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Abstract

This paper investigates contagion at the German interbank market under the assumption

of a stochastic loss given default (LGD). We combine a unique data set about the LGD

of interbank loans with data about interbank exposures. We find that the frequency dis-

tribution of the LGD is u-shaped. Under the assumption of a stochastic LGD, simulation

results show a more fragile banking system than under the assumption of a constant LGD.

There are three types of banks concerning their tendency to trigger contagion: banks with

strongly varying impact, banks whose impact is relatively constant, and banks with no

direct impact.

Keywords: Interbank market, contagion, stochastic LGD

JEL classification: D53, E47, G21



Non-technical summary

The interbank market is believed to be a channel through which the distress of one bank

spreads to other banks. At this market, large and sometimes unsecured loans are granted

among banks. The failure of one bank can thereby lead to the distress of the creditor

banks, which themselves can become the starting point of additional failures. With the

help of network models, the contagion effects at the interbank market are assessed.

In this paper, we investigate these contagion effects on the German interbank market,

limiting the analysis to 15 systemically relevant German banks. From data of the German

credit register, we establish the matrix of mutual exposures. The assumptions about the

loss given default (LGD) are important as well. We have only little information about the

LGD of a single interbank loan. However, our dataset makes it possible to precisely derive

the statistical distribution of the LGD of interbank loans. The simulation proceeds as

follows: At first, we assume that one of the 15 banks fails. Then, we determine the losses

of the creditor banks. In the event that some of these banks fall into distress themselves,

a contagious process starts. This contagion process comes to an end when no new failures

occur in one round.

The results of the simulation study can be summarised in three core statements:

1. The empirical frequency distribution of the LGD at the interbank market is markedly

u-shaped, i.e. there are many observations with a very low loss rate (LGDs of up to

10%) and many observations with a very high loss rate (LGDs of more than 90%).

By contrast, there are relatively few observations in between (LGDs of 10% to 90%).

2. The simulations are run twice, once with a constant LGD in the amount of the

empirical average in our data (45%) and once with a stochastic LGD, drawn from

a distribution that is close to the empirical frequency distribution. The simulations

under the assumption of a stochastic LGD generally yield a more unstable system

than the simulations under the assumption of the corresponding constant LGD.

Thus, assuming a constant LGD, which is often done in the literature, leads to an

underestimation of the effects of contagion.

3. We can identify three groups of banks concerning their impact on the financial system

in the event that they are falling into distress: banks whose failure leads to strongly



varying contagion effects, depending on the actual realisation of the stochastic path;

banks whose failure leads to a relatively constant number of further failures; and

banks, having only a small amount of liabilities to the other banks, whose failure

does not result in further failures even in the most adverse situation.



Nichttechnische Zusammenfassung

Der Interbankenmarkt gilt als ein Kanal, über den sich Schieflagen einer Bank auf andere

Banken ausbreiten. Auf diesem Markt werden großvolumige, mitunter unbesicherte Kre-

dite zwischen den Banken vergeben. Die Schieflage einer Bank kann dadurch zu Schiefla-

gen der Gläubigerbanken führen, die dann selbst zum Ausgangspunkt weiterer Schiefla-

gen werden. Mit Hilfe von Netzwerkmodellen versucht man abzuschätzen, mit welchen

Ansteckungseffekten am Interbankenmarkt gerechnet werden muss.

In diesem Papier untersuchen wir die Ansteckungseffekte für den deutschen Inter-

bankenmarkt, wobei wir uns auf 15 systemrelevante deutsche Banken beschränken. Aus

Daten des Kreditregisters ermitteln wir die Matrix der gegenseitigen Kreditbeziehungen.

Wichtig sind auch die Annahmen über die Verlustrate bei Ausfall (LGD). Wir haben

nur wenige Informationen über die Verlustrate eines bestimmten Interbankenkredits. Je-

doch ermöglicht es unser Datensatz, präzise Aussagen über die statistische Verteilung der

Verlustrate von Interbankkrediten zu treffen. Die Simulation läuft folgendermaßen ab:

Zunächst nehmen wir an, eine der 15 Banken fällt aus. Danach bestimmen wir die Ver-

luste bei den Gläubigerbanken. Sofern einige dieser Gläubigerbanken selbst in Schieflage

geraten, beginnt ein Ansteckungsprozess. Dieser Ansteckungsprozess setzt sich solange

fort, bis in einer Runde keine weiteren Ausfälle auftreten.

Die Ergebnisse der Simulationsstudie lassen sich in drei Kernaussagen zusammenfassen:

1. Die empirische Häufigkeitsverteilung der Verlustrate am Interbankenmarkt ist aus-

geprägt u-förmig, d.h. es gibt viele Beobachtungen mit sehr geringer Verlustrate

(LGDs bis 10%) und viele Beobachtungen mit sehr hoher Verlustrate (LGDs von

mehr als 90%), dagegen relativ wenige Beobachtungen im Bereich dazwischen (LGDs

von 10 bis 90%).

2. Die Simulationen werden zweimal durchgeführt: einmal mit einer konstanten Ver-

lustrate in Höhe des empirischen Mittelwertes in unseren Daten (45%) und einmal

mit einer zufälligen Verlustrate, wobei wir aus einer statistischen Verteilung ziehen,

die nahe an der empirischen Häufigkeitsverteilung ist. Die Simulationen unter der

Annahme der zufälligen Verlustrate ergeben in der Regel ein instabileres System als

die Simulationen unter der Annahme der entsprechenden konstanten Verlustrate.



Somit führt die in der Literatur häufig unterstellte konstante Verlustrate dazu, das

Ausmaß der Ansteckungseffekte zu unterschätzen.

3. Wir können drei Gruppen von Banken unterscheiden, was die Auswirkungen einer

Schieflage auf das Bankensystem angeht: Banken, deren Ausfall zu stark unter-

schiedlichen Ansteckungseffekten führt, und zwar abhängig davon, welcher Zufalls-

pfad gerade eingetreten ist; Banken, deren Ausfall zu einer relativ konstanten Zahl

von weiteren Ausfällen führt; und Banken mit geringen Verbindlichkeiten gegenüber

den anderen Banken, deren Ausfall selbst im ungünstigsten Fall keine weiteren

Ausfälle nach sich zöge.
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Contagion at the Interbank Market with Stochastic LGD1

1 Introduction

The collapse of Lehman Brothers turned the 2007 / 2008 turmoil into a deep global finan-

cial crisis. The tremendous effects of the Lehman default were largely contagion effects

which propagated and intensified the Lehman shock. In particular, the fear of contagion

via interbank markets played a crucial role in this process. While banks could gauge their

direct losses from transactions with Lehman Brothers, they could not assess their counter-

parties’ losses and creditworthiness and were therefore not willing to lend money to other

banks, causing the breakdown of interbank markets. This led to unprecedented liquidity

extension of central banks and government rescue packages (see Stolz and Wedow (2010))

which, however, could not avoid deep recessions in many countries of the world. From an

economic perspective, it is therefore essential to have a tool allowing to assess potential

contagion risks via interbank markets.

This is the aim of this paper. We study contagion at the German interbank market,

one of the largest interbank markets in Europe. We carry out a simulation exercise where

we assume that a certain bank fails and examine how this failure affects other banks’

solvency via direct effects and chain reactions in the banking system. Throughout this

paper, our focus is on 15 systemically relevant German banks. We analyze in particular

the role of the loss given default (LGD) in the contagion process and examine how the

assumption of a stochastic LGD affects the results.

The LGD is a key factor for the extent of contagion. The LGD, multiplied by the total

exposure of a creditor bank to a debtor bank, gives the actual loss of the creditor bank in

the event of the debtor bank failing. The LGD can vary between 0% (eg in the event that

the defaulted loan is fully collateralized) and 100% (which is equivalent to a zero recovery

rate of the defaulted loan). As there is usually only sparse information about recovery

rates in the case of bank defaults, the standard approach in the literature on interbank

contagion is to assume a fixed value of the LGD and repeat the simulation exercise with

1The views expressed in this paper are those of the authors and do not necessarily reflect the opinions of

the Deutsche Bundesbank. We thank Gabriel Frahm, Ulrich Krüger, Peter Raupach and the participants

of the research seminar of the Deutsche Bundesbank for valuable comments.
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different values of this LGD. The literature generally finds that losses in the total banking

system crucially depend on the LGD value. Below a certain threshold of LGD, potential

losses are minor. However, as soon as the LGD exceeds a certain threshold, there are

considerable risks of large parts of the banking system being affected and heavy losses

in the banking system occurring (see eg Upper and Worms (2004) and van Lelyveld and

Liedorp (2006)). Therefore, the standard approach has the considerable drawback that

an assessment of contagion risks in the real world is difficult and associated with great

uncertainties. In our paper, we overcome this shortcoming by using a unique dataset of

realized LGDs of defaulted interbank exposures.

Our contributions are as follows. First, using this dataset of realized LGDs on the

interbank market, we are able to investigate the empirical pattern of actual LGDs. Second,

unlike the vast majority of papers in the literature, we do not need to estimate the amount

of interbank exposures nor do we rely on incomplete information from very large interbank

exposures. Instead, we are able to precisely quantify interbank exposures (including off-

balance sheet and derivative positions) within the national market. Third, in contrast to

most papers in the literature, we conduct the simulation exercise with a stochastic LGD

derived from the observed distribution of LGDs (instead of a stepwise increase of constant

values). We thereby obtain a distribution of the number of contagious bank defaults which

allows a more realistic assessment of contagion risks.

Our main findings are, first, that LGDs follow a u-shaped distribution, which can be

reasonably well approximated by a beta distribution. Second, using the precise informa-

tion about interbank exposures and the distribution of LGD, we find that the number of

bank defaults may increase substantially when we assume a stochastic LGD instead of a

constant one. Third, we observe three types of banks concerning their tendency to trigger

contagion: Banks with a u-shaped distribution of subsequent bank failures, banks with an

unimodal distribution of subsequent bank failures and banks where no subsequent bank

failure occurs.

The paper is structured in the following way: In Section 2, we give a brief overview of

the literature on interbank contagion as well as LGD modelling and state our contribution

to the literature. Section 3 deals with the description of the contagion exercise and its

main components (bilateral exposures, modelling of the LGD). In Section 4, we show the

results of the contagion exercise and in Section 5 the conclusion is presented.
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2 Literature

Our paper relates to three strands of the literature. The first strand is about empirical

simulation studies of interbank contagion (see Upper (2007) for an overview). Especially

national European interbank markets have been the focus of empirical studies (see, for

instance, van Lelyveld and Liedorp (2006) for the Netherlands, Sheldon and Maurer (1998)

for Switzerland or Mistrulli (2007) for Italy). In addition to studies based on national

interbank markets, there are cross-border contagion simulations. These studies are either

based on BIS data on consolidated banking statistics (see Espinosa-Vega and Solé (2010)

and Degryse et al. (2010)) or analyze international sector interlinkages (see Castrén and

Kavonius (2009)). Most papers in this strand do not have direct access to information on

interbank exposures, but apply either statistical methods to derive the bilateral exposures

or rely on data which cover only part of the interbank exposures. We have a certain

advantage compared to these studies since we are able to precisely quantify the amount of

bilateral exposures for a system of 15 large German banks. Our data set is based on the

German credit register and includes off-balance-sheet and derivative positions. It contains

all bilateral exposures of the 15 banks above a threshold of EUR 1.5 m. This threshold is

not relevant for the purpose of our study since interbank exposures are typically large.

The second strand of literature we contribute to deals with extensions of the usual

contagion exercises. Cifuentes et al. (2005) introduce additional stress due to declining

asset prices as a result of fire sales; Elsinger et al. (2006) integrate the interbank contagion

model in a stress testing setting that includes macroeconomic shocks. Espinosa-Vega and

Solé (2010) and Chan-Lau (2010) do not only consider credit risk, but funding risk as

well. They argue that the banks’ funding is hindered when the interbank market does

not function properly. Aikman et al. (2009) incorporate various of these aspects into one

quantitative model of systemic stability. Degryse and Nguyen (2007) explicitly model

the LGDs, deriving them endogenously from the banks’ balance sheet composition. Our

extension is about LGD modelling as well. However, we model the LGDs as stochastic.

The third strand of literature deals with the distribution of LGDs. Huang et al. (2009)

and Tarashev and Zhu (2008) choose a stochastic setting for the LGD. They assume a

triangular distribution with the probability mass concentrated in the center of the dis-

tribution (more precisely at 55% and 50%, respectively). Crouhy et al. (2000) model a

stochastic LGD with the help of a beta distribution. They estimate the parameters by

3



using bond market data. Their estimations yield the result that the LGD follows an uni-

modal beta distribution. Our contribution consists in estimating the distribution of the

LGDs of interbank exposures. We have a unique data set of realized interbank LGDs at

our disposal. This data suggests a u-shaped density for the LGD, ie a distribution with

much probability mass at zero and 100 per cent. This finding is in line with Dermine and

de Carvalho (2006) and Bastos (2010) who use a dataset of defaulted loans provided by a

large Portuguese bank and find a u-shaped LGD distribution for non-financial firms.

3 Round-by-Round Algorithm

3.1 General procedure

In the event of a bank failing, the banks that have given credit to this bank suffer losses

from their exposures. The contagion process in the interbank market may stop after the

first round, but may also propagate further through the system. Banks, which fell in

distress as a consequence of the initial distress, may now themselves become a source of

contagion. This process will continue round by round until the banking system reaches a

new equilibrium with a possibly huge number of failures or until the supervisory authorities

manage to put an end to this process.

In this section, we describe a simulation exercise so as to study the extent to which

the German banking system may be prone to such a contagious process. We apply the

round-by-round algorithm as described in Upper (2007).

1. Initially, bank i fails exogenously.

2. As a result, banks whose exposure to bank i multiplied by the loss given default

(LGD) exceeds their buffer of tier-1 capital, also fail. We define a bank to be

in default in the event that its tier-1 capital ratio is below 6 per cent of its risk-

weighted assets. This default definition is in line with the new Basel accord where

the minimum capital requirement is also set at 6%.2 We do not take into account

potential reactions of the lender banks. For example, the lender banks may have

hidden reserves which they release to increase their tier-1 capital. Instead, we assume

2See Basel Committee on Banking Supervision (2010), paragraph 50.
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that write-offs on interbank loans decrease the lender’s tier-1 capital by the same

amount.

3. Further banks may fail if their combined exposure to the banks that have failed so

far (times the LGD) is greater than their capital buffer.

4. The contagious process stops when no new failure occurs and a new equilibrium is

reached.

Thus, bank j is in distress, if

Ej −
∑

k (LGDjk · xjk · 1k∈D)
RWAj − 0.2 · ∑k (xjk · 1k∈D)

< 0.06 (1)

In this context, Ej is the tier-1 capital of bank j, xjk is the exposure of bank j to bank

k, 1k∈D is an indicator variable that takes on the value 1 in the event that bank k is in

distress (and 0 otherwise), LGDjk is the loss given default associated with the exposure

of bank j to bank k and RWAj are the risk weighted assets of bank j. We assume that

interbank claims receive a weight of 0.2 in banks’ risk weighted assets.3 When calculating

the tier-1 capital ratio, we also take into account that every claim to a bank that failed

completely disappears from the creditor bank’s risk weighted assets.

We carry out this simulation exercise for each of the 15 systemically relevant banks in

Germany. We do not include the rest of the banks in Germany because previous studies

have already shown that only a small number of banks form the so-called core of the

German interbank market and that these core banks act as an intermediary for numerous

small banks (see Craig and von Peter (2010)). Thus, the failure of a systemically relevant

bank will most likely trigger a huge amount of smaller banks to fail. However, the small

banks do generally not trigger contagious reactions. In our analysis about the vulnerability

of the German interbank market, we therefore deal only with the interconnectedness of

the systemically relevant banks.

To run the round-by-round algorithm, information is needed on (i) the pairwise ex-

posures between the banks and (ii) the appropriate loss given a bank fails. Concerning

the pairwise exposures, we have detailed information on exposures within the German

interbank market (see Section 3.2). This leaves the question of determining the loss given

3The risk weight of 0.2 follows from the Basel I and Basel II framework applied to German banks.
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default. From the literature we know that this is crucial for the contagion exercises (see

eg Upper and Worms (2004)). Different solutions are possible.

1. Constant LGD. The loss given default is exogenously set to a constant value, say

40% or 45%.4 To account for the fact that the LGD crucially drives the results, one

can vary the constant loss given default over a wide range of values. The contagion

exercise is then run for each different value of the LGD.

2. Endogenous LGD. If information on the actual over-indebtedness of the distressed

bank, the bankruptcy cost and the degree of collateralisation were available, it would

be possible to endogenously calculate the loss given default.

3. Stochastic LGD. Our supervisory data concerning the write-offs of interbank loans

show that the loss given default considerably varies, with a large portion of the

probability mass at 0% and at 100%. A possible explanation for this quasi-dichotomy

may be that the loans are either fully collateralised (as in the Repo-market) or

completely unsecured. This finding is not in line with the assumption of a constant

LGD (solution 1). Solution 1 would rather be in line with a distribution of the LGDs

concentrated in one point.

In this study, we start with the first solution, ie the solution in which the loss given

default is deterministic and takes on the value of the mean of our dataset.

This exercise is our benchmark. The method with stochastic LGDs (solution 3) should

then provide information on how the stochastic nature of the LGD drives the results. The

exact properties of the LGD-distribution are investigated in Section 3.3. We discard the

solution with an endogenous LGD since we lack the necessary data. Besides, our data on

realised LGDs suggest that the borrower banks’ balance sheet composition and other bank

specific variables only explain a small fraction of the LGD variation. Most LGD variation

seems to stem from the extent of collateralisation of the interbank exposures.5

4Kaufman (1994) gives an overview of loss given default estimates for bank failures; the estimates vary

considerably. James (1991) finds that the average loss of failed US banks during the period of 1985 to

1988 was about 30%. In addition, there were direct costs associated with the bank closures of 10% of the

assets. In our data set, the mean LGD is about 45%.

5We carried out a variance decomposition of the LGDs. We find that most of the variation is due to the

lender bank (about two thirds), ie the variation owing to the balance sheet composition of the borrower

bank is less important, which is another argument for not using solution 2.
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3.2 Exposure at Default (EAD)

As outlined above, the first step for running the round-by-round algorithm consists of

establishing the matrix of mutual interbank exposures. We use Bundesbank data from

the German credit register (MiMiK) to obtain the necessary information.6 Unlike credit

registers in most other countries, the German credit register also includes interbank loans

and is not confined to non-financials. This data base offers us a certain data advantage

compared to other studies since we are able to determine the complete matrix for the

systemically relevant banks. By contrast, balance sheet data only show (for each bank)

the aggregate amount lent to or borrowed from all banks. Moreover, payment data or large

exposure data are in general less comprehensive than credit register data and include, for

example in the case of payment data, only information about short-term lending.

The German credit register contains quarterly data on large exposures of banks to

individual borrowers or single borrower units (eg groups). Banking institutions located in

Germany are required to report if their exposures to an individual borrower or the sum of

exposures to borrowers belonging to one borrower unit exceeds the threshold of EUR 1.5m

at least once in the respective quarter. We think that the threshold of EUR 1.5m does

not cause a serious bias since the typical interbank loan is relatively large and exceeds the

threshold of EUR 1.5m.

The credit register applies a broad definition of loan. Loans in this sense include tra-

ditional loans, bonds, off-balance sheet positions and exposures from derivative positions.

However, trading book positions are excluded. We analyze gross exposures, as opposed

to netting bilateral exposures. We do not net, because, in the event of a bank failing, it

is not clear whether a netting can be enforced.7 For the simulation exercise, we use data

from the second quarter 2010.

3.3 Stochastic Loss Given Default (LGD)

The second key component for the contagion exercise is the loss given default (LGD). We

have some information about the loss rate banks face in the event of a borrowing bank’s

default. While we do not know the LGD of the lender bank for a default of a specific

6See Schmieder (2006) for more details about this database.

7See Mistrulli (2007) for this and other arguments concerning the simulation method.
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borrower bank, we know for each lender bank the average LGD of interbank exposures

(at an annual frequency). Specifically, for each bank and each year, we have data on the

volume of non-performing interbank loans and on the corresponding write-downs. From

this data, we can derive the realization of the LGD in the interbank market for a given

bank in a given year. The data are taken from the quantitative supervisory reports for

banks in Germany, collected by the Bundesbank.8 Based on this data, we can estimate

the distribution of LGDs.

Since our simulations of the contagion exercise only consider systemically relevant

banks, we focus on data of private commercial banks and the large central institutions

of the savings and cooperative banks. Regional savings and cooperative banks, which

are generally small and medium-sized, are left out. The reason is that we consider their

position in the German interbank market as less representative for our stability analysis

because these banks’ interbank market activities are very much characterized by relation-

ships to their central institutes. This is not the case for smaller private banks that we

therefore included in the data set. Our dataset of LGDs consists of 344 observations for

the period 1998-2008. Figure 4 shows the frequency distribution of the LGDs.9

Visual inspection of the LGD distribution suggests to use a a beta distribution for

modelling the stochastic LGDs. The density of the beta distribution is given by

f(x) =
1

B(α, β)
xα−1(1 − x)β−1 x ∈ (0, 1) (2)

with

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

, (3)

where Γ(·) is the Gamma-function. The parameters α > 0 and β > 0 determine the shape

of this distribution.10 The beta distribution is especially suitable for modelling LGD

because (i) the domain is confined to the economic sensible interval from 0 to 1, (ii) it is

highly flexible and (iii) nests other distributions.11 For instance, when both parameters

equal one, then the beta distribution becomes a uniform distribution. When both of the

8For more details on these data see Memmel and Stein (2008).

9The data set that includes all banking groups also has a u-shaped frequency distribution with slightly

more probability mass at zero and slightly less probability mass at one.

10Figure 5 summarizes the possible shapes of the probability density function dependent on the parameter

values.

11See eg Hahn and Shapiro (1967), pp.91.
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parameters are smaller than one, the probability density function is u-shaped with a large

portion of the probability mass close to zero and one. For parameter values close to

zero, this distribution converges to the binomial distribution. By contrast, the density is

unimodal in the case of both parameters α and β being greater than one. For very large

parameter values, it converges to the degenerate distribution, where the entire probability

mass is concentrated on one point. The expectation and the variance of a random variable

X following a beta distribution are functions of the parameters α and β:

E(X) =: μ =
α

α + β
(4)

and

var(X) =: σ2 =
αβ

(α + β)2(α + β + 1)
(5)

Given estimates for the expectation and the variance, estimators for the parameters α and

β are obtained by solving the equations (4) and (5) for α and β, respectively:12

α̂ = μ̂

(
μ̂(1 − μ̂)

σ̂2
− 1

)
(6)

β̂ = (1 − μ̂)
(

μ̂(1 − μ̂)
σ̂2

− 1
)

(7)

Using the sample mean μ̂ and variance σ̂2 as an estimator for the population mean and

variance, we obtain μ̂ = 0.45 and σ̂2 = 0.15. Inserting μ̂ and σ̂2 into equation (6) and (7)

yields α̂ = 0.28 and β̂ = 0.35. These parameter values suggest a u-shaped distribution

(see Figure 5).

Figure 4 also contains the probability density function of a beta distribution with the

estimated parameters. Compared to the empirical frequency distribution, only small devi-

ations can be observed. Statistical tests confirm this observation. The null hypothesis of a

χ2 goodness-of-fit test that our data follow a beta distribution with estimated parameters

α̂ and β̂, cannot be rejected on a 5% significance level. Choosing ten equidistant inter-

vals and comparing the observed frequency to the expected frequency within the intervals

yields a p-value of ≈ 0.075.13

12This procedure is called method of matching moments, see eg Hahn and Shapiro (1967), p.95. We

do not use maximum likelihood-estimation because there is a considerable amount of observations which

equal exactly 0 and 1 and for which, therefore, the likelihood function is not defined.

13The result of this test gives strong evidence that the assumed distribution is very close to the observed
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As an additional robustness check for the use of the beta distribution with estimated

parameters, we also run simulations by drawing from the discrete distribution observed

by the data. For this purpose, we randomly choose observations out of the data set with

each observation number occurring with equal probability (see Section 4.3).

The results obtained from our dataset may also have further implications for the liter-

ature on LGD modelling. As already mentioned, the null hypothesis that our data sample

follows a beta distribution with parameters α̂ = 0.28 and β̂ = 0.35 cannot be rejected on

a 5% significance level. However, in the literature, LGDs are often not modelled as fol-

lowing a u-shaped beta distribution (i.e. α < 1 and β < 1), but as following an unimodal

distribution (in the case of the beta distribution, this implies that α > 1 and β > 1) or

as being constant. Thus, our next step is to explicitly test whether the LGD distribution

is really u-shaped, i.e. we test the null hypothesis that α ≥ 1 or β ≥ 1. We carry out a

sequence of two t-tests with the two null hypotheses α ≥ 1 and β ≥ 1, respectively. In

the event that we can reject both null hypotheses, we accept the hypothesis α < 1 and

β < 1. Given the same significance level in both t-tests, the significance level of the joint

hypothesis α < 1 and β < 1 is at least as strong (see Frahm (2010)).

Using the delta-method and the relations given in Equations (6) and (7), we derive

the asymptotic distribution of the estimates for α̂ and β̂, respectively. Using a first-order

Taylor expansion, the delta method gives us a relation between the variance-covariance

matrix of the estimators μ̂ and σ̂2, and the variance-covariance matrix of α̂ and β̂:

V ar

⎛
⎝ α̂

β̂

⎞
⎠ ≈ ∇

⎛
⎝ f1

(
μ̂, σ̂2

)
f2

(
μ̂, σ̂2

)
⎞
⎠

T

· V ar

⎛
⎝ μ̂

σ̂2

⎞
⎠ · ∇

⎛
⎝ f1

(
μ̂, σ̂2

)
f2

(
μ̂, σ̂2

)
⎞
⎠ (8)

with f1

(
μ̂, σ̂2

)
= α̂ = μ̂

(
μ̂(1−μ̂)

σ̂2 − 1
)

and f2

(
μ̂, σ̂2

)
= β̂ = (1 − μ̂)

(
μ̂(1−μ̂)

σ̂2 − 1
)
.

distribution, as the test is very sensitive due to the large number of observations. To illustrate the correla-

tion between the number of observations and the sensitiveness of the test, we run simulations with a sample

randomly drawn from a beta distribution. Drawing 10, 000 times 344 observations from a beta(0.28,0.35)-

distribution and testing each sample against a beta(0.18,0.25)-distribution yields a probability of making a

type II error (ie the error of falsely accepting the null hypothesis) of around 18%. Repeating this exercise

for only half of the sample (ie drawing 172 observations each time) leads to a probability of making a type

II error of 62%. Thus, the larger the sample, the more sensitive the test becomes to only small deviations

from the distribution tested.
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The variance-covariance matrix of μ̂ and σ̂2 is given by:

V ar

⎛
⎝ μ̂

σ̂2

⎞
⎠ =

⎛
⎝ σ2

μ̂ σμ̂,σ̂2

σμ̂,σ̂2 σ2
σ̂2

⎞
⎠ =

⎛
⎝ 1

N σ2 1
N μ3

1
N μ3

1
N

(
μ4 − N−3

N−1σ4
)

⎞
⎠ (9)

where μ3 and μ4 denote the third and fourth central moments, respectively.14 For imple-

mentation purposes, we replace the true moments by their estimators, i.e. σ̂2, μ̂3 and μ̂4

are given by 1
N−1

∑N
i=1 (xi − μ̂)2, 1

N

∑N
i=1 (xi − μ̂)3 and 1

N

∑N
i=1 (xi − μ̂)4, respectively.15

From the Equations (8) and (9), we see that the variances of α̂ and β̂ are linear combina-

tions of σ2
μ̂, σμ̂,σ̂2 and σ2

σ̂2 :

V ar (α̂) =
(

∂f1

∂μ̂

)2

· σ2
μ̂ + 2 ·

(
∂f1

∂μ̂

)
·
(

∂f1

∂σ̂2

)
· σμ̂,σ̂2 +

(
∂f1

∂σ̂2

)2

· σ2
σ̂2 (10)

V ar
(
β̂
)

=
(

∂f2

∂μ̂

)2

· σ2
μ̂ + 2 ·

(
∂f2

∂μ̂

)
·
(

∂f2

∂σ̂2

)
· σμ̂,σ̂2 +

(
∂f2

∂σ̂2

)2

· σ2
σ̂2 (11)

Calculations based on our dataset yields V ar (α̂) = 0.0007 and V ar
(
β̂
)

= 0.0013. As a

next step, we use these values to calculate the test statistics T for the t-test with the null

hypothesis that α > 1 and β > 1. The results Tα ≈ −27 and Tβ ≈ −18 clearly show that

the null hypothesis can be rejected. Thus, we can conclude that, contrary to the common

assumption of an unimodal LGD distribution in the literature, our dataset of the LGD

follows a u-shaped distribution.

4 Results

4.1 Aggregate results

We start with simulations using a constant LGD (see discussion in Section 3.1). Results

are then taken as benchmark to simulations using stochastic values.

In the simulations with a constant LGD, we assume a value of 45%, which is equal to

the mean of our actual LGD values. The initial assumption is that one of the 15 banks

fails. This could trigger a cascade of failures, if the ratio of tier-1 capital to risk weighted

assets of one of the creditor banks falls below 6%. For a constant LGD, we obtain one

14See, for example, Mood et al. (1974), pp. 228, and Zhang (2007) for the variances and covariances of

the estimators μ̂ and σ̂2.

15See Hahn and Shapiro (1967), pp. 48.
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number of bank defaults occurring in the system, dependent on the bank that fails first.

We repeat this exercise by varying the bank that fails first from bank number 1 to 15.

As a result, we obtain a frequency distribution of the number of bank failures. Figure 1

shows that in 47% of the cases, which is equivalent to 7 out of 15 initial bank defaults, no

further bank failure occurs. In 13% of the cases we have one subsequent bank failure (ie

in total two bank defaults). Figure 2 illustrates that in only 13% of the cases more than

six bank defaults occur. The failure of one of the 15 systemically relevant German banks

thus leads to an average of 3.7 bank defaults altogether.
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Figure 1: Frequency distribution of bank failures for constant LGD and

stochastic LGD.

The second set of simulations (based on a stochastic LGD) is carried out by drawing

from a beta distribution with parameters α = 0.28 and β = 0.35. This means that, for

each exposure of a creditor bank to a bank in distress, we randomly draw an LGD value

from the beta distribution estimated in Section 3.3. Again, we simulate by varying the

bank that fails first exogenously. In contrast to simulations based on a constant LGD,

the approach with a stochastic LGD yields for each of the 15 banks a distribution of the

number of banks in distress (and not only one single number of subsequent failures). We

repeat the contagion exercise 100, 000 times for each bank, each time another of the 15

12
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Figure 2: Distribution function of bank failures for constant LGD and stochas-

tic LGD.

banks starts the contagious process.

Figure 1 gives the relative frequency of the number of bank failures, where we assume

that the probability of the initial failure is the same for all of the 15 banks. The figure

shows that, in 39% of the 1,500,000 simulation runs, no further failure occurs. By contrast,

in case of a constant LGD of 45%, 7 out of 15 banks (= 47%) do not initiate a contagious

process. Moreover, the overall expected number of bank defaults, given the failure of one

of the 15 banks, is higher in the case of a stochastic LGD (5.6 banks in distress) than in

the case of a constant LGD (3.7 banks in distress).

However, the comparison of entire distributions, only on the basis of their expected

values, may neglect important parts of the distributions. This is especially true for dis-

tributions with a large amount of probability mass at the boundaries, as in our case. A

stronger concept is the concept of stochastic dominance which is often used, for instance,

in decision theory when the outcomes of two risky projects have to be compared (see eg

Bawa (1975)). A cumulative distribution F is said to stochastically dominate the distri-

bution G, if F (x) ≤ G(x) for all x (and strict inequality for at least one point). Figure 2

shows that the empirical cumulative distribution function of the results for the stochastic

13



LGD Fstoch(·) dominates the one for the constant LGD Fconst(·), ie the distribution func-

tion Fstoch(·) is always below the function Fconst(·). In this context, (first order) stochastic

dominance means that any society preferring less failures to more failures considers the

case of stochastic LGDs as inferior to the case of constant LGDs. In other words, with only

few assumptions about the society’s preferences (especially non-saturation), we are able

to show that the loss distribution with the assumption of stochastic LGD is less desirable

than the loss distribution under the assumption of a corresponding constant LGD.

From an economic perspective, figure 2 illustrates that simulations based on a constant

LGD tend to underestimate the risks to financial stability by a bank failure. Contagion

effects and therefore potential losses in the banking system may be substantially larger,

implying a more fragile banking system. Since simulation studies on interbank conta-

gion usually assume a constant LGD, this suggests that contagion risks have often been

underestimated in the literature so far.

4.2 Identifying banks with similar contagion patterns

After examining aggregate results of the banking system, we investigate the disaggregate

simulation results dependent on the trigger bank. We focus on the simulation results with

a stochastic LGD. There are three possible patterns for the distribution of the number of

bank failures, given a certain trigger bank.

1. A distribution with a large portion of probability mass concentrated on the bound-

aries of the distribution, ie in most of the 100, 000 iterations either a very low or a

very high number of banks fail. This is the case for 7 of the 15 trigger banks. In all

these cases, the expected number of bank defaults is higher in the stochastic model

compared to the constant LGD of 0.45. Figure 6 shows an example for this pattern.

2. An almost unimodal distribution with a large portion of probability mass concen-

trated on one point. In two cases, the peak of the distribution is at a high number

of bank failures (see Figure 7). It is remarkable that only in these two cases, the

expected number of bank defaults is lower in the stochastic model. In four cases, the

peak of the distribution is at a low number of bank failures (see Figure 8). These

remaining four cases have again a higher expected number of bank defaults in the

stochastic case.
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3. A degenerate distribution with all probability mass concentrated on the left bound-

ary (see Figure 9), ie those banks do not initiate a contagious process. This happens

in two cases. By definition, the results of the stochastic and the constant LGD are

then identical.

In Table 1 we give an overview of summary statistics of the three groups. This table reads

Group Number Bank failures (average across groups)

of banks mean standard dev.

1 7 7.0 5.3

2 6 5.5 3.2

3 2 1.0 0.0

Table 1: Average mean and average standard deviation of bank failures for

the three groups of banks (group 1 = large probability mass at the boundaries

of the distribution, 2 = unimodal distribution, 3 = degenerate distribution).

as follows. The first group consists of seven banks. We choose each of the seven banks as

the bank that exogenously fails, and then calculate the mean and the standard deviation

of the number of banks in distress in the simulation runs. The average across these seven

means is 7.0, the average standard deviation is 5.3.

When we compare the standard deviations in the first and second group, we find

that the standard deviations in the first group are considerably higher. This difference is

due to the finding that banks in the first group have a bimodal distribution concerning

the frequency of banks in distress, while those in the second group have an unimodal

distribution. In the third group, as no subsequent bank failures occur, the mean of bank

failures is one and the standard deviation is zero.

Our findings overall indicate a high degree of heterogeneity in the results. First, the

exact distribution of bank failures depends on the trigger bank. Whether the simulations

with a constant LGD over- or underestimate the results on average compared to the

stochastic LGD, depends on the shape of the distribution of bank failures. Second, for a

given trigger bank, different scenarios occur. Especially in case of the u-shaped distribution

of the number of bank defaults (ie pattern 1), a fortunate combination of LGDs indicates

a stable system, ie a low number of subsequent bank defaults. If there is an unfortunate

15



combination of LGDs, however, the number of bank defaults increases sharply. Thus,

while the simulations with a constant LGD yield only one single result of bank defaults,

the simulations with a stochastic LGD enable to distinguish between different scenarios.

4.3 Robustness checks

We carry out robustness checks concerning two issues. First, to investigate the sensitivity

of our results with respect to the assumed distribution, we draw from the discrete distribu-

tion observed by the data instead of the beta distribution. For this purpose, one observed

LGD value is randomly allocated to each exposure of a creditor bank to a bank in distress.

Compared to drawing the LGD from a beta distribution, the results of this exercise do not

differ much. The average amount of bank failures in the stochastic case is 5.5 (compared

to 5.6 in Section 4.1). Furthermore, if we look at the relative frequency distribution as

well as the cumulative distribution function of the total number of bank failures, there are

virtually no differences to the results of the simulations with the beta-distributed LGD.

Hence, the empirical cumulative distribution function of bank failures with a stochastic

LGD still stochastically dominates the cumulative distribution function of bank failures

with a constant LGD. Moreover, the distribution of the number of bank failures for a given

trigger bank reveals for each bank the same pattern as in Section 4.2. We can therefore

conclude that drawing from the beta distribution is a good approximation for our observed

LGD values.

Second, we examine the impact of including off-balance sheet positions in our simula-

tions. Most literature on interbank contagion ignores off-balance-sheet exposures, while

we have considered them in our above simulations. We therefore repeat the simulation

exercise by excluding off-balance sheet positions. According to our dataset, the share of

off-balance-sheet exposures to total exposures varies considerably between banks. Not

surprisingly, banks with a high amount of off-balance-sheet positions on their liability side

trigger much less bank failures when ignoring these exposures. In total, the average amount

of bank failures is only 4.1 (compared to 5.6 when considering all exposures). Again, the

cumulative distribution function of bank failures using a stochastic LGD stochastically

dominates the cumulative distribution function of bank failures using a constant LGD.

The shape of the distribution of bank defaults for a given trigger bank, however, changes

for two banks. These two banks exhibit the highest share of off-balance-sheet positions on
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Figure 3: Difference between the relative frequency distributions of bank fail-

ures considering total exposures and considering only balance sheet exposures.

their liability side.

To elaborate the differences between the simulation results with and without off-

balance-sheet exposures, we calculate the difference between the two relative frequency

distributions of bank failures (see Figure 3). Figure 3 shows, for example, that the overall

probability of observing only one bank failure (ie contagion effects not occurring) is four

percentage points higher when only considering balance sheet exposures. For high numbers

of bank defaults, the result is reversed. For instance, the overall probability of observing

14 bank failures is nine percentage points higher when off-balance-sheet exposures are con-

sidered. Thus, Figure 3 shows that the inclusion of off-balance-sheet exposures leads to a

higher probability of observing extreme events and therefore captures tail risk in a more

adequate way. Therefore, we can conclude that off-balance-sheet exposures considerably

contribute to the interdependence of banks and possibly change the results of the stability

analysis in a remarkable way.
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5 Conclusion

In this paper, we investigate contagion risk in the German interbank market. We have

access to a unique data set about loss given defaults (LGDs) of interbank exposures. Our

data reveal that the frequency distribution of the LGD is u-shaped, ie defaults of interbank

loans often imply either a loss of 0 or 100 per cent. This bimodal distribution stands in

contrast to the assumption of an unimodal LGD distribution in the literature.

Next, we run simulations investigating the extent of potential contagion in the German

interbank market. For this purpose, we focus on 15 systematically relevant German banks.

For our simulations, we compare the outcome of two different assumptions. First, we run

simulations assuming a constant LGD that equals the average LGD value in our dataset.

The assumption of a constant LGD is the standard approach in the literature. Second,

we use a stochastic LGD by drawing from a beta distribution. The shape of the beta

distribution is derived from our LGD data set. With the help of the concept of stochastic

dominance, we show that contagion effects tend to increase when we replace a constant

LGD with a stochastic one. This finding indicates that the traditional literature with the

assumption of constant LGDs underestimates the severity of contagious processes.

On the bank level, we identify three types of banks: banks whose initial failure either

leads to a high or low a number of further failures, depending on the probability path;

banks whose initial failure leads to an unimodal distribution of subsequent failures; and

banks that even in the worst scenarios do not trigger any further bank defaults because

other banks’ exposures are not high enough. For banks belonging to the first group,

the number of subsequent bank failures is not predictable for eg a regulatory institution

without knowing the exact LGD-values. For these banks it is reasonable to have a more

detailed look at the data and eg identify the crucial interbank exposures that drive the

results. Though the danger of domino effects caused by a bank from the second group can

be high (when the peak of the distribution is at a high number of bank failures), there is

not much uncertainty about it. Thus, it is not difficult to predict the number of subsequent

bank failures. The failure of one of the banks belonging to the third group looks, at first

sight, unproblematic for the rest of the financial system as no further systemically relevant

bank fails for sure. However, one has to be careful with this assessment as we did not

take into account the numerous small banks that have direct exposures to the systemically

relevant banks. Furthermore, we only consider direct domino effects in our analysis and
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abstract from other effects that can occur in times of crisis.

An open question for future research is to compare the loss distribution at different

points in time and to develop an indicator showing by how far the interbank market is

prone to contagious processes.
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Figure 4: Relative frequency of the loss given default for interbank loans,

derived from data on German private commercial banks and the central insti-

tutions of the savings and cooperative banks. 344 observations for the period

1998-2008.
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Figure 6 to 9: Different distribution patterns

Note: These pictures show different distribution patterns of bank failures dependent on

which bank fails first. Each picture is created by assuming that one particular bank fails

first. The total number of bank failures occuring because of domino effects is then calcu-

lated by drawing an LGD value from the beta distribution for each interbank exposure.

This exercise is repeated 100, 000 times for each bank. In this context, three contagion

patterns can be observed dependent on the trigger bank: A u-shaped distribution of bank

failures (see Figure 6 and pattern 1 in Section 4.2), an unimodal distribution of bank

failures (see Figures 7 and 8 and pattern 2 in Section 4.2) and a degenerate distribution

of bank failures (see Figure 9 and pattern 3 in Section 4.2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

5%

10%

15%

20%

25%

Total number of failures

R
el

at
iv

e 
fr

eq
u

en
cy

result LGD = 0.45 mean result of
stochastic LGD

Figure 6: Example of a distribution of bank failures with a large amount of

probability mass at the boundaries of the distribution.
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Figure 7: Example of a distribution of bank failures with a large amount of

probability mass concentrated on a high number of bank failures.
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Figure 8: Example of a distribution of bank failures with a large amount of

probability mass concentrated on a low number of bank failures.
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Figure 9: Example of a degenerate distribution of bank failures.
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