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Abstract 
Rating downgrades are known to make subsequent downgrades more likely. We analyze the 

impact of this ‘downward momentum’ on credit portfolio risk. Using S&P ratings from 1996 

to 2005, we estimate a transition matrix that is insensitive to and a second matrix that is sensi-

tive to previous downgrades. We then derive differences between the insensitive portfolio 

Value-at-Risk (VaR) and the momentum-sensitive VaR. We find realistic scenarios where 

investors who rely on insensitive transition matrices underestimate the VaR by eight percent 

of the correct value. The result is relevant for risk managers and regulators since banks ne-

glecting the downward rating momentum might hold insufficient capital.  
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Non-technical summary 
In the analysis of rating transitions, rating momentum means that the probabilities of future 

transitions and defaults do not depend on the current rating only but also on previous transi-

tions. In the case of downgrades, there is much empirical evidence of rating momentum: 

within a certain rating category, ratings with previous downgrades are more prone to further 

downgrades and defaults than others. The rating momentum has an impact on the risk of value 

changes in a bond portfolio: Given two portfolios with equal rating distribution, and given a 

large share of previously downgraded bonds in the first one but a lower share in the second 

one, more future defaults and losses through revaluations of downgraded bonds are expected 

in the first portfolio.  

We analyze the impact of the rating momentum on credit portfolio risk with an emphasis on 

realistic assumptions. Using S&P ratings from 1996 to 2005, we estimate a transition matrix 

that is sensitive to and a second matrix that is insensitive to previous downgrades. We then 

apply the matrices to a CreditMetrics®-type portfolio model and calculate differences between 

the insensitive portfolio Value-at-Risk (VaR) and the momentum-sensitive VaR, which we 

consider to be the correct one. In doing so, we assume that the portfolio manager accounts for 

the current ratings of the bonds but not for their momentums, thus choosing some previously 

downgraded bonds by pure chance. This provides us with a measure for the risk of misper-

ceiving the portfolio VaR. 

We find that the momentum-insensitive VaR of 6.7% underestimates the correct sensitive 

VaR by 0.24% of the portfolio volume (3.5% of the correct VaR), on average. More impor-

tant, there is substantial fluctuation: Given normal conditions, there is a 5% probability that 

the insensitive VaR underestimates the correct VaR by more than 0.59% (8.1% of the correct 

VaR). Given a stressed economy, the misperception can easily reach 1.8% (6.8% of the cor-

rect VaR). 

The result is relevant for risk managers and regulators since banks neglecting the downward 

rating momentum might hold insufficient capital. 

 



 

 

Nicht technische Zusammenfassung 
In der Analyse von Ratingänderungen spricht man von einem Ratingimpuls (rating momen-

tum), wenn die Wahrscheinlichkeit zukünftiger Ratingänderungen und Ausfälle nicht nur vom 

aktuellen Rating, sondern auch von früheren Ratingänderungen abhängt. Für Herabstufungen 

ist ein Ratingimpuls vielfach empirisch belegt: Innerhalb einer Ratingklasse haben die Anlei-

hen mit vorangegangenen Herabstufungen eine höhere Ausfallwahrscheinlichkeit und eine 

höhere Wahrscheinlichkeit, herabgestuft zu werden, als solche ohne vorangegangene Herab-

stufungen. Dieser Ratingimpuls hat einen Einfluss auf das Wertänderungsrisiko eines Anlei-

henportfolios: Vergleicht man zwei Portfolios mit gleicher Ratingzusammensetzung, von de-

nen das erste einen hohen Anteil zuvor herabgestufter Anleihen hat und das zweite einen ge-

ringen, dann sind im ersten Portfolio mehr Ausfälle und Barwertverluste durch die Neubewer-

tung nach Herabstufungen zu erwarten als im zweiten. 

Wir messen den Einfluss des Ratingimpulses auf das Kreditportfoliorisiko unter möglichst 

realistischen Annahmen. Mit Standard-and-Poor’s-Daten von 1996 bis 2005 schätzen wir zu-

nächst eine Ratingmigrationsmatrix, die den Ratingimpuls berücksichtigt, und eine Matrix, 

die den Impuls ignoriert. Anschließend verwenden wir die Matrizen in einem Kreditportfo-

liomodell vom Typ CreditMetrics® und berechnen Unterschiede zwischen dem Value-at-Risk 

(VaR) mit und ohne Berücksichtigung des Ratingimpulses, wobei wir ersteren als richtig an-

sehen. Wir nehmen dabei an, dass der Portfoliomanager das aktuelle Rating, aber nicht den 

Ratingimpuls beachtet, also rein zufällig einige zuvor herabgestufte Anleihen ausgewählt hat. 

Wir gewinnen damit ein Risikomaß für die Fehleinschätzung des VaR.  

Es zeigt sich, dass ohne Berücksichtigung des Ratingimpulses der VaR von 6,7 % den korrek-

ten VaR mit Ratingimpuls im Mittel um 0,24 % des Portfoliovolumens (3,5 % des richtigen 

VaR) unterschätzt. Bedeutsamer sind aber die erheblichen Schwankungen: Unter normalen 

Bedingungen gibt es eine Wahrscheinlichkeit von 5 %, dass der VaR ohne Ratingimpuls den 

korrekten VaR um mehr als 0,59 % (8,1 % des richtigen VaR) unterschätzt; in einer ökonomi-

schen Stress-Situation kann der Fehler leicht 1,8 % (6.8 % des richtigen VaR) betragen. 

Das Ergebnis ist relevant für Risikomanager und Bankenaufseher, denn Banken, die den Ra-

tingimpuls vernachlässigen, halten möglicherweise nicht ausreichend Kapital vor. 
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The Impact of Downward Rating Momentum on Credit Port-
folio Risk1 

1 Introduction 
Rating transition probabilities play an important role in state-of-the-art credit risk manage-

ment. Numerous credit portfolio models such as CreditMetrics are based on estimates of rat-

ing transition probabilities. Hence, using estimates of these probabilities that are as accurate 

as possible is crucial for banks, investors in fixed income markets, and—indirectly—for regu-

latory authorities. A standard specification for rating transition probabilities is the first-order, 

time-homogeneous Markov model, which is based on the assumptions that, first, the probabil-

ity of migrating from one rating class to another depends on the current rating only, and sec-

ond, that the probability of changing from one rating class at time t  to another class at time 

t n+  does not depend on t . 

However, it is well known that rating transition probabilities are not Markovian. First, they 

are not homogeneous in time (e.g., Lando and Skødeberg, 2002). Second, it is known that the 

transition probabilities are influenced by several factors, which can—and usually do—lead to 

non-Markovian transition probabilities. Rating transitions follow the business cycle in that 

downgrades are more frequent in recessions than in booms (Nickell et al., 2000; Bangia et al., 

2002; Krüger et al., 2005). Transition probabilities also depend on the bond’s age (Altman 

and Kao, 1992; Kavvathas, 2000). Third, Altman and Kao (1992), Christensen et al. (2004), 

and Lando and Skødeberg (2002) show that consecutive rating changes in the same direction 

are more frequent than in the opposite direction.2 Since the effect is stronger in the case of 

downgrades, it is called downward momentum.  

Although several factors are identified as contradicting the standard Markov model, their im-

pact on credit portfolio risk is analyzed for some of these factors only. Obviously, the impact 

is crucial to banks, investors in fixed income markets such as pension funds and insurance 

companies, as well as to regulatory bodies. To our knowledge, only the outcomes of different 

                                                 

1 Acknowledgement: We thank Albert L. Chun, Klaus Düllmann, Axel Eisenkopf, Ulrich Krüger and partici-
pants at the annual meeting of the German Academic Association for Business Research and the annual meeting 
of the German Finance Association for their helpful comments. All errors and opinions expressed in this paper 
are, of course, our own. Financial support by the E-Finance Lab Frankfurt is gratefully acknowledged. 
2 However, Mählmann (2006) and Krüger et al. (2005) find no evidence of downward momentum in the case of 
changes of internal ratings and for a purely scoring-based rating system, respectively.  
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business cycles have been used for Value-at-Risk (VaR) approaches. Bangia et al. (2002) es-

timate separate transition matrices for booms and recessions and find corresponding 99% VaR 

figures3 of a representative portfolio to differ by 29.9%. Krüger et al. (2005) apply this ap-

proach to a scoring-based rating model and find the 99% VaR to be more than twofold in the 

recession period.  

As the impact of the other factors on portfolio risk has not yet been analyzed, our research 

question is the following: how does the VaR change if we incorporate the downward momen-

tum of credit ratings into an appropriate portfolio model? We concentrate on the downward 

momentum because it is, up to now, the best-analyzed influencing factor of rating transition 

probabilities.  

Our approach is a special case of the model of Christensen et al. (2004). Using a dataset with 

S&P ratings covering the period 1996–2005, we first estimate, as a benchmark, a standard 

Markov time-homogeneous rating transition matrix, called the insensitive matrix. We then 

estimate a further transition matrix that includes the effect of previous downgrades, called the 

momentum-sensitive matrix. This matrix distinguishes between two groups of firms. One 

group includes firms with a downgrade as the last rating transition. Following Christensen et 

al. (2004), we call these firms excited. The second group comprises the remainder of the sam-

ple.  

To quantify the impact of the rating momentum on credit portfolio losses, we take the per-

spective of an investor who holds a portfolio with a fixed rating distribution. By assumption, 

the investor does not take previous downgrades into account. From his perspective, all risk 

characteristics of the portfolio are fixed and he therefore uses the insensitive transition matrix 

to quantify the portfolio risk. We assess to what extent the investor could do better if he in-

corporated the excitement status of each bond and used the momentum-sensitive transition 

matrix. To put it differently, we quantify the investor’s risk of ignorance that is realized in 

spreads between the investor’s calculation of the portfolio VaR and the momentum-sensitive 

VaR that accounts for excited states. Since the excitement ratios, i.e. the number of previously 

downgraded companies divided by all rated companies in a certain rating class, vary signifi-

cantly over time, we conduct our analysis for each year separately.  

We find evidence of the downward momentum and thus confirm previous findings (e.g. 

Christensen et al. 2004) for our dataset and our simplified methodology. We then analyze the 

                                                 

3 An x% value-at-risk is defined as the quantile of the loss distribution at the significance level of x%. 
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representative investor’s risk of ignorance and find momentum-sensitive VaRs to be substan-

tially higher than the insensitive VaR. Thus, our hypothetical investor underestimates the 

portfolio VaR. In a base case scenario, we observe that the momentum-sensitive 99.9% VaR 

is, on average, 0.24% larger than the insensitive VaR. As the representative investor randomly 

selects excited bonds from a certain year’s pool of available bonds, there is substantial varia-

tion in the momentum-sensitive VaRs. The difference between their 5th and 95th percentile of 

a year’s sample is between 0.26% (1997) and 0.44% (2004). Moreover, we find vast variation 

over time, since the average difference between insensitive and momentum-sensitive VaR 

reached a maximum of 0.5% in 2004 and a minimum of 0.03% in 1998. In a stress test sce-

nario, we combine a relatively risky portfolio with a high asset correlation of 0.4331. We find 

VaR deviations of more than 1.7%. The result is, for example, relevant for risk managers and 

regulators, since banks who neglect the downward rating momentum might hold insufficient 

capital.  

Our analysis contributes to the existing literature in two ways. First, we provide an approach 

of calculating rating transition probabilities that is strictly based on observables. In doing so, 

we transfer the findings of Christensen et al. (2004) to a setup that is both easily applied and 

accessible to validation. Second, we explicitly point out the economic impact of including the 

downward rating momentum into VaR calculations. Hence, our work is complementary to the 

line of literature that analyzes the impact of the business cycle upon credit portfolio risk (e.g., 

Bangia et al., 2002). 

The article is structured as follows. Section 2 describes our data. Section 3 presents the rele-

vant features of momentum-sensitive transition matrices and the corresponding portfolio VaR. 

It further describes two explanations for the found relationship between the insensitive and the 

momentum-sensitive VaR. Section 4 provides empirical results. Section 5 concludes. 

2 Data description 
Our study covers the period 1996−2005. We use changes of S&P ratings, which were taken 

from Bloomberg. Given the broad range of different ratings for a given obligor, for example, 

regarding seniority or collateral, we construct a single rating history for the senior unsecured 

debt of each issuer. Following Christensen et al. (2004), we make use of a mapped rating 

scale with seven rating classes from AAA to CCC throughout, since the data would be spread 

too sparsely over a full scale with + and – modifiers. We treat withdrawn ratings as not con-

taining risk-relevant information. Hence, we eliminate companies whose ratings are with-
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drawn and distribute their transition probabilities among all other rating classes in proportion 

to their values (Hanson and Schuermann, 2006).  

We use an international sample with 11,230 rated companies. The total number of rating ob-

servations is 24,048. According to Table 1, we observe 2,448 upgrades and 6,029 down-

grades; the remainder consists of initial rating observations or withdrawal information. The 

dominance of downgrades is consistent with the findings of Blume et al. (1998). In our sam-

ple, which covers, for example, the Asian/Russian financial crisis 1997/1998 and the eco-

nomic slowdown in 2001, the ratio of downgrades to upgrades is even more pronounced than 

in Blume et al. (1998).4  

In addition to the rating history of the ten years, we also use rating information of the period 

1990−1995 for conditioning the rating changes of 1996−2005 on start ratings. Since we are 

particularly interested in the downward rating momentum, we condition all rating changes on 

whether or not the previous rating change was a downgrade. 

Table 2 provides further insights into the development of the excitement ratio, i.e. the ratio of 

rating changes that belong to previously downgraded companies. Two results emerge imme-

diately. First, the excitement ratio increases for worsening rating levels. Whereas the weighted 

excitement ratio equals 11.2% for the rating class AA, the figure raises to 70.3% for the most 

risky rating class CCC. Second, we observe a marked time-pattern since the weighted excite-

ment ratio peaked in 2004, where it reached 28.9% and exhibited a minimum of 11.9% in 

1998.  

We treat the rating categories D (default), SD (selected default), and R (regulated) as default.5 

In addition, we check the accuracy of the ratings based default information with S&P’s annual 

default reports. As a result, we observe 972 defaulted issuers. Of these, 76 issuers defaulted 

several times. Almost 60% of the sample companies stem from the U.S. The leftover is 

mainly distributed over Europe (18.53%), Asia (9.83%), and South and Central America 

(4.24%). 

                                                 

4 An additional reason might be that we include non-US domiciled companies in our sample. These companies 
experienced many downgrades during our observation period. 
5 The 'R' rating indicates that an obligor is under regulatory supervision owing to its financial condition. Using 
D, SD and R ratings as defaults, we follow the approach used by S&P’s in its annual default reports (cf. S&P 
2007). 
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3 Methodology 

3.1 Momentum-sensitive rating transition matrices 

Rating transition matrices used in practice tend to have a very simple structure. Using the co-

hort method, these matrices are calculated on an annual basis. The transition probability, fol-

lowing a constant cohort of companies from the beginning of the year t  until the end of the 

year is given by a transition matrix ( )P t  where the ( ),h j th element denotes the probability 

that a rated company starting in rating class h  at date t  is in rating class j  at date 1t + : Let 

( )hjN t  denote the number of rating changes from h  to j  in the interval ( ], 1t t +  and ( )hN t  

the number of rating observations in rating class h  at time t . The maximum likelihood esti-

mator of ( )hjP t  is given by 

 ( ) ( )
( )

ˆ .hj
hj

h

N t
P t

N t
=  (1) 

This approach ignores rating changes if there is more than one within a calendar year. It can-

not handle censoring properly either (c.f., Lando and Skødeberg, 2002).  

To avoid these problems, we use a simplified approach of the hidden-Markov estimates used 

by Christensen et al. (2004). We consider a homogeneous finite-state Markov chain with one 

day as time interval where state 1 indicates the highest rating category (AAA); the last state 

denotes default. Yet, to capture the influence of the downward momentum, we split each rat-

ing category into two states according to the following definition: at a given point in time, a 

company’s rating is called excited if the last rating change was a downgrade. It is called non-

excited otherwise, including the cases without any previous rating change. Whether a com-

pany is excited or not is called its excitement status. 

We use the labels (AAA’, AA’, A’, BBB’, BB’, B’, CCC’) for the non-excited states and tag 

excited states with asterisks. Since rating class AAA cannot be reached via downgrades—in 

contrast to state D, which must be preceded by a “lethal” downgrade—there are only six ex-

cited states AA*, A*, BBB*, BB*, B*, and CCC*. In total, the state space is 

{ }: AAA', AA', AA*, A', A*, BBB', BBB*, BB', BB*, B', B*, CCC', CCC*, DS = . Let us stress 

that we use the term state to describe jointly the rating class and the “excitement” status.  
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Figure 1 indicates which direct transitions are feasible according to our definition of an ex-

cited state. Note that both off-diagonal probabilities within one rating class (such as AA*  

AA’ and AA’  AA*) are zero. Excited states can only be entered by downgrades, which 

means that direct transitions like AA’  AA* cannot occur. Nevertheless, it would be possi-

ble to imagine hidden transitions from excited to non-excited states (like AA*  AA’), as 

Christensen et al. (2004) actually do. As such transitions cannot be observed, they estimate 

the probabilities of these hidden moves by a maximum-likelihood algorithm, jointly with all 

other probabilities whose transitions are observable.  

By contrast, we place the emphasis on simplicity and reliability: In setting all transition prob-

abilities within one rating class from excited to non-excited states equal to zero, we rely en-

tirely on observations. In other words, we follow the rule “once excited, always excited, until 

any observable transition”, thus giving the term “excited” a rather broad interpretation.  

Given any day t  of the estimation period 1996–2005, we can directly assign each rated com-

pany k  a state ( ),X t k S∈ , while using the period 1990–1995 only to decide whether the last 

rating change—if there is any—was a downgrade. 

Following Lando and Skødeberg (2002), we estimate a continuous-time Markov model, thus 

exploiting the fact that, given the low frequency of rating changes, the hypothetical continu-

ous-time process is well approximated by a process on a daily scale. Let iY  be the total of 

days within the estimation period 1996–2005 that any company of our sample was in state i ; 

formally, we set ( ){ },
,

:i X t k i
t k

Y I ==∑ . Let, furthermore, ijN  for i j≠  be the total number of tran-

sitions from state i  to j  within the estimation period and ,:i i j
j i

N N
≠

=∑  their sum over desti-

nation states. The maximum-likelihood estimator Â  of the generator is then given by  

 

1,2 1,141

1 1 1

2,1 2,142

2 2 2

13,1 13,2 13,1413

13 13 13 13

0 0 0

N NN
Y Y Y

N NN
Y Y Y

Â

N N NN
Y Y Y Y

⎛ ⎞
−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L L

L L

M M O L M

L

L L

 . 
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The bottom row is zero because we assume that firms cannot leave the default state. Further-

more, the generator has zero entries in exactly the same fields as Figure 1 has. From the esti-

mated generator, each transition matrix over a horizon of T  days is calculated by  

 ( ) { } ( ) 1

0

ˆ : exp ! k k

k
P T T Â k T Â

∞
−

=

= =∑  (2) 

via numerical iteration. The one-day transition matrix ( )ˆ 1P  according to (2) has strictly posi-

tive entries, except in line 14 and column 126. However, the one-day transition matrix is very 

close to the generator, except on the diagonal. We refer to ( )ˆ 365P , i.e. to the transition ma-

trix over one year, as the momentum-sensitive rating transition matrix.  

3.2 Insensitive rating transition matrices 

To measure the portfolio effect of the downward momentum, we need a benchmark model, 

used by an investor who ignores the momentum. We assume that he estimates an analogous 

continuous-time Markov model which recognizes the ordinary ratings AAA, AA, A, BBB, 

BB, B, CCC, and D only. We estimate the 8 8×  generator as an analog to Â  and calculate the 

corresponding one-year transition matrix, calling it the insensitive rating transition matrix. 

3.3 Calculating the portfolio VaR 

We employ a methodology similar to CreditMetrics (Gupton et al., 1997), which generates 

defaults and rating transitions in a stylized version of Merton’s (1974) asset value model. Fol-

lowing Merton, a firm is assumed to default if the value of its assets falls below a critical level 

that is defined by the value of liabilities. Below, a firm’s asset return iX  is modeled through a 

one-factor model 

 1i iX Zρ ρε= + −  (3) 

where Z  is the common factor and 
iε  the idiosyncratic risk of obligor i . The random vari-

ables Z  and 
iε  are i.i.d. and standard normal. The asset correlation is therefore equal to ρ . 

In a next step, the company’s asset return determines its evolution of credit ratings. A very 

sharp decrease in the company’s asset value makes the company default; a sufficient decrease 

                                                 

6 According to our model, the state CCC’ cannot be entered through migration from existing other rating during 

the observation period.  
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yields a downgrade, and a sufficient increase an upgrade. Otherwise, the company remains in 

the current rating class. Thresholds for the asset return are calculated according to one of the 

rating transition matrices analyzed (Table 3 or 5). Let kjp  be entry ( ),k j  of one of these tran-

sition matrices and def  be the index of the last column, which contains default probabilities. 

Given a company in state k , the default threshold '
,k defZ  is given as ( )' 1

, ,k def k defZ p−= Φ , 

where 1−Φ  denotes the inverse standard normal cumulative density function. The thresholds 

to non-default states r  are determined by 

 ' 1
, ,

def

k r k i
i r

Z p−

=

⎛ ⎞
= Φ ⎜ ⎟

⎝ ⎠
∑  (4) 

with ( )1 1 :−Φ = +∞ , leading to '
,1kZ = +∞ . When a realization of iX  has been drawn, the low-

est threshold above iX  is selected from { }' '
,1 ,, ,k k defZ ZK . Its corresponding state defines the 

company’s new, one-year-ahead rating. Having drawn a new non-default rating, we use cor-

porate credit spreads to calculate the net present value of a hypothetical bond of the company. 

In the case of default, we derive stochastic recovery rates by using a beta distribution.  

On the portfolio level, each simulation step consists of drawing all asset returns according to 

(3), followed by assigning new ratings, drawing the stochastic recovery rates for all defaulted 

bonds, calculating individual (dollar) changes of present values and aggregating them to a 

single random change of the portfolio’s present value, which we call the portfolio’s profit and 

loss (P/L). 

Simply repeating this procedure yields a Monte Carlo approximation of the P/L distribution 

and its quantiles. We apply this procedure when calculating the expected return. Yet, when 

determining quantiles in the lower tail of the distribution, we use importance sampling, which 

is far more efficient in that case. 

3.4 Momentum-sensitive VaR 

To quantify the portfolio impact of the rating momentum, we take the perspective of an inves-

tor who holds a portfolio of 250 bonds with a fixed rating distribution. As a base case, we 

assume the rating distribution of the average S&P’s rating universe in our observation period 

also to be representative for the investor. 

We first investigate a scenario where the investor ignores prior downgrades. From his per-

spective, all risk characteristics of the portfolio are fixed; he therefore uses insensitive transi-
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tion probabilities to assess the portfolio risk. But the investor could assess the portfolio risk 

more precisely by using momentum-sensitive probabilities. 

We therefore define the risk of ignorance as the difference between the investor’s insensitive 

VaR calculation and the more sophisticated momentum-sensitive VaR, both being calculated 

for the same confidence level 1 α− . When the VaR difference is positive, the investor under-

estimates the portfolio risk by using the insensitive VaR. 

In a second scenario, we assume that a more sophisticated investor selects only non-excited 

bonds for his portfolio. In doing so, he does not just improve the risk assessment but also 

changes the risk. Since the excitement ratios, i.e. the number of previously downgraded com-

panies divided by all rated companies in a certain rating class, significantly vary over time, we 

conduct our analysis for each year separately. Note, however, that both the insensitive and the 

momentum-sensitive matrix are time-homogeneous or, in other words, they do not change 

over time. 

In each rating class, the investor holds a fixed number of bonds, regardless of the year he is in. 

The distribution of exposures in the portfolio is also fixed but inhomogeneous. We assume 

that the investor, who is in a certain year, randomly selects the bonds needed for each rating 

class from that year’s universe of available bonds. As some of these bonds are excited, the 

number of excited bonds (drawn without replacement) in each rating class is hypergeometri-

cally distributed. The assignment of bonds to the inhomogeneous exposures is also random 

and independent of the excitement statuses. 

In the first scenario, for each draw of the portfolio, and thus of excitement statuses, we calcu-

late the momentum-sensitive VaR of the portfolio and take the difference to the constant in-

sensitive VaR. Repeating the portfolio draw 100 times for each year provides us with an ap-

proximate distribution of the difference between insensitive and momentum-sensitive VaR. 

This distribution is our measure of the risk of ignorance. 

In the second scenario, we conduct the same random excitement analysis as before but con-

trast the momentum-sensitive VaR (with random excitement statuses) with the momentum-

sensitive VaR of the portfolio held by the sophisticated investor who has chosen non-excited 

loans only. 
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3.5 Insensitive VaR versus mean momentum-sensitive VaR 

It is not immediately clear how, in the first scenario, the constant insensitive VaR relates to 

the distribution of the momentum-sensitive VaR, which is random due to random choices of 

excited/ non-excited bonds. Is the momentum-sensitive VaR centered on the insensitive VaR 

or, if not, what is the sign of the bias in terms of mean values?  

We identify two forces that act in opposite directions. The first one leads to a decrease of the 

mean momentum-sensitive VaR compared with the insensitive VaR. Given that, in pure-

default asymptotic single-risk-factor models, according to (3), the VaR is concave in the PD, 

Jensen’s inequality makes the mean momentum-sensitive VaR lower than the insensitive 

VaR, provided that the momentum-sensitive VaR is a mixture of relatively high (excited) and 

low (unexcited) PDs.7  

The second force is based on the nonlinear relationship between momentum-sensitive PDs 

and the insensitive PD. The effect of Jensen’s inequality is based on the assumption that the 

ignorant investor observes an average (over excitement statuses) of annual PDs. By contrast, 

we actually assume that he estimates the eight-state transition matrix on a daily basis and 

transforms it to the annual transition matrix via (2) as well as a sophisticated investor does in 

his 14-state model. Indeed, the one-day insensitive transition matrix is almost exactly equal to 

an average of the momentum-sensitive matrix8, weighted at the share of excited / non-excited 

companies, but this property becomes totally lost under the expansion to the one-year matri-

ces. To illustrate this, we concentrate on PDs, as defaults are the crucial contribution to the 

VaR.9 We calculate ( )P̂ t  for different risk horizons t  and compare the momentum-sensitive 

t -day PD for the initial states BB’ and BB* with the insensitive PD for the initial rating BB. 

Figure 2 shows the evolution of the PDs from a risk horizon of one month up to three years. 

The daily insensitive PD (i.e., 1t = ) is virtually the same as an average of the momentum-

sensitive PDs with weights equal to the share of excited / non-excited BB-rated companies. 

But the insensitive PD grows at lower speed than the momentum-sensitive PDs and even falls 

short of the non-excited PD. There is nothing like a “monotonicity” in these transition prob-

                                                 

7 This is easy to show in a pure-default Vasicek setup. The omitted proof is available upon request. 
8 The relationship is exact for the generators; off the diagonal, the one-day matrices and the generators almost 
coincide. 
9 If the LGD in our model is set equal to zero, the portfolio VaR collapses to about one-fifth of the VaR with a 
mean LGD of 52%. 
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abilities. Thus, the insensitive VaR can be lower than the momentum-sensitive VaRs on aver-

age, given that the insensitive PD is even lower than both the momentum-sensitive ones.10  

4 Empirical results 

4.1 Momentum-sensitive rating transition matrices for the period 
1996–2005 

In the first step, we derive insensitive rating transition probabilities as a benchmark for the 

momentum-sensitive case. Table 3 shows that annual default rates increase with the rating 

classes from AAA to CCC, as should be expected. As the continuous-time model allows for 

multiple intra-year transitions, one-year default rates are greater than zero even in the safest 

rating class AAA, although no AAA-rated company in the dataset defaulted directly (cf. Ta-

ble 1).  

In the next step, we derive momentum-sensitive rating transition matrices to check whether 

there is downward momentum in our data set. First, this is done in order to replicate the re-

sults of Christensen et al. (2004), i.e. to ensure that we are in the same empirical context. Sec-

ond, we will use the momentum-sensitive rating transition matrices for credit portfolio risk 

calculations. Table 4 provides daily rating transition probabilities according to Figure 1 that 

are directly based on the observed non-excited and excited rating changes. Empty fields have 

zero probability by construction: apart from persistence, excited rating states can be entered 

by downgrades only and non-excited ratings by upgrades only. As we are particularly inter-

ested in the probabilities of default, we apply z-tests to their relationship between excited and 

unexcited states. The excited states have significantly higher default probabilities than the 

non-excited ones for the rating classes BBB, BB, B, and CCC. 

Based on the daily rating transition probabilities, we derive the annual rating transition matrix 

( )ˆ 365P , which is shown in Table 5. We find that the probabilities of downgrades and de-

faults are higher for issuers who have been previously downgraded, except for the highest 

starting rating classes AA’/AA*11. For example, the default rate equals 47.2% in the excited 

                                                 

10 However, we do not have a systematic relationship as there are also two cases where the insensitive PD grows 
faster with t  than the momentum-sensitive PDs. 
11 This counterintuitive finding results from the small number of rating changes from AA*. 
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rating class CCC*, compared with only 19.9% in the non-excited class CCC’.12 The insensi-

tive CCC default rate (Table 3) of 40.3% lies between the excited and non-excited values.13 

Furthermore, with the exception of rating class AA* and A*, the rating volatility is markedly 

higher for the excited rating classes, since their probabilities of staying in (and returning to) 

the starting rating class is always lower than those of the non-excited rating classes. 

4.2 Credit portfolio risk—base case results 

In this subsection, we first quantify the investor’s risk of ignorance in terms of the difference 

between the insensitive and the momentum-sensitive VaR. For a base case scenario, we use 

realistic parameters for the credit portfolio model, which are explained below. Special atten-

tion must be paid to asset correlations. As they have a strong impact on the VaR in many 

credit portfolio models, a large amount of literature has focused on estimating adequate corre-

lation levels (e.g., Lopez 2004). In this paper, we use the results of Zeng and Zhang (2001) 

who use a dataset of weekly returns of more than 27,000 firms from 40 countries covering the 

period 1988−1996. We use the results of their best-performing model, the Global Correlation 

Model (Version 2). For our base case, we use the mean asset correlation of 0.1998 for Zeng 

and Zhang’s sub-sample of firms with the fewest missing weekly returns.14 The other parame-

ters are chosen as follows. We take the average of our sample’s yearly rating distributions as a 

representative rating allotment in the credit rating business. We use beta distributed LGDs 

with mean 0.5235 and standard deviation 0.2671 representing the empirical loss characteris-

tics of senior unsecured bonds (Altman and Kishore, 1996). The bonds have a uniform matur-

ity of four years. We use moderately heterogeneous bond sizes which range between €50 and 

€100 within each rating class.15  

Below, we present differences in the VaR between the insensitive and the momentum-

sensitive view for every year from 1996 to 2005. Throughout, we present differences in VaR 

levels. Negative VaR differences signify a momentum-sensitive VaR lower than the insensi-

tive VaR. Based on the 100 draws per year of the bonds’ excitement statuses and subsequent 

                                                 

12 As a robustness check, we also duplicate the hidden-Markov estimation of Christensen et al. (2004) for our 
dataset. We obtain even larger differences in the PDs of the excitement status. We adhere to our approach, how-
ever, for the sake of brevity and the practical applicability of the model. 
13 Some researchers, for example, Christensen et al. (2004) or Hanson and Schuermann (2006), employ bootstrap 
approaches to derive confidence intervals around estimates of default frequencies. 
14 Our value is close to a “representative” asset correlation of 20% that is used by Löffler (2003). 
15 Since we report the VaR as a percentage of portfolio volume, the total value of the bonds does not matter. 
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VaR calculations, Table 6 provides several descriptive statistics of the VaR differences for the 

years 1996−2005. We concentrate on the 99.9% VaR because it is standard under Basel II 

(BCBS, 2006) and in many bank internal calculations of economic capital. We observe only 

positive mean and median VaR differences. According to the t-test for the hypothesis that the 

mean VaR differences equal zero, all differences are significantly larger than zero.16 Espe-

cially strong positive VaR differences are found in the years 2003−2005, which is a period 

with a relatively high number of previous downgrades (cf. Table 2). In 2004, the mean VaR 

difference reaches the maximum of 0.5%. In the years 1996−1999, the VaR differences are 

relatively low. The smallest mean VaR difference is 0.03% in 1998. The average VaR differ-

ence over the whole period from 1996−2005 equals 0.24%.  

As the year in which the investor selects the portfolio has no impact on the insensitive VaR 

but well on the momentum-sensitive VaR, the year can be seen as a risk factor of the misper-

ception, just as the portfolio draws. To obtain a general view on the total risk of ignorance, we 

aggregate the portfolio draws from all years and find substantial variation in this common 

sample of VaR misperceptions: the standard deviation equals 0.19%; focusing on severe de-

viations, there is a 5% probability that the momentum-sensitive VaR is underestimated by 

0.59%, which is a relative error of –8.1% or worse. In contrast, there is only a 8.1% probabil-

ity that the momentum-sensitive VaR is overestimated. 

Besides the risk of ignorance, we wish to address the perspective of a more sophisticated in-

vestor. This investor exploits the downward momentum in that he selects a purely non-excited 

portfolio. Compared with the portfolio with random excitement, the sophisticated investor 

experiences a 99.9% VaR that is, on average, 0.66% lower than the mean momentum-

sensitive VaR of Table 6. The maximum VaR difference amounts to 0.91% in 2003. Although 

the ‘non-excited rule’ might seem somewhat unrealistic, this line of thought nevertheless 

demonstrates the potential economic impact of the downward rating momentum.17 

Another important question is whether it is advantageous to use the 99.9% VaR or whether 

we should concentrate on the unexpected loss. To address this issue, we analyze the differ-

ences between the expected losses of the momentum-sensitive loss distributions and the single 

expected loss of the insensitive setup. On average over our observation period, the mean dif-

                                                 

16 Results remain qualitatively unchanged if we apply the non-parametric Wilcoxon signed-ranks test for differ-
ences in the median. 
17 We assume that excited and non-excited bonds are equally priced. If that assumption does not hold, the VaR 
differences should be minor. 
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ference between the insensitive and the momentum-sensitive expected loss amounts to only 

0.03%. However, the standard deviation of the momentum-sensitive expected losses over the 

full observation period is almost one-half the standard deviation of the momentum-sensitive 

VaRs. Thus, investors and banks can be mistaken about the expected loss as well and, conse-

quently, about appropriate write-offs. Given that expected loss and VaR are highly correlated 

in our simulation of excitement statuses, looking at variations of the unexpected loss would 

underestimate the size of misperceptions. Instead, by relying on the 99.9% VaR throughout, 

we include possible miscalculations of both the expected and the unexpected loss. 

To summarize the results of the base case scenario, the momentum-sensitive VaR in our ob-

servation period is, on average, higher than the insensitive VaR. Years with a relatively high 

excitement ratio particularly bear the risk of underestimating the VaR.  

4.3 Explanations for the base case results 

In Section 3.5 we identify two potential drivers of the difference between momentum-

sensitive VaR and insensitive VaR, namely the concavity of VaR (negative impact) in the PD 

and the nonlinear relationship between momentum-sensitive PDs and insensitive PDs (posi-

tive impact). Since we have provided evidence in the previous section that the VaR difference 

is indeed positive, i.e. that the momentum-sensitive VaR is, on average, higher than the insen-

sitive VaR, our second force seems to dominate the first one. In this section, we try to disen-

tangle the two potential effects empirically . 

The effect of the concave relationship between VaR and PD can easily be analyzed by chang-

ing the insensitive rating transition probabilities. Instead of relying on the annualization of 

daily transition probabilities that are thus influenced by the nonlinear relationship between 

momentum-sensitive PDs and the insensitive PD, we replace the insensitive matrix by 

weighted averages of one-year momentum-sensitive transition probabilities: the momentum-

sensitive rating transition probabilities of Table 5 are weighted by the average excitement 

ratio (see Table 2) per rating class over the whole observation period. The momentum-

sensitive VaR does not differ from the base case results. On average, the mean VaR difference 

is negative, unlike in the base case. The average difference between the momentum-sensitive 

and the weighted insensitive VaR is −0.09%. Assuming that only our two discussed potential 

reasons drive the VaR differences, we could derive the effect resulting from the nonlinear 

relationship between momentum-sensitive PDs and the insensitive PD. Since the first effect is 

negative on average, the second effect is larger than the overall result. On average, the nonlin-
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ear relationship between momentum-sensitive PDs and the insensitive PD accounts for 0.33%. 

Variation over time is rather mild: the VaR differences due to the second effect range between 

0.29% and 0.35%. 

4.4 Sensitivity analysis 

In this section we analyze variations of the base case’s input parameters. This will serve 

mainly as a robustness check. We vary the asset correlation, the risk characteristics (i.e. the 

rating distribution), the bonds’ seniority (i.e. the LGD level), the portfolio size, the maturity, 

and the distribution of exposure sizes. Aggregate results are shown in Table 7.  

First, we alter the asset correlation on two sides of the 0.1998 from the base case scenario. We 

employ relative extreme asset correlations of 0.0824 and 0.4331, which are the 5th and 95th 

percentile of the estimates of Zeng and Zhang’s (2001) Global Correlation Model (Version 2). 

The range comprehends all typically observed asset correlations (see for instance, Lopez, 

2004). In the case of the lower asset correlation, we observe a lower average VaR difference 

of 0.12% compared with 0.24% in the base case scenario. The higher asset correlation yields a 

higher mean VaR difference of 0.53%. The span between the minimum 5th and the maximum 

95th percentile of VaR differences is also much larger than in the base case. Thus, we find 

that lower asset correlations reduce the effect of the downward rating momentum whereas 

higher correlations reinforce it.  

Second, we vary the rating distribution of the portfolio. We construct a low-risk portfolio with 

a mean rating of A and a junk portfolio with an average rating of approximately BB. We thus 

follow Jacobson et al. (2006) in assessing the impact of differing rating distributions on our 

results. For the low-risk portfolio, the average VaR difference over the whole observation 

period decreases to 0.2% (see Table 7). With regard to the junk portfolio, the mean VaR dif-

ference increases to 0.36%. In addition, the average standard deviation over the whole obser-

vation period is almost threefold compared with the low risk portfolio. Thus, junk portfolios 

imply much more volatile momentum-sensitive VaR estimates. 

Third, we alter the LGD distribution to capture the effect of different bond types on their risk. 

Results are again summarized in Table 7. Carey (2000) demonstrates that differences in LGDs 

have a huge impact on required capital. Thus, instead of using LGDs of senior unsecured 

bonds, we use LGDs that have the loss characteristics of senior secured and subordinated 

bonds, respectively. Using the first and second moments from Altman and Kishore (1996), the 

beta distributed LGDs for senior secured (subordinated) bonds have a mean of 0.4211 
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(0.6866) and a standard deviation of 0.2299 (0.2242). In the case of senior secured bonds the 

mean VaR difference of 0.18% is somewhat lower than in the base case scenario. Subordi-

nated bonds exhibit an average VaR difference of 0.32%. Thus, the riskier the portfolio is—be 

it due to the rating distribution or the LGD level—the higher are the differences, on average, 

between the insensitive and the momentum-sensitive VaR.  

Jacobson et al. (2006) identify the portfolio size as a vital parameter in credit portfolio analy-

sis. They show that portfolio VaRs decrease for increasing portfolio sizes. Thus, as a fourth 

robustness check, we alter the number of bonds in the portfolio to 100 and 500, while main-

taining the rating distribution. The average VaR difference equals 0.21% for the smaller port-

folio and is thus slightly smaller than in the base case (see Table 7). However, the variation 

over time is larger since the minimum 5th and the maximum 95th percentile of the VaR dif-

ference span more than 1.1%, as opposed to 0.79% in the base case. For the large portfolio, 

we observe an average VaR difference of 0.25%. The variation over time is very mild. Fur-

thermore, the momentum-sensitive VaRs are much more volatile for the smaller portfolio 

since the average standard deviation of the VaR differences over time is more than twice the 

figure of the large portfolio. Hence, we observe a diversification effect that corresponds to 

Jacobsen et al. (2006).  

To obtain even more realistic results, we now alter two closely related parameters simultane-

ously, namely the rating distribution and the bond type. This is designed to capture the fact 

that riskier firms exhibit higher LGDs on average. We restrict this analysis to two sensible 

cases. First, Panel I of Table 8 provides the VaR differences for a low-risk rating distribution 

with an average rating of approximately A and LGDs that correspond to secured bonds. We 

find a mean VaR difference of 0.17% and low variation over time. Second, Panel II shows our 

findings for a junk rating distribution with an average rating of approximately BB and LGDs 

that correspond to subordinated bonds. The mean VaR difference over the full observation 

period increases to 0.46% and represents almost twice the mean difference of our base case. 

Variation over time is also rather severe with a maximum (minimum) mean VaR difference of 

0.97% in 2003 (0.14% in 1999).  

We also combine the risky bond portfolio of Panel II and the high asset correlation of 0.4331 

to a stress-test-like scenario. In this case, the mean VaR difference jumps to almost 1%, while 

its 5th and 95th percentile equal 0.31% and 1.86%. The largest mean VaR deviation of one 

year occurs in 2003 and reaches more than 1.7%. Thus, this stress test reveals that the eco-

nomic impact of the downward momentum could be very substantial for junk portfolios that 
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show high LGDs. In a stress test scenario, the VaR differences might even reach dramatic 

levels in years with high ratios of downgrades. In all cases, the mean VaR differences are 

positive like in the base case.  

Apart from the aforementioned variations, we also alter the maturity to two and six years and 

the distribution of exposures (homogeneous and very heterogeneous). Neither of these further 

variations causes substantial variations in the base case results.  

Finally, it may be asked whether our assumption of homogeneous credit spreads (i.e. their 

independence of the excitement status) has an impact on our results. Our approach seems fea-

sible since the VaR is driven mainly by defaults: if the LGD in our model is set to zero, the 

portfolio VaR difference collapses to about one-tenth of the VaR difference in the base case.  

5 Conclusion 
We present an approach to the calculation of portfolio VaR that extends the standard Markov 

model of rating transition probabilities. Using a dataset of S&P ratings for the period 1996–

2005, we condition the rating transition probabilities on previous downgrades in order to 

quantify the effect of the downward rating momentum on portfolio risk.  

On average over the observation period, investors who account for the downward momentum 

perceive higher VaRs compared with investors who do not. In a realistic base case scenario, 

the average difference between the momentum-sensitive and the insensitive 99.9% VaR 

equals 0.24%. Thus, investors who ignore the downward momentum underestimate the port-

folio VaR by 3.5% of the correct value, on average. We find substantial variation over time 

since the maximum (minimum) mean VaR difference reaches 0.5% in 2004 (0.03% in 1998). 

When aggregating the draws from all years, the standard deviation of the VaR difference 

equals 0.2%. The 95th percentile equals 0.6%, hence there is a 5% probability that the inves-

tor makes a relative error of –8.1% or worse. In stress test scenarios, the VaR deviation can 

easily increase to more than 1.8%. This is a relative error of –6.8%. Several variations of the 

input parameters suggest that the result is robust.  

In our observation period, the momentum-sensitive VaR is higher than the insensitive VaR in 

more than 90% of the observations. Years with a relatively high excitement ratio, in particu-

lar, bear the risk of severely underestimating the VaR. The result is relevant from a risk man-

agement and regulatory perspective as it indicates, for example, that banks which neglect the 

downward rating momentum effect might hold insufficient capital. Our approach can easily 

be implemented and provides means of calculating a more risk-adequate VaR. 
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Table 1 

Distribution of rating changes 

From \ To AAA AA A BBB BB B CCC Default 

AAA   189 12 1 0 0 0 0 

AA 45   679 36 1 1 0 0 

A 25 329   1001 35 10 1 0 

BBB 6 39 619   879 77 8 13 

BB 2 10 29 503   1067 72 21 

B 1 7 27 27 551   988 152 

CCC 0 0 3 4 12 209   786 

The table provides S&P’s rating distribution for the period 1996−2005. We use Bloomberg as the data source for 
senior unsecured ratings. 
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Table 2 

Excitement ratio development 

Rating 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Average

AAA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AA 0.0802 0.0728 0.0714 0.0809 0.0778 0.1007 0.1275 0.1518 0.1449 0.1472 0.1120 

A 0.1617 0.1544 0.1306 0.1133 0.1182 0.1529 0.1863 0.2369 0.2578 0.2423 0.1813 

BBB 0.1415 0.1301 0.1247 0.1354 0.1515 0.1826 0.2114 0.2495 0.2853 0.2705 0.2000 

BB 0.1206 0.0881 0.1064 0.1310 0.1597 0.1934 0.2243 0.2875 0.2731 0.2523 0.2000 

B 0.1327 0.1235 0.1326 0.1498 0.1787 0.2106 0.2655 0.3489 0.3353 0.2837 0.2344 

CCC 0.6875 0.7143 0.6296 0.7899 0.6712 0.6824 0.7597 0.7280 0.6875 0.6548 0.7025 

                        

Average 0.1358 0.1226 0.1190 0.1362 0.1498 0.1821 0.2226 0.2705 0.2786 0.2574   

The table shows the development of excitement ratios in the observation period. Excited ratings are defined such 
that the rating results from a previous downgrade. The averages are calculated by weighted arithmetic means, i.e. 
years or rating classes with a large number of rating changes are given a high weight. 
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Table 3  

Annual insensitive transition probabilities of S&P ratings 

From \ To AAA AA A BBB BB B CCC Default 

AAA 0.89255 0.09621 0.01020 0.00099 3.714E–05 1.154E–05 8.163E–07 5.597E–07 

AA 0.00507 0.91124 0.07677 0.00640 0.00034 0.00016 1.031E–05 5.800E–06 

A 0.00146 0.01873 0.91897 0.05645 0.00342 0.00083 0.00010 5.676E–05 

BBB 0.00037 0.00259 0.03504 0.90588 0.04764 0.00668 0.00075 0.00106 

BB 0.00019 0.00102 0.00364 0.04472 0.84567 0.09062 0.00893 0.00520 

B 0.00011 0.00075 0.00291 0.00418 0.05201 0.83008 0.07105 0.03892 

CCC 8.837E–06 6.813E–05 0.00169 0.00237 0.00891 0.09639 0.48750 0.40306 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Rating transition probabilities are calculated by using the continuous-time estimator for the period 1996–2005, 
based on daily transitions. We use Bloomberg as the data source for senior unsecured ratings. 
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Table 5 

Annual momentum-sensitive rating transition probabilities of S&P ratings 

From \ To AAA AA A BBB BB B CCC Default 

AAA 0.89250 0.09700 0.00966 0.00080 2.82E–05 8.03E–06 1.88E–06 1.05E–06 

AA’ 0.00516 0.90939 0.07823 0.00663 0.00037 0.00019 2.70E–05 1.42E–05 

AA* 0.00405 0.92626 0.06658 0.00292 0.00012 4.56E–05 1.23E–05 5.22E–06 

A’ 0.00164 0.01865 0.91818 0.05676 0.00370 0.00088 0.00010 8.49E–05 

A* 0.00066 0.01892 0.92293 0.05268 0.00307 0.00122 0.00033 0.00018 

BBB’ 0.00041 0.00267 0.03443 0.91024 0.04411 0.00618 0.00091 0.00105 

BBB* 0.00033 0.00230 0.03743 0.89127 0.05408 0.01079 0.00162 0.00218 

BB’ 3.31E–05 0.00108 0.00346 0.04149 0.86089 0.07780 0.00967 0.00558 

BB* 0.00087 0.00114 0.00489 0.05725 0.79378 0.11280 0.01725 0.01201 

B’ 3.62E–06 0.00031 0.00203 0.00398 0.04627 0.86087 0.05263 0.03390 

B* 0.00039 0.00205 0.00543 0.00441 0.07069 0.73506 0.11002 0.07194 

CCC’ 2.48E–06 5.06E–05 0.00211 0.00238 0.00937 0.13597 0.65108 0.19903 

CCC* 2.00E–06 3.78E–05 0.00146 0.00234 0.00826 0.08514 0.43087 0.47188 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Annual rating transition probabilities are calculated by the continuous-time estimator for the period 1996–2005. 
We use Bloomberg as the data source for senior unsecured ratings. Transition probabilities of issuers with a 
previous downgrade are assigned to the rating classes marked with an asterisk; the others are marked by high 
comma. Columns three to eight exhibit aggregated transition probabilities of excited and non-excited destination 
states. The aggregation has no impact on the outcome of the portfolio model as credit spreads in our model de-
pend on the current rating only. 
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Table 6 

VaR differences in basis points for a representative bond portfolio (“base case”) 

Percentile        Year 

5th 25th 50th 75th 95th 

 Mean Standard 
deviation 

 Negative

1996 –2.89 5.45 11.29 16.96 25.17 11.02 *** 8.40 0.0800 

1997 –0.86 5.53 10.18 14.82 24.96 10.44 *** 7.85 0.0700 

1998 –12.19 –3.92 2.86 8.04 18.67 2.53 *** 9.60 0.4200 

1999 –4.19 4.61 9.14 17.12 25.69 10.22 *** 9.25 0.1300 

2000 –4.41 7.83 13.10 22.03 34.87 14.69 *** 11.35 0.0800 

2001 6.40 15.73 22.34 28.13 39.90 22.52 *** 11.02 0.0200 

2002 12.35 25.33 34.22 42.67 54.73 34.24 *** 13.48 0.0100 

2003 29.84 41.22 50.11 58.84 66.71 49.53 *** 11.97 0.0000 

2004 22.42 38.35 47.27 53.25 66.22 45.52 *** 12.82 0.0000 

2005 22.06 29.86 38.19 46.03 59.37 39.43 *** 12.38 0.0000 

all years –3.79 8.83 20.57 38.52 59.04 24.01 *** 19.35 0.0810 

The table shows descriptive statistics for the differences between the insensitive VaR (using rating transition 
probabilities of Table 3) and the momentum-sensitive VaR (using rating transition probabilities of Table 5) for a 
representative portfolio comprising 250 bonds. Results are calculated as differences in VaR levels and are pre-
sented in basis points. In the case of the momentum-sensitive VaR we employ 100 simulations for each year 
with randomly chosen excitement status (the insensitive VaR is calculated only once as it neither depends on the 
excitement status nor on the year). We use the 99.9% quantile for both VaRs. The insensitive VaR equals 6.66%. 
Both VaRs are calculated in a simplified CreditMetrics framework with a horizon of one year. We use impor-
tance sampling to decrease the number of simulated portfolio returns to 10,000. We employ an asset correlation 
of 0.1998 (Zeng and Zhang, 2001) and beta distributed LGDs with mean 0.5235 and standard deviation of 
0.2671 for senior unsecured bonds (Altman and Kishore, 1996). The bonds have a uniform maturity of 4 years. 
We use moderately heterogeneous bond sizes ranging from €50 to €100. Columns 2 to 6 display percentiles of 
the annual VaR differences. Columns 7 and 8 show the mean and the standard deviation of the annual VaR dif-
ferences. We employ t-tests for the hypothesis that the mean annual VaR difference equals zero. Two-sided 
significance levels are given as ***, **, and *, representing 1%, 5%, and 10%, respectively. Column 9 provides 
the annual ratio of negative VaR differences.  
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Table 7 

VaR differences for several deviations from the base case 

Type of Minimum of Maximum of Overall Mean  

sensitivity analysis 5th Percentiles 95th Percentiles Mean Standard deviation 

Low asset correlation –23.7717 50.9857 12.4167 10.7618 

High asset correlation 9.9382 108.5087 52.9943 11.9573 

Low–risk bonds 8.1576 36.2771 19.9298 4.1254 

Junk bonds –20.7633 109.1648 36.2572 15.7023 

Low LGD –14.4880 54.9052 18.4553 9.0298 

High LGD –13.7410 87.7838 31.9064 13.5290 

Small portfolio –26.8966 83.2647 20.7440 18.6897 

Large portfolio 1.3259 63.1038 24.9487 7.4462 

The table shows descriptive statistics for the differences between the insensitive VaR (using transition probabili-
ties of Table 3) and the momentum-sensitive VaR (probabilities of Table 5) for several sensitivity analyses. 
Results are calculated as differences in VaR levels and are presented in basis points. In the case of the momen-
tum-sensitive VaR we employ 100 simulations for each year with randomly chosen excitement status (the insen-
sitive VaR is calculated only once as it neither depends on the excitement status nor on the year). We use the 
99.9% quantile for both VaRs. They are calculated in a simplified CreditMetrics framework with a horizon of 
one year. We use importance sampling to decrease the number of simulated portfolio returns to 10,000. If not 
otherwise stated we used the parameters of the base case (Table 6). In row 1 (row 2) we employ a low (high) 
asset correlation of 0.0824 (0.4331) according to the 5th (95th) percentile for the estimation of the asset correla-
tion in Zeng and Zhang (2001). In row 3 (row 4) we utilize an average rating that equals approximately A (BB) 
for the low-risk (junk) bond portfolio. In row 5 (row 6) we employ beta distributed LGDs with mean 0.4211 
(0.6866) and standard deviation of 0.2299 (0.2242) to represent low-LGD senior secured (high-LGD subordi-
nated) bonds according to Altman and Kishore (1996). Row 7 (row 8) presents results for a small (large) portfo-
lio that comprises 100 (500) bonds. Column 2 (column 3) displays the minimum of 5th percentiles of the VaR 
differences (maximum of 95th percentiles) over the observation period. Column 3 (column 4) shows the mean 
VaR difference (mean standard deviation) over the whole observation period. 
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Table 8 

VaR differences for bond portfolios with altering debt types and rating distributions 

  Percentile           Standard   

Year 5th 25th 50th 75th 95th Mean deviation Negative 

Panel I: Low LGD & low-risk rating distribution (insensitive VaR: 0.0165) 

1996 9.4059 11.3060 13.8862 15.6865 17.8206 13.6349 *** 2.9719 0.00 

1997 7.8891 10.3294 12.0525 14.0125 16.3521 12.1579 *** 2.7191 0.00 

1998 7.8001 11.6741 12.7924 14.9163 16.8141 12.9355 *** 2.6997 0.00 

1999 8.5401 11.2690 13.2573 15.3794 19.8315 13.4431 *** 3.3358 0.00 

2000 9.3239 12.5392 14.7177 16.9868 20.3889 14.8185 *** 3.3756 0.00 

2001 10.4389 15.2437 17.1431 20.2420 23.7587 17.6243 *** 3.9618 0.00 

2002 13.4949 16.4686 18.1508 21.1581 23.6809 18.6213 *** 3.1984 0.00 

2003 15.6248 19.1623 21.8023 25.2639 28.6048 22.2086 *** 4.2447 0.00 

2004 18.0066 21.0298 23.0165 25.6346 29.3536 23.3309 *** 3.6522 0.00 

2005 16.0389 20.2624 22.2635 24.4412 27.6869 22.2056 *** 3.5034 0.00 

Panel II: High LGD & junk rating distribution (insensitive VaR: 0.1654) 

1996 12.6034 26.4812 33.7805 44.0911 55.2171 34.5892 *** 13.3159 0.00 

1997 2.4836 14.7858 25.5931 32.3686 44.3822 24.4450 *** 12.8337 0.03 

1998 8.5059 22.6988 29.8638 39.9624 53.7854 30.9779 *** 13.5662 0.01 

1999 –16.2866 1.4972 14.2618 27.2429 42.1138 14.1785 *** 19.1613 0.24 

2000 –16.3219 1.0299 18.2165 27.0809 53.6869 15.8391 *** 21.7144 0.24 

2001 –7.7723 20.4052 32.4031 47.5204 67.0607 32.8547 *** 22.8018 0.09 

2002 29.9019 48.5672 62.6738 76.2332 113.2917 64.1685 *** 23.7542 0.01 

2003 63.9026 80.7147 98.3481 111.3912 130.5881 96.7677 *** 21.5990 0.00 

2004 46.1707 70.2636 84.8541 101.0425 118.8673 83.8329 *** 22.9814 0.00 

2005 31.5647 44.7393 64.4865 77.2577 98.0243 63.1936 *** 21.9667 0.00 

The table shows descriptive statistics for the differences between the insensitive VaR (using rating transition 
probabilities of Table 3) and the momentum-sensitive VaR (probabilities of Table 5) for a representative portfo-
lio with 250 bonds. Results are calculated as differences in VaR levels and are presented in basis points. In this 
case, we vary the rating distribution and the debt type simultaneously. Panel I implies a low-risk rating distribu-
tion with an average rating of approximately A and LGDs of secured bonds. Panel II implies a junk rating distri-
bution with an average rating of BB and LGDs of subordinated bonds. In the case of the momentum-sensitive 
VaR we employ 100 simulations for each year with randomly chosen excitement status (the insensitive VaR is 
calculated only once as it neither depends on the excitement status nor on the year). We use the 99.9% quantile 
for both VaRs. Both VaRs are calculated in a simplified CreditMetrics framework with a horizon of one year, 
using importance sampling to decrease the number of simulated portfolio returns to 10,000. We employ an asset 
correlation of 0.1998 (Zeng and Zhang, 2001). We use beta distributed LGDs with mean 0.4211 (0.6866) and 
standard deviation of 0.2299 (0.2242) for senior secured (subordinated) bonds for Panel I (Panel II) according to 
Altman and Kishore (1996). The bonds have a uniform maturity of four years. We use moderately heterogeneous 
bond sizes ranging from €50 to €100. Columns 2 to 6 display percentiles of the annual VaR differences. Col-
umns 7 and 8 show the mean and the standard deviation of the annual VaR differences. We use a t-test for the 
hypothesis that the mean annual VaR differences equal zero. Two-sided significance levels are given as ***, **, 
and * representing 1%, 5%, and 10% respectively. Column 9 provides the ratio of negative annual VaR differ-
ences. 
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Figure 1 
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Excited states are tagged with asterisks, non-excited states are marked by high comma. Plus signs denote feasible 
direct transitions of the continuous-time process. Only in these fields transition intensities may be positive. Di-
rect migration from an excited state to the non-excited state with the same rating is excluded. 
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Figure 2 

Probability of default of a BB rated bond for differing initial excitement statuses  
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The figure exhibits the probability of default (PD) of a BB rated bond for differing risk horizons. The three bond 
types exhibit differing excitement statuses at the beginning. Both scales are logarithmic. 
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