-\alpha)^{\frac{1}{\varepsilon}} \left(\exp\left(\zeta_{H,t}\right) C_{H,t}^H \right)^{\frac{\varepsilon-1}{\varepsilon}} + (\alpha)^{\frac{1}{\varepsilon}} \left(C_{R,t}^H \right)^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• $\zeta_{H,t}$ is a demand shock that is specific for HTM goods

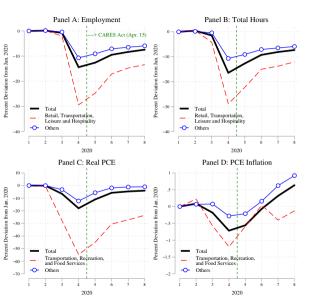
Model: Ricardian and HTM Sector: Firms

- Monopolistically competitive firms produce varieties of the sectoral good
- Labor market is sector specific
- The production function for varieties is linear in labor
- Firms face a standard downward sloping demand curve
- Firms set prices according to the Calvo friction

Model: Government

• The government (nominal) flow budget constraint is

$$B_t + T_t^L = R_{t-1}B_{t-1} + P_t^R s_t,$$


where T_t^L is labor tax revenues

• Monetary and tax policy rules are:

$$\frac{R_t}{\bar{R}} = \max\left\{\frac{1}{\bar{R}}, \left(\frac{(1-\lambda)\Pi_t^R + \lambda\Pi_t^H}{\bar{\Pi}}\right)^\phi\right\}, \ \tau_{L,t}^R - \bar{\tau}_L^R = \psi_L(b_{t-1} - \bar{b}).$$

Monetary regime features high enough monetary (φ) and tax (ψ_L) rule coefficients
 Fiscal regime features low enough tax (ψ_L) and monetary (φ) rule coefficients

Sectoral Dynamics During Covid Crisis

Model Calibration

	Value	Description	Sources
House	holds		
β	0.9932	Time preference	2-month frequency
σ	1.7	Inverse of EIS	Del Negro et al. (2015)
φ	2.2	Inverse of Frisch elasticity	Del Negro et al. (2015)
χ	92.9	Labor supply disutility parameter	Steady-state $\bar{L}^R = 0.3$
λ	0.23	Fraction of HTM households	Employment share of HTM sectors
α	0.72	Consumption weight on Ricardian goods	Consumer Expenditure Surveys data
Firms			
θ	6.0	Elasticity of substitution across firms	Steady-state markup: 20% (Hall, 2018)
ε	2.0	Elasticity of substitution between Ricardian and HTM goods	Assigned
ω^R	0.833	Calvo parameter for Ricardian sector	Del Negro et al. (2015)
ω^{H}	0.0	Calvo parameter for HTM sector	Assigned
Goverr	nment		
$\frac{\overline{b}}{6Y}$	0.509	Steady-state debt to GDP	Data (1990Q1-2020Q1)
$\frac{\bar{T}^L}{\bar{Y}}$	0.122	Steady-state labor tax revenue to GDP	Data (1990Q1-2020Q1)
$\frac{\bar{s}}{Y}$	0.127	Steady-state transfers to GDP	Data (1990Q1-2020Q1)
Monet	ary and Fiscal Policy Ru	les	
φ	(1.3, 0.0)	Interest rate response to inflation	Del Negro et al. (2015)
ψ_L	(0.4, 0.0)	Labor tax rate response to debt	Assigned
Shocks	5		
η_t^H	(-17%, -19%, -13%)	Size of HTM labor supply shock	Total hours for HTM sectors
η_t^{ξ}	(-20%, -24%, -15%)	Size of discount factor shock	Total hours excluding HTM sectors
$\zeta_{H,t}$	(-1.9%, 0.8%, 3.5%)	Size of HTM sector demand shock	PCE Inflation for HTM sectors
s_t	(8.9%, 8.9%, 8.9%)	Size of transfer distribution	2020 CARES Act

Data and Model Moments

	Time	Data	Model
Panel A: Targeted moments (percent deviation from January)			
Total Hours for retail, transportation, leisure/hospitality	April	-16.7%	-16.7%
	June	-18.8%	-18.8%
	August	-13.2%	-13.2%
Total Hours excluding retail, transportation, leisure/hospitality	April	-6.58%	-6.58%
	June	-8.57%	-8.57%
	August	-6.13%	-6.13%
PCE Inflation for recreation, transportation, food services	April	-0.99%	-0.99%
	June	-0.39%	-0.39%
	August	-0.37%	-0.37%
Panel B: Non-targeted moments (percent deviation from January)			
PCE Inflation excluding recreation, transportation, food services	April	-0.14%	-4.17%
	June	-0.06%	-1.82%
	August	0.74%	-0.21%
Real PCE for recreation, transportation, food services	April	-41.1%	-16.7%
	June	-37.6%	-18.8%
	August	-25.2%	-13.2%
Real PCE excluding recreation, transportation, food services	April	-7.74%	-8.32%
	June	-3.78%	-10.2%
	August	-1.06%	-7.54%
Real PCE	April	-12.2%	-10.8%
	June	-8.34%	-12.1%
	August	-4.31%	-8.16%

• The transfer multiplier for output under regime $i \in \{M, F\}$ is defined as

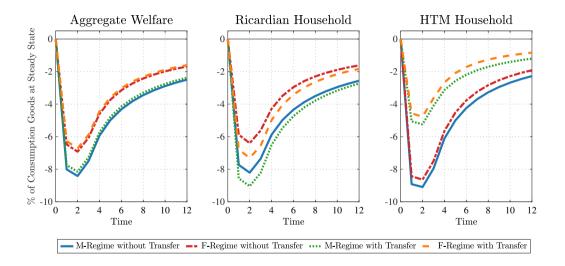
$$\mathcal{M}_t^i(Y) = \left(\frac{\sum_{h=0}^t \beta^h(\tilde{Y}_h^i - Y_h^M)}{\sum_{h=0}^t \beta^h s_h}\right),\,$$

where \tilde{Y}_{h}^{i} is output at horizon h under *i*-regime with transfers, Y_{h}^{M} is output at horizon h under the monetary regime without transfers, and s_{h} is transfers at horizon h

Definition: Welfare Gains

• We define our measure of welfare gain for household of type $i \in \{R, H\}$, $\mu_{t,k}^i$, as

$$\sum_{j=0}^{t} \beta^{j} U\left(C_{j}^{i}, L_{j}^{i}\right) = \sum_{j=0}^{t} \beta^{j} U\left(\left(1 + \mu_{t,k}^{i}\right) \bar{C}^{i}, \bar{L}^{i}\right),$$


where $\{\bar{C}^i, \bar{L}^i\}$ is the steady-state level of type-*i* household's consumption and hours, and $\{C^i_j, L^i_j\}$ are the time path of type-*i* household's consumption and hours

• The values in the table are the % point deviation from the welfare of the baseline model under the monetary regime without transfers.

Short-Run Welfare Gains Comparison

Inspecting the Mechanisms of Transfer Multipliers

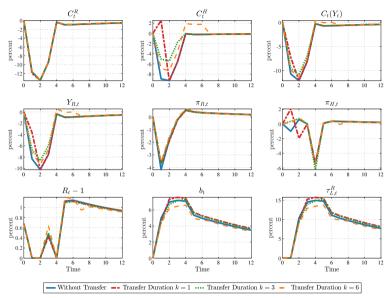
The output multiplier under regime $i \in \{M, F\}$ can be decomposed as:

$$\mathcal{M}_{t}^{i}(Y) = \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(\tilde{Y}_{h}^{i} - \tilde{Y}_{\text{no shock},h})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{COVID Effect with Transfer}} + \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(\tilde{Y}_{\text{no shock},h}^{i} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{Transfer Effect without COVID Shocks}} - \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(Y_{h}^{M} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{COVID Effect with Transfer}}\right)}_{\text{COVID Effect with Transfer}} + \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(\tilde{Y}_{h}^{i} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{Transfer Effect without COVID Shocks}} - \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(Y_{h}^{M} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{COVID Effect with Transfer}}$$

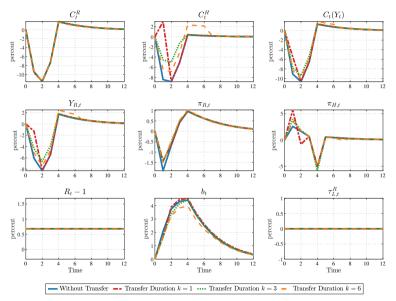
• The third effect is the same across regimes, while the first two are different as they compute the effect for a given regime.

Decomposition of Transfer Multipliers

	Monetary Regime					Fiscal Regime				
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}_t^F(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$		
Panel A: Impact Multipliers										
Total Effect	1.081	1.159	-0.028	4.713	2.586	2.775	1.751	5.320		
COVID Effect with Transfer	-9.138	-5.542	-8.630	-10.799	-7.941	-4.251	-7.213	-10.323		
Transfer Effect without COVID	0.805	0.851	-0.359	4.616	1.113	1.177	0.003	4.746		
COVID Effect without Transfer	-9.414	-5.850	-8.961	-10.896	-9.414	-5.85	-8.961	-10.896		
Panel B: 4-Year Cumulative Multip	oliers									
Total Effect	1.076	1.149	-0.036	4.718	5.989	6.358	5.746	6.788		
COVID Effect with Transfer	-10.844	-7.979	-10.96	-10.467	-6.219	-3.075	-5.517	-8.520		
Transfer Effect without COVID	0.721	0.762	-0.458	4.580	1.009	1.067	-0.119	4.702		
COVID Effect without Transfer	-11.200	-8.366	-11.382	-10.605	-11.200	-8.366	-11.382	-10.605		


Transfer Multipliers without COVID Shocks

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Panel A: Without COVID shocks	under stic	ky price						
Impact Multipliers	0.805	0.851	-0.359	4.616	1.113	1.177	0.003	4.746
2-Year Cumulative Multipliers	0.803	0.849	-0.362	4.615	1.014	1.072	-0.113	4.704
4-Year Cumulative Multipliers	0.721	0.762	-0.458	4.580	1.009	1.067	-0.119	4.702
Panel B: Without COVID shocks	under flex	ible price						
Impact Multipliers	0.476	0.504	-0.745	4.476	0.476	0.504	-0.745	4.476
2-Year Cumulative Multipliers	0.179	0.189	-1.095	4.349	0.476	0.504	-0.745	4.476
4-Year Cumulative Multipliers	-0.043	-0.045	-1.356	4.255	0.476	0.504	-0.745	4.476
Panel C: Without COVID shocks	under flex	ible price d	and lump-:	sum tax adj	ustment			
Impact Multipliers	0.476	0.504	-0.745	4.476	0.476	0.504	-0.745	4.476
2-Year Cumulative Multipliers	0.476	0.504	-0.745	4.476	0.476	0.504	-0.745	4.476
4-Year Cumulative Multipliers	0.476	0.504	-0.745	4.476	0.476	0.504	-0.745	4.476


Monetary Regime: Different Duration of Redistribution Policy

Fiscal Regime: Different Duration of Redistribution Policy

Multipliers with Different Transfer Distribution

	Monetary Regime				Fiscal Regime	9
Transfer Duration	k = 1	k = 3	k = 6	k = 1	k = 3	k = 6
Panel A: Impact multip	olier					
$\mathcal{M}^i_{24}(Y)$	1.027	1.081	1.380	1.545	2.586	4.115
$\mathcal{M}^i_{24}(Y_R)$	1.103	1.159	1.478	1.661	2.775	4.415
$\mathcal{M}_{24}^i(C^R)$	-0.092	-0.028	0.324	0.521	1.751	3.557
$\mathcal{M}_{24}^i(C^H)$	4.688	4.713	4.835	4.895	5.320	5.941
Panel B: 4-year cumul	ative multiplier					
$\mathcal{M}^i_{24}(Y)$	1.010	1.076	1.348	6.020	5.989	5.844
$\mathcal{M}_{24}^i(Y_R)$	1.085	1.149	1.431	6.397	6.358	6.198
$\mathcal{M}_{24}^i(C^R)$	-0.112	-0.036	0.282	5.784	5.746	5.572
$\mathcal{M}_{24}^i(C^H)$	4.681	4.718	4.840	6.792	6.788	6.734

Long-run Welfare with Different Transfer Distribution

	Мо	netary Reg	ime	F	е	
Transfer Duration	k = 1	k = 3	k = 6	k = 1	k = 3	k = 6
Ricardian Household	-0.016	-0.013	-0.007	0.074	0.075	0.071
HTM Household	0.082	0.086	0.085	0.121	0.125	0.120

Back

Transfer Multipliers (Model with Transfer Policy)

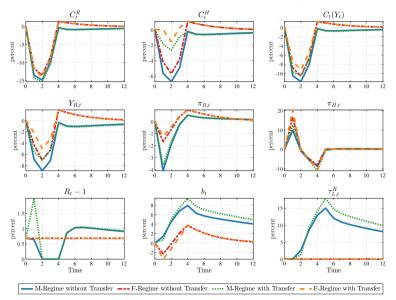
(\mathbf{F})	Back)

		Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$	
Impact Multipliers	1.077	1.151	-0.035	4.716	2.896	3.099	2.113	5.457	
2-Year Cumulative Multipliers	1.090	1.159	-0.022	4.728	6.043	6.409	5.807	6.817	
4-Year Cumulative Multipliers	1.083	1.152	-0.030	4.725	7.034	7.456	6.971	7.240	

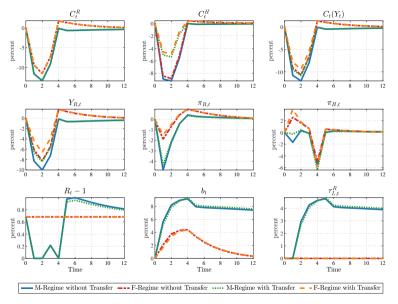
Transfer Multipliers (Above Steady-State Debt)

(Back)	$(\mathbf{F}$	Back)
-----------	---------------	------	---

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}^M_t(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.211	1.303	0.127	4.759	4.260	4.597	3.739	5.965
2-Year Cumulative Multipliers	1.336	1.430	0.272	4.819	8.283	8.824	8.458	7.710
4-Year Cumulative Multipliers	1.403	1.501	0.351	4.848	9.656	10.274	10.072	8.296


Welfare with Under Alternative Calibrations

Back


	Monetar	y Regime	Fiscal Regime					
Transfer Distribution	Long-run Short-run $(t=4)$		Long-run	Short-run ($t = 4$)				
Panel A: Alternative calibration with transfer policy								
Ricardian Household	-0.011	-0.598	0.105	1.393				
HTM Household	0.087	2.982	0.134	3.559				
Panel B: Alternative calibration with above steady state initial debt								
Ricardian Household	-0.009	-0.578	0.057	1.053				
HTM Household	0.090	3.021	0.155	3.900				

Redistribution Policy with Different Policy Regimes ($\varepsilon = 0.8$)

Redistribution Policy with Different Policy Regimes ($\psi_L = 0.1$) (Back)

Transfer Multipliers: Sensitivity Analysis

	Monetary Regime			Fiscal Regime				
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Panel A: Transfer Multipliers ($k = 3$, $\varepsilon = 0.8$)								
Impact Multipliers	0.769	0.945	-0.625	5.332	2.719	3.365	1.098	8.026
2-Year Cumulative Multipliers	0.805	0.982	-0.592	5.378	5.167	6.153	3.299	11.281
4-Year Cumulative Multipliers	0.644	0.795	-0.736	5.162	6.111	7.253	4.144	12.549
Panel B: Transfer Multipliers ($k=3,\psi_L=0.1$)								
Impact Multipliers	1.092	1.170	-0.016	4.717	2.598	2.788	1.765	5.325
2-Year Cumulative Multipliers	1.135	1.211	0.033	4.742	4.637	4.929	4.156	6.211
4-Year Cumulative Multipliers	1.145	1.221	0.044	4.746	5.301	5.630	4.936	6.494

Transfer Multipliers (Excluding \$600 Individual Tax Rebates)

	Monetary Regime			Fiscal Regime				
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}_t^F(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Panel A: Impact Multipliers								
Total Effect	1.081	1.158	-0.029	4.713	3.613	3.877	2.964	5.738
COVID Effect with Transfer	-15.793	-9.677	-14.965	-18.502	-13.57	-7.286	-12.336	-17.61
Transfer Effect without COVID	0.803	0.849	-0.362	4.615	1.113	1.177	0.003	4.747
COVID Effect without Transfer	-16.070	-9.986	-15.297	-18.600	-16.070	-9.986	-15.297	-18.600
Panel B: 4-Year Cumulative Multipliers								
Total Effect	1.077	1.148	-0.036	4.718	9.406	9.977	9.765	8.230
COVID Effect with Transfer	-18.764	-13.895	-19.008	-17.965	-10.727	-5.375	-9.550	-14.577
Transfer Effect without COVID	0.722	0.763	-0.457	4.581	1.014	1.071	-0.114	4.705
COVID Effect without Transfer	-19.118	-14.28	-19.429	-18.102	-19.118	-14.28	-19.429	-18.102