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Non-technical summary

Research Question

While traditional bank capital requirements focus on portfolio risk, regulators have re-
sponded to the financial crisis by introducing a capital surcharge for systemically im-
portant banks. The surcharge relies on rather simple indicators feeding into a bucket
system, which has the advantage of robustness and feasibility. In contrast, researchers
have proposed more sophisticated surcharge concepts, which are often difficult to esti-
mate. Network theory may offer an intermediate approach: network centrality measures
can be computed with high precision, but have the potential to capture deep-lying aspects
of a bank’s role in the financial system. Whether they actually do so is largely unproven.

Contribution

We investigate the potential of network centrality measures in regulation by mixing clas-
sical risk-based economic capital with an allocation based on centrality measures. The
former is calculated from the actual lending of all German banks to the real economy, the
latter from interbank lending. Employing a risk model that includes correlated portfolio
losses and contagion among banks, we test whether centrality-based capital can make the
system safer. While earlier work evaluated sophisticated systemic risk charges for small
systems, we test a tractable approach for a system of 1,764 banks in a fully-fledged risk
model.

Results

Keeping total capital in the banking system constant, up to 15% of expected systemic
losses can be saved by redistributing capital according to eigenvector centrality, which is
similar to recursive concepts developed for ranking websites. This proves the fundamental
applicability of centrality measures to capital regulation. Further research is needed to
find out how banks would react to the introduction of such rules.



Nicht-technische Zusammenfassung

Fragestellung

Während die Eigenkapitalanforderungen traditionell auf das Portfoliorisiko abstellen, ha-
ben Bankenregulierer auf die Finanzkrise mit der Einführung eines Kapitalaufschlags für
systemrelevante Banken reagiert. Dieser beruht auf relativ einfachen Indikatoren, die in
sogenannte Relevanzstufen münden. Vorteile des Verfahrens sind Robustheit und Um-
setzbarkeit. Die Forschung hat dagegen ausgefeiltere Ansätze für Kapitalaufschläge vor-
gestellt, die aber oft schwierig zu schätzen sind. Mithilfe der Netzwerktheorie könnte sich
ein Mittelweg anbieten: Netzwerkmaße (engl. network centrality measures) können mit
großer Genauigkeit berechnet werden und haben dennoch das Potential, tiefliegende Ei-
genschaften der Rolle einer Bank im Finanzsystem zu erfassen. Ob sie das wirklich tun,
ist noch unbewiesen.

Beitrag

Wir untersuchen das Potential von Netzwerkmaße für Regulierungszwecke, indem wir
klassisch-risikobasiertes ökonomisches Kapital mit einer netzwerkbasierten Kapitalalloka-
tion mischen. Ersteres wird empirisch aus Krediten aller deutschen Banken an die Re-
alwirtschaft berechnet, Letztere aus Interbankkrediten. Mithilfe eines Risikomodells, das
korrelierte Portfolioverluste und Ansteckung zwischen Banken berücksichtigt, prüfen wir,
ob netzwerkbasiertes Kapital das System sicherer machen kann. Während frühere Ar-
beiten anspruchsvolle Modelle an kleinen Banksystemen ausprobierten, testen wir einen
praktikablen Ansatz an einem System von 1764 Banken in einem vollwertigen Risikomo-
dell.

Ergebnisse

Bei konstantem Gesamtkapital im System können die erwarteten systemischen Verluste
um bis zu 15 % reduziert werden, wenn ein Teil des Kapitals nach dem Eigenvektor-
Maß unverteilt wird; dieses Maß ähnelt rekursiven Bewertungsmethoden für Webseiten.
Damit ist erwiesen, dass Netzwerkmaße grundsätzlich für systemrelevanzbezogene Eigen-
kapitalregeln geeignet sind. Weitere Untersuchungen sind aber nötig, um unter anderem
herauszufinden, wie die Banken auf solche Regeln reagieren würden.
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1 Introduction
“The difficult task before market participants, policymakers, and regulators
with systemic risk responsibilities such as the Federal Reserve is to find ways to
preserve the benefits of interconnectedness in financial markets while managing
the potentially harmful side effects.” Yellen (2013)

This paper examines capital requirements that mitigate the harmful side effects of in-
terconnectedness in the context of a model of interbank contagion. Although the model
is fairly classical in the way it handles contagion, it uses a very rich dataset of credit
exposures of a large domestic banking system, the fifth largest system in the world. What
we find is that the same nationwide amount of required capital, when distributed in part
based on the interconnectedness of the system, performs better in terms of total losses
to the system than the same amount of capital when allocated on the basis of banks’
individual risk-weighted assets alone. Indeed, a capital allocation based upon our best
network centrality measure saves some 15% of expected bankruptcy costs, which is our
preferred measure of total system losses.

The idea of tying capital charges to interbank exposures and interconnectedness in
order to improve the stability of the banking system, i.e. to minimize expected social
costs (arising from bailouts, growth effects, unemployment for example) is in the spirit of
the regulatory assessment methodology for systemically important financial institutions
(SIFIs) proposed by the Basel Committee on Banking Supervision (2011). In contrast to
that methodology, however, our study determines an optimal rule for capital charges that
is based on interconnectedness measures as well as on the portfolio risk of bank assets,
and we then compare the results under the different capital allocations.

We focus on two main sources of systemic risk: correlated credit exposures and inter-
bank connectivity. First, banks’ balance sheets can be simultaneously affected by macro
or industry shocks since the credit risk of their non-bank borrowers is correlated. If losses
are large, capital of the entire system is eroded, making the system less stable. Second,
these shocks can trigger the default of certain financial institutions and, again, erode bank
capital further. The second effect is modeled in the interbank market. Since banks are
highly connected through interbank exposures, we focus on those negative tail events in
which correlated losses of their portfolios trigger contagion in the interbank market.

Our model comes close to the framework proposed by Elsinger, Lehar, and Summer
(2006) and Gauthier, Lehar, and Souissi (2012), which combines common credit losses
with interbank network effects and externalities in the form of asset fire sales. The aim
of our paper is different. We propose a tractable framework to reallocate capital for large
financial systems in order to minimize contagion effects and the possible costs of a public
bailout. We contrast two different capital allocations: the benchmark case, in which we
allocate capital based on the risks in individual banks’ portfolios, and a comparison case,
where we allocate capital based partly on some interbank network metrics (such as degree,
eigenvector or betweenness) that capture the potential contagion risk of individual banks.
Literature has shown that the network structure matters. For instance, Sachs (2014) ran-
domly generates interbank networks and investigates contagion effects in different setups.
She finds that the distribution of interbank exposures plays a crucial role for system sta-
bility and confirms the “knife-edge” or tipping-point feature (as mentioned by Haldane,
2009), the non-monotonic completeness property of highly interconnected networks.
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We compare different capital structures in which the total capital requirement to the
entire banking system is constant but the capital charge varies, based on the network
metric chosen and the weight we put on it. Both the choice of a metric and the weight are
optimized. Among various sensible target functions to minimize we select total expected
bankruptcy costs of defaulted banks. This measure of system losses is especially interesting
as it represents a deadweight social loss and is independent of distributional considerations
which would arise if we focused on the losses incurred by a certain group of bank claimants
such as depositors.

We use the credit register for the German banking system. It records every bilateral
lending relationship in excess of €1.5 million, including interbank lending. The richness
of our data set allows us to do two things. First, we can compute centrality measures
accurately. Second, we achieve a comparably high precision in exploring the implications
of both the joint credit risk and the interconnected direct claims in the banking system.
Using a state-of-the-art credit portfolio model, we can derive the joint distribution func-
tions of the shocks to the banks within the system and feed the shocks into the interbank
lending network, so that we can simulate how they work their way through the system.

To model the credit risk arising from exposures to the real economy, which we call
fundamental credit risk, we generate correlated credit losses by means of the risk engine
CreditMetrics, which is often used in bank risk management (Bluhm, Overbeck, and
Wagner, 2003, ch. 2). Based on a multi-factor credit risk model, the engine helps us to deal
with risk concentration caused by large exposures to a single sector or highly correlated
sectors. Even explicit common credit exposures, caused by firms borrowing from multiple
banks, are precisely addressed. CreditMetrics assigns realistic, well-founded probabilities
to those scenarios that have particularly large losses across the entire banking system.
These bad scenarios are our main focus since capital across financial institutions is eroded
simultaneously, and the banking system becomes more prone to interbank contagion.

Moreover, we model interbank contagion as in Rogers and Veraart (2013), which ex-
tends Eisenberg and Noe (2001) to include bankruptcy costs. This allows us to measure
expected contagion losses and to observe the propagation process. To empirically imple-
ment our framework, we use several sources of information: the German central credit
register (covering large loans), aggregated credit exposures (small loans), balance sheet
data (e.g., total assets), market data (e.g., to compute sector correlations in the real
economy or credit spreads), and data on rating transitions (to calibrate the CreditMetrics
model). The approach can be applied in any country or group of countries where this
type of information is available.

A major advantage of our framework is that policymakers can deal with large banking
systems, making the regulation of systemic risk more tractable: while Gauthier et al.
(2012) state that their – impressive – model requires substantial numeric effort even with
the six Canadian banks considered in their paper, German regulators have to deal with
more than 1,500 banking groups, which is possible when taking our approach.

This study is related to several strands of the literature including applications of net-
work theory to economics, macro-prudential regulations and interbank contagion. Cont,
Moussa, and e Santos (2013) find that not only banks’ capitalization and interconnect-
edness are important for spreading contagion but also the vulnerability of the neighbors
of poorly capitalized banks. Gauthier et al. (2012) use different holdings-based systemic
risk measures (e.g. MES, DCoVaR, Shapley value) to reallocate capital in the bank-
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ing system and to determine macroprudential capital requirements. Using the Canadian
credit register data for a system of six banks, they rely on an “Eisenberg-Noe”-type
clearing mechanism extended to incorporate asset fire sale externalities. In contrast to
their paper, we reallocate capital based on centrality measures extracted directly from
the network topology of interbank market. Webber and Willison (2011) assign systemic
capital requirements optimizing over the aggregated capital of the system. They find that
systemic capital requirements are directly related to bank size and interbank liabilities.
Tarashev, Borio, and Tsatsaronis (2010) claim that systemic importance is mainly driven
by size and exposure to common risk factors. In order to determine risk contributions they
utilize the Shapley value. In the context of network analysis, Battiston, Puliga, Kaushik,
Tasca, and Caldarelli (2012) propose a measure closely related to eigenvector centrality
to assign the systemic relevance of financial institutions based on their centrality in a
financial network. Similarly, Soramäki and Cook (2012) try to identify systemically im-
portant financial institutions in payment systems by implementing an algorithm based on
absorbing Markov chains. Employing simulation techniques, they show that the proposed
centrality measure, SinkRank, highly correlates with the disruption of the entire system.
In accordance with the latter two studies, we also find measures that focus on banks “be-
ing central”, especially eigenvector centrality, to dominate size as a measure of systemic
importance.

As the subprime crisis has shown, banks do not have to be large to contribute to
systemic risk, especially where banks are exposed to correlated risks (e.g. credit, liquid-
ity or funding risk) via portfolios and interbank interconnectedness. Assigning risks to
individual banks might be misleading. Some banks might appear healthy when viewed as
single entities but they could threaten financial stability when considered jointly. Gai and
Kapadia (2010) find that greater complexity and concentration in the network of bank
connections can amplify systemic fragility. Anand, Gai, Kapadia, Brennan, and Willi-
son (2013) extend their model to include asset fire sale externalities and macroeconomic
feedback on top of network structures, in order to stress-test financial systems. These
studies illustrate the tipping point at which the financial system breaks down based on
the severity of macroeconomic shocks that affect probabilities of corporate default or asset
liquidity. Battiston, Gatti, Gallegati, Greenwald, and Stiglitz (2012) show that interbank
connectivity increases systemic risk, mainly due to a higher contagion risk. Furthermore,
Acemoglu, Ozdaglar, and Tahbaz-Salehi (ming) claim that financial network externalities
cannot be internalized and thus, in equilibrium, financial networks are inefficient. This
creates incentives for regulators to improve welfare by bailing out SIFIs.

In our analysis we keep the total amount of capital in the system constant; otherwise,
optimization would be simple but silly: more capital for all, ideally 100% equity funding
for banks. As a consequence, when we require some banks to hold more capital, we
are willing to accept that others may hold less capital as in the benchmark case. Taken
literally, there would be no lower limit to capital except zero. However, we also believe that
there should be some minimum capital requirement that applies to all banks for reasons
of political feasibility, irrespective of their role in the financial network. Implementing a
uniform maximum default probability for all banks, as we actually do in our reallocation
mechanism, might be one choice.

Finally, we realize that this is just the first step in calculating optimal capital require-
ments from network positions to prevent systemic risk. Clearly our results are subject to

3



the standard critique that banks will adjust their network position in response to their
new capital requirements. This is not a paper of endogenous network formation, but
rather a first step in describing how the system could improve its capital allocation with a
given network structure. Given the current German structure, we find that those network
measures most influential in reducing total system losses are based on eigenvectors of the
adjacency matrix, closeness measures, and to a lesser extent on the number of lenders a
bank has, and a measure that combines this number with the indebtedness of the bank to
the rest of the system. These measures will all be described in detail in Section 2.2. At
its best combination with the benchmark capital requirement, the eigenvector measure
can reduce the expected systemic losses by about 15%. It works by focusing the capital
requirements on a few important banks.

The rest of this paper is structured as follows. In Section 2 we describe our risk
engine that generates common credit losses to banks’ portfolios and our interconnectedness
measures. In Section 3 we describe our data sources and the network topology of the
German interbank market. Section 4 gives an overview of the contagion algorithm and
Section 5 describes how capital is optimized. In Section 6 we present our main results,
and we make some final remarks in Section 7.

2 Methodology
Our procedure can be summarized in two stages, along with our initial condition. In
the initial state, we use each bank’s measured portfolio, which is composed of large and
small credit exposures (e.g., loans, credit lines, derivatives) to real-economy and interbank
(IB) borrowers. On the liability side, banks hold capital, interbank debt and deposits.
Depositors and other creditors are senior to interbank creditors.

Capital is either set to a benchmark case that is based solely on the loss distributions
of their portfolios or according to other capital allocations that partly rely on network
measures. Details of how portfolio risk is mixed with network measures are explained in
Section 5.

In the first stage, we simulate correlated exogenous shocks to all banks’ portfolios that
take the form of returns on individual large loans (where loans that are shared among
multiple lenders are accounted for) and aggregated small loans. Due to changes in value
of borrowers’ assets, their credit ratings migrate (or they default), and banks make profits
or losses on their investments in the real-economy sectors. At the end of this stage, in
case of portfolio losses, capital deteriorates and some banks experience negative capital,
and default. Thus, we are able to generate correlated losses that affect the capital of each
bank simultaneously.1

In the second stage, we model interbank contagion. To each simulation round of the
first stage we apply an extended version (Rogers and Veraart, 2013) of the fictitious conta-
gion algorithm as introduced by Eisenberg and Noe (2001), augmented with bankruptcy
costs and a macroeconomic proxy for fire sales. Fundamental bank defaults generate
losses to other interbank creditors and trigger some new defaults. Hence, bank defaults

1By incorporating credit migrations and correlated exposures, we differ from most of the literature on
interbank contagion that usually studies idiosyncratic bank defaults; see Upper (2011). Elsinger et al.
(2006) and Gauthier et al. (2012) are remarkable exceptions.
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can induce domino effects in the interbank market. We refer to new bank failures from
this stage as contagious defaults.

Finally, we repeat the previous stages for different capital allocations. We discuss
the optimization procedure in Section 5. Moreover, Section 2.2 offers an overview of the
interconnectedness measures calculated with the help of network analysis and utilized in
the optimization process.

2.1 Credit risk model
Our credit risk engine is essential to our study for two reasons. First, it leads to our
initial set of bank defaults and helps us determine capital with which our banks face the
contagion event in a second stage. Just as important to our model is that the risk engine
establishes our benchmark capital allocation as described above. Our results turn out to
be sensitive to our choice of benchmark capital, so that it is important to get the credit
engine close to some realistic risk process. Second, to the best of our knowledge, this is
the first paper to incorporate correlated losses and defaults in the first stage for a large
banking system.2 As such, it is important to work with our rich data (with whatever
limitations it might have) using a risk model consistent with models that could be used
by actual banking risk officers. However, we also have to make a few concessions to the
data supplied by the Deutsche Bundesbank. In particular, pricing data of the loans is not
available, and our study relies only on the loan portion of the bank portfolios and credit
exposures arising from derivatives.

In order to model credit risk, we utilize lending information from two data sources at
different levels of aggregation: large loans and small loans. These loans are given to the
“real economy”. Since borrowers of large loans are explicitly known, along with various
parameters such as the loan volume, probability of default and sector, we can model their
credit risk with high precision. When simulating defaults and migrations of individual
borrowers, we can even account for the fact that loans given by different banks to the
same borrower should migrate or default synchronously.

We cannot keep this level of precision for small loans because we only know their
exposures as a lump-sum to each sector. Accordingly, we simulate their credit risk on
portfolio level.

2.1.1 Large loans

In modeling credit portfolio risk we closely follow the ideas of CreditMetrics (Gupton,
Finger, and Bhatia, 1997; Bluhm et al., 2003). In the form we use is, it is a one-period
model, and all parameters are calibrated to a one-year time span. We start with a vector
Y ∼ N (0, Σ) of systematic latent factors. Each component of Y corresponds to the
systematic part of credit risk in one of the risk modeling (RM) sectors (see Section 3.1 for
details). The random vector is normalized such that the covariance matrix Σ is actually
a correlation matrix. In line with industry practice, we estimate correlations from co-
movements of stock indices. For each borrower k in RM sector j, the systematic factor Yj

2As already mentioned, Elsinger et al. (2006) and Gauthier et al. (2012) do model correlated portfolio
losses, however for the Austrian and the Canadian banking system, which both consist of much fewer
banks than the German system.
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assigned to the sector is coupled with an independent idiosyncratic factor Zj,k ∼ N (0, 1).
Thus, the “asset return” of borrower (j, k) can be written as:

Xj,k = √ρYj +
√

1− ρZj,k. (1)

The so-called intra-sector asset correlation ρ is common to all sectors.3 The word “asset
return” should not be taken literally; i.e., the link between asset returns and loan losses
is not established by the contingent claims analysis of a structural credit model. Rather,
the latent factor Xj,k is mapped into rating migrations via a threshold model, and it is a
rating migration matrix that the model is calibrated to. If a loan does not default, a loss
on it may arise from the fact that the credit spread used in the loan pricing formula is
sensitive to the credit rating.

We use 16 S&P rating classes including notches AAA, AA+, AA,. . . ,B–, plus the
aggregated “junk” class CCC–C. Moreover, we treat the default state as a further rating
(D) and relabel ratings as numbers from 1 (AAA) to 18 (default). Let R0 denote the
initial rating of a borrower and R1 the rating one year later. A borrower migrates from
R0 to rating state R1 whenever

X ∈ [θ(R0, R1), θ(R0, R1 − 1)] ,

where θ is a matrix of thresholds associated with migrations between any two ratings. For
one-year migration probabilities p(R0, R1) from R0 to R1, which are given by empirical
estimates,4 the thresholds are chosen such that

P (θ(R0, R1) < Xj,k ≤ θ(R0, R1 − 1)) = p(R0, R1),

which is achieved by formally setting θ (R0, 18) = −∞, θ (R0, 0) = +∞ and calculating

θ (R0, R1) = Φ−1

 ∑
R>R1

p (R0, R)
 , 1 ≤ R0, R1 ≤ 17.

The present value of each non-defaulted loan depends on notional value, rating, loan
rate, and time to maturity. In this section we ignore the notional value and focus on
D, the discount factor. A loan is assumed to pay an annual loan rate C until maturity
T , at which all principal is due. We set T equal to a uniform value of 4 years, which
is the digit closest to the mean maturity of 3.66 estimated from Bundesbank’s borrower
statistics.5 Payments are discounted at a continuous rate rf + s (R), where rf is the
default-free interest rate and s(R) are rating-specific credit spreads. The term structure
of spreads is flat. We ignore the risk related to the default-free interest rate and set

3This assumption could be relaxed but would require the inclusion of other data sources. In the
simulations we use a value of 0.20, which is very close to a value reported by Zeng and Zhang (2001). It
is the average over their sub-sample of firms with the lowest number of missing observations.

4We use the 1981–2010 average one-year transition matrix for a global set of corporates (Standard
and Poor’s, 2011).

5The borrower statistics report exposures in three maturity buckets. Exposure-weighted averages of
maturities indicate only small maturity differences between BS sectors. By setting the maturity to 4 years
we simplify loan pricing substantially, mainly since the calculation of sub-annual migration probabilities
is avoided.
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rf = 2% throughout. The discount factor for a non-defaulted, R-rated loan at time t is

D (C,R, t, T ) ≡
T∑

u=t+1

(
C + I{u=T}

)
e−(rf +s(R))(u−t). (2)

If the loan is not in default at time 1, it is assumed to have just paid a coupon C. The
remaining future cash flows are priced according to eq. (2), depending on the rating at
time t = 1, so that the loan is worth C + D (C,R1, 1, T ). If the loan has defaulted at
time 1, it is worth (1 + C) (1− LGD), where LGD is an independent random variable
drawn from a beta distribution with expectation 0.39 and standard deviation 0.34.6 This
means, the same relative loss is incurred on loan rates and principal. The spreads are set
such that each loan is priced at par at time 0:

C (R0) ≡ erf +s(R0) − 1, D (C (R0) , R0, 0, T ) = 1.

Each loan generates a return equal to

ret (R0, R1) = −1 +

D (C (R0) , R1, 1, T ) + C (R0) if R1 < 18
(1 + C (R0)) (1− LGD) if R1 = 18

.

Besides secure interest, the expected value of ret (R0, R1) incorporates credit risk premia
that markets require in excess of the compensation for expected losses. We assume that
the same premia are required by banks and calibrate them to market spreads, followed
by minor manipulations to achieve monotonicity in the ratings.7

Having specified migrations and the re-valuation on a single-loan basis, we return to
the portfolio perspective. Assuming that the loan index k in (j, k) runs through all sector-
j loans of all banks, we denote by Rj,k

1 the rating of loan (j, k), which is the image of asset
return Xj,k at time 1. If bank i has given a (large) loan to borrower (j, k), the variable
LLi,j,k denotes the notional exposure; otherwise, it is zero. Then, the euro return on the
large loans of bank i is

retlarge,i =
∑
j,k

LLi,j,kret
(
Rj,k

0 , Rj,k
1

)
.

This model does not only account for common exposures of banks to the same sector
but also to individual borrowers. If several banks lend to the same borrower, they are
synchronously hit by its default or rating migration.

6We have chosen values reported by Davydenko and Franks (2008), who investigate LGDs of loans to
German corporates, similar to Grunert and Weber (2009), who find a very similar standard deviation of
0.36 and a somewhat lower mean of 0.275.

7Market spreads are derived from a daily time series of Merill Lynch euro corporate spreads covering
all maturities, from April 1999 to June 2011. The codes are ER10, ER20, ER30, ER40, HE10, HE20, and
HE30. Spreads should rise monotonically for deteriorating credit. We observe that the premium does
rise in general but has some humps and troughs between BB and CCC. We smooth these irregularities
out as they might have substantial impact on bank profitability but lack economic reason. To do so, we
fit Ereturn (R0) by a parabola, which turns out to be monotonous, and calibrate spreads afterwards to
make the expected returns fit the parabola perfectly. Spread adjustments have a magnitude of 7bp for
A– and better, and 57bp for BBB+ and worse. Ultimate credit spreads for ratings without notches are:
AAA: 0.47%; AA: 0.66%; A: 1.22%; BBB 2.2476%; BB: 4.10%; B: 8.35%; CCC–C: 16.40%.

7



2.1.2 Small loans

As previously described, for each bank we have further information on the exposure to
loans that fall short of the €1.5 mn reporting threshold of the credit register, which is the
database for the large loans. However, we know the exposures only as a sum for each RM
sector so that we are forced to model its risk portfolio-wise. As portfolios of small total
volume tend to be less diversified than larger ones, the amount of idiosyncratic risk that
is added to the systematic risk of each sector’s sub-portfolio is steered by its volume.

We sketch the setup only; further details are available from the authors on request.
Let us consider all small loans in a bank’s portfolio that belong to the same sector j;
these are the loans that are too small to be covered by the credit register. They are
commonly driven by the sector’s systematic factor Yj and idiosyncratic risk, as in eq. (1).
If we knew all individual exposures and all initial ratings, we could just run the same risk
model as for the large loans. It is central to notice that the returns on individual loans
in portfolio j would be independent, conditional on Yj. Hence, if the exposures were
extremely granular, the corresponding returns would get very close to a deterministic
function of Yj, as a consequence of the conditional law of large numbers.8

We do not go that far since small portfolios will not be very granular; instead, we
utilize the central limit theorem for conditional measures, which allows us to preserve
an appropriate level of idiosyncratic risk. Once Yj is known, the total of losses on an
increasing number of loans converges to a (conditionally!) normal random variable. This
conditional randomness accounts for the presence of idiosyncratic risk in the portfolio.

Our simulation of losses for small loans has two steps. First, we draw the systematic
factor Yj. Second, we draw a normal random variable, where the mean and variance
are functions of Yj that match the moments of the exact Yj-conditional distribution.
The Yj-dependency of the moments is crucial to preserve important features of the exact
portfolio distribution, especially its skewness. That dependency also assures that two
banks suffer correlated losses if both have lent to sector j. An exact fit of moments
is not achievable for us as it would require knowledge about individual exposures and
ratings of the small loans, but an approximate fit can be achieved based on the portfolio’s
Hirschman-Herfindahl Index (HHI) of individual exposures. As the HHI is also unknown,
we employ an additional large sample of small loans provided by a German commercial
bank to estimate the relationship between portfolio size and HHI. The estimate is sector
specific. It provides us with a forecast of the actual HHI, depending on the portfolio’s size
and the sector. The HHI forecast is the second input (besides Yj) to the function that
gives us Yj-conditional variances of the (conditionally normal) portfolio losses. A detailed
analytical calculation of the conditional moments and a description of the calibration
process are available from the authors on request.

This modeling step ends up with a (euro) return on each bank’s small loans, denoted
by retsmall,i.

8This idea is the basis of asymptotic credit risk models. The model behind Basel II is an example of
this model class.
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2.2 Centrality measures
In order to assign the interconnectedness relevance/importance to each bank of the system
we rely on several centrality characteristics. The descriptive statistics of our centrality
measures are summarized in Table 2. The information content of an interbank network
is best summarized by a matrix X in which each cell xij corresponds to the liability
amount of bank i to bank j. As each positive entry represents an edge in the graph of
interbank lending, an edge goes from the borrowing to the lending node. Furthermore,
the adjacency matrix (A) is just a mapping of matrix X, in which aij = 1 if xij > 0,
and aij = 0 otherwise. In our case, the network is directed, and by X we use the full
information regarding an interbank relationship, not only its existence. We do not net
bilateral exposures. Our network has a density of only 0.7% given that it includes 1764
nodes and 22,752 links.9 This sparsity is typical for interbank networks (see for example
Soramäki, Bech, Arnolda, Glass, and Beyeler, 2007).

As outlined by Newman (2010), the notion of centrality is associated with several
metrics. In economics the most-used measures are: out degree (the number of links that
originate from each node) and in degree (the number of links that end at each node),
strength (the aggregated sum of interbank exposures), betweenness centrality (based on
the number of shortest paths that pass through a certain node), eigenvector centrality
(centrality of a node given by the importance of its neighbors) or clustering coefficient
(how tightly a node is connected to its neighbors).10

The out degree, one of the basic indicators, is defined as the total number of direct
interbank creditors that a bank borrows from:

ki =
N∑
j

aij (3)

In economic terms, for example in case of a bank default, the out degree defines the
number of banks that will suffer losses in the interbank market, assuming equal seniority.

Similarly, we can count the number of banks that a bank lends to (in degree). Degree
is the sum of out degree and in degree.

We furthermore compute each node’s strength, that is its total amount borrowed from
other banks:

si =
N∑
j

xij. (4)

In other words, the strength of a node is simply a bank’s total of interbank liabilities.
Similarly, we calculate each bank’s interbank assets, which would be labeled the strength
of inbound edges in network terminology.

The empirical distribution of degrees shows a tiered interbank structure. A few nodes
are connected to many banks. For example, 20 banks (around 1%) lend to more than 100
banks each. On the borrowing side, 30 banks have a liability to at least 100 banks. These

9The density of a network is the ratio of the number of existing connections divided by the total number
of possible links. In our case of a directed network, the total number of possible links is 1764 × 1763 =
3, 109, 932.

10For a detailed description of centrality measures related to interbank markets see Gabrieli (2011) and
Minoiu and Reyes (2013).
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banks are part of the core of the network as defined by Craig and von Peter (2014). In
terms of strength, 158 banks have a total IB borrowed amount in excess of €1bn while
only 27 banks have total interbank liabilities in excess of €10bn. On the assets side, 103
banks lend more than €1bn and 25 banks have interbank assets in excess of €10bn.

Opsahl, Agneessens, and Skvoretz (2010) introduce a novel centrality measure that
we label Opsahl centrality. This measure combines the out degree (eq. (3)) with the
borrowing strength (total IB liabilities, eq. (4)) of each node, using a tuning parameter
ϕ:11

OCi = k
(1−ϕ)
i × sϕi

The intuition of Opsahl centrality is that, in the event of default, a node with a high value
is able to infect many other banks with high severity. This ability is expected to translate
into a higher probability of contagion (conditional on the node’s default), compared with
other nodes.

Before we define closeness, let us define a path from node A to B to be a consecutive
sequence of edges starting from A and ending in B. Its length is the number of edges
involved. The (directed) distance between A and B is the minimum length of all paths
between them. For the definition of closeness centrality we follow Dangalchev (2006):

Ci =
∑
j:j 6=i

2−dij ,

where dij is the distance from i to j, which is set to infinity if there is no path from i to
j. This formula has a very nice intuition. If “farness” measures the sum of the distances
(in a network sense) of the shortest paths from a node to all of the other nodes, then
closeness is the reciprocal of the farness.

Bonacich (1987) proposes an eigenvalue centrality, based on the adjacency matrix A. If
κ1 be the largest eigenvalue of A, then eigenvector centrality is given by the corresponding
normalized eigenvector v so that Av = κ1v. Eigenvector centralities of all nodes are non-
negative.

The weighted eigenvector centrality is defined by the eigenvector belonging to the
largest eigenvalue of the liabilities matrix X.

As a third version of eigenvectors, we calculate a weighted normalized eigenvector
based on a modification of X where each row is normalized to sum up to 1 (if it contains
a nonzero entry). This normalization ignores the amount that a bank borrows from others,
once it borrows at all, but accounts for the relative size of IB borrowings.

The global clustering coefficient, as in Watts and Strogatz (1998), refers to the property
of the overall network while local clustering coefficients refer to individual nodes. This
property is related to the mathematical concept of transitivity.

Cli = number of pairs of neighbors of ithat are connected
number of pairs of neighbors of i .

Here, a neighbor of i is defined as any bank that is connected to it either by lending to or
borrowing from it. The local clustering coefficient can be interpreted as the “probability”
that a pair of i’s neighbors is connected as well. The local clustering coefficient of a

11In our analysis we set ϕ = 0.5, leading to the geometric mean between strength and degree.

10



node with the degree 0 or 1 is equal to zero. Note that this clustering coefficient refers
to undirected graphs where a neighbor to a node is any other node connected to it, and
where any link in either direction between two nodes means that they are connected.

The betweenness centrality relies on the concept of geodesics. A path between two
nodes is called geodesic if there is not other path of shorter length. Betweenness centrality
simply answers the following question: Of all the geodesics, how many of them go through
a given node? More formally, if we let gij be the number of possible geodesic paths from i
to j (there might be more than a single shortest path) and nqij be the number of geodesic
paths from i to j that pass through node q, then the betweenness centrality of node q is
defined as

Bq =
∑
i,j
j 6=i

nqij
gij
,

where by convention nq
ij

gij
= 0 in case gij or nqij are zero. The intuition here is that a node

of high betweenness is more likely to lie on a shortest route that is likely to be taken
between two nodes.

We also use total assets as a “centrality measure” on which to base the capital alloca-
tion. Finally, in addition, we measure the effect of capital allocations based on centrality
measures that are summaries of all the other centrality measures: we take the first and
second principal component of all of our (normalized) centrality measures.

3 Data sources
Our model builds on several data sources. In order to construct the interbank network, we
rely on the Large-Exposures Database (LED) of the Deutsche Bundesbank. Furthermore,
we infer from the LED the portfolios of credit exposures (including loans, bond holdings,
and derivatives) to the real economy of each bank domiciled in Germany. This data set
is not enough to get the entire picture, since especially the smaller German banks hold
plenty of assets falling short the reporting threshold of 1.5 million Euros for the LED. We
therefore use balance sheet data and the so-called Borrower Statistics.

When calibrating the credit risk model, we rely on stock market indices to construct a
sector correlation matrix and utilize a migration matrix for credit ratings from Standard
and Poor’s. Rating dependent spreads are taken from the Merill Lynch corporate spread
indices.

3.1 Large-Exposures Database (LED)
The Large-Exposures Database represents the German central credit register.12 Banks
report exposures to a single borrower or a borrower unit (e.g., a banking group) which
have a notional exceeding a threshold of €1.5 mn The definition of an exposure includes

12The Bundesbank labels this database as Gross- und Millionenkreditstatistik. A detailed description
of the database is given by Schmieder (2006).
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bonds, loans or the market value of derivatives and off-balance sheet items.13 In this
paper, we use the information available at the end of Q1 2011. The interbank market
consists of 1764 active lenders. Including exposures to the real economy, they have in
total around 400,000 credit exposures to more than 163,000 borrower units.14

Borrowers in the LED are assigned to 100 fine-grained sectors according to the Bun-
desbank’s customer classification. In order to calibrate our credit risk model, we aggregate
these sectors to sectors that are more common in risk management. In our credit risk
model, we use EUROSTOXX’s 19 industry sectors (and later its corresponding equity
indices). Table 1 lists risk management sectors and the distribution characteristics of the
PDs assigned to them. There are two additional sectors (Households, including NGOs,
and Public Sector) that are not linked to equity indices.15 These 21 sectors represent the
risk model (RM) sectors of our model.

Information regarding borrowers’ default probabilities (PDs) is included as well in the
LED. We report several quantiles and the mean of sector-specific PD distributions in
Table 1. Since only Internal-Ratings-Based (IRB) banks and S&L banks report this kind
of information, borrowers without a reported PD are assigned random PDs drawn from
a sector-specific empirical distribution.

3.2 Borrower and balance sheet statistics
While the LED is an unique database, the threshold of €1.5 mn of notional is still a
substantial restriction. Although large loans build the majority of money lent by German
banks, the portfolios of most German banks would not be well represented by them. That
does not come as a surprise as the German banking system is dominated (in numbers) by
rather small S&L and cooperative banks. Many banks hold only few loans large enough
to enter the LED while these banks are, of course, much better diversified. For 2/3 of
banks the LED covers less than 54% of the total exposures. We need to augment the
LED by information on smaller loans.

Bundesbank’s Borrower Statistics (BS) dataset reports lending to German borrowers
by each bank on a quarterly basis. Focusing on the calculation of money supply, it reports
only those loans made by banks and branches situated in Germany; e.g., a loan originated

13Loan exposures also have to be reported if they are larger than 10% of a bank’s total regulatory
capital. If such an exposure falls short of €1.5 mn, it is not contained in our dataset of large exposures.
Such loans represent a very small amount compared to the exposures that have to be reported when
exceeding €1.5 mn; they are captured in the Borrower Statistics though and hence part of the “small
loans”; see Section 3.2.
It is also important to notice that, while the data are quarterly, the loan volume trigger is not strictly

related to an effective date. Rather, a loan enters the database once its actual volume has met the
criterion at some time throughout the quarter. Furthermore, the definition of credit triggering the
obligation to report large loans is broad: besides on-balance sheet loans, the database conveys bond
holdings as well as off-balance sheet debt that may arise from open trading positions, for instance. We
use total exposure of one entity to another. Master data of borrowers contains its nationality as well as
assignments to borrower units, when applicable, which is a proxy for the joint liability of borrowers. We
have no information regarding collateral in this dataset.

14Each lender is considered at an aggregated level (i.e. as “Konzern”). At single-entity level there are
more than 4.000 different lending entities who report data.

15We consider exposures to the public sector to be risk-free (and hence exclude them from our risk
engine) since the federal government ultimately guarantees for all public bodies in Germany.
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Table 1: Risk model (RM) sectors
No Risk Model Sector No of Volume Default probabilities (percent)

Borrowers Weight 5% 25% 50% 75% 95% mean
1 Chemicals 3200 0.9% 0.008 0.19 0.59 1.54 6.66 1.66
2 Basic Materials 14,419 1.5% 0 0.27 0.85 2.05 10 2.2
3 Construction and Materials 17,776 1.3% 0 0.12 0.66 1.85 7.95 1.99
4 Industrial Goods and Services 73,548 15.1% 0 0.23 0.77 2.07 13 2.57
5 Automobiles and Parts 1721 0.7% 0.001 0.31 1.05 3 14.98 2.91
6 Food and Beverage 13,682 0.8% 0.001 0.27 0.82 1.85 8 1.92
7 Personal and Household Goods 21,256 1.3% 0 0.17 0.74 1.99 14.9 2.75
8 Health Care 16,460 1.0% 0 0.03 0.12 0.86 3.84 0.98
9 Retail 25,052 1.6% 0 0.17 0.79 2.67 11.4 2.37
10 Media 2,534 0.2% 0 0.17 0.45 1.71 7.9 1.81
11 Travel and Leisure 8,660 0.7% 0 0.36 1.17 2.92 20 3.16
12 Telecommunications 299 0.8% 0 0.12 0.36 2.32 6.32 1.82
13 Utilities 15,679 3.2% 0 0.09 0.39 1.26 6.77 1.62
14 Insurance 1392 4.1% 0.029 0.03 0.09 0.66 4.82 1.15
15 Financial Services 23,634 22.5% 0.021 0.03 0.05 0.57 4.82 1.07
16 Technology 2249 0.2% 0 0.2 0.5 1.6 4.68 1.31
17 Foreign Banks 3134 22.1% 0.003 0.03 0.09 0.88 7.95 1.4
18 Real Estate 56,451 11.4% 0 0.1 0.51 1.68 8.31 1.82
19 Oil and Gas 320 0.5% 0.038 0.22 0.81 2.96 12.86 3.03
20 Households (incl. NGOs) 79,913 1.3% 0 0.05 0.35 1.24 6 1.34
21 Public Sector 1948 9.2% 0 0 0 0 0 0

TOTAL 388,327 100.0% 0 0 0 0 0 1.5
Note: Volume weight refers to credit exposure.

in the London office of a German bank would not enter the BS, even if the borrower is
German. Corporate lending is structured in eight main industries, of which two are further
split up.16 Loans to households and non-profit organizations are also reported.17

While lending is disaggregated into various sectors, the level of aggregation is higher
than in the LED, and sectors are different from the sectors in the risk model. We treat this
mismatch by a linear mapping of exposures from BS to RM sectors. Detailed information
on the mapping is available on request.

In addition to borrower statistics, we use additional figures from the monthly Balance
Sheet Statistics, which is also run by the Bundesbank. These sheets contain lending to
domestic insurances, households, non-profit organizations, social security funds, and so-
called “other financial services” companies. Lending to foreign entities is measured by
a total figure that covers all lending to non-bank companies and households. The same
applies to domestic and foreign bond holdings which, if large enough, are also included in
the LED.

16The main sectors are agriculture, basic resources and utilities, manufacturing, construction, wholesale
and retail trade, transportation, financial intermediation and insurance, and services.

17A financial institution has to submit BS forms if it is a monetary financial institution (MFI), which
does not necessarily coincide with being obliged to report to the LED. There is one state-owned bank
with substantial lending that is exempt from reporting BS data by German law. As it is backed by a
government guarantee, we consider this bank neutral to interbank contagion.
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3.3 Market data
Market credit spreads are derived from a daily time series of Merill Lynch option-adjusted
euro spreads covering all maturities, from April 1999 to June 2011. The codes are ER10,
ER20, ER30, ER40, HE10, HE20, and HE30.

Asset correlations used in the credit portfolio model are computed from EUROSTOXX
weekly returns of the European sector indices for the period April 2006 – March 2011,
covering most of the financial crisis. The European focus of the time series is a compromise
between a sufficiently large number of index constituents and the actual exposure of the
banks in our sample, which is concentrated on German borrowers but also partly European
wide.

The credit ratings migration matrix is provided by Standard and Poor’s (2011).

3.4 The German interbank market
In this section we explore the German market for interbank lending in more detail. In the
existing literature, Craig and von Peter (2014) use the German credit register to analyze
the German interbank market. They find that a core-periphery model can be well fitted
to the German interbank system: core banks build a complete sub-network (i.e., there
exist direct links between any two members of the subset), while periphery banks are less
connected by lending. The core-periphery structure turns out to be very stable through
time. Roukny, Georg, and Battiston (2014) use the same data source, spanning the period
2002–2012. Providing a thorough analysis of how German interbank lending develops over
time, they find most of the characteristics to be very stable, including the distributions of
various centrality measures utilized in our paper. Because of these findings, complemented
by our own analysis for the period 2005–2011, we neglect the time dimension completely
and focus on a single point of time.18

At the end of Q1 2011, 1921 MFIs were registered in Germany, holding a total balance
sheet of €8,233 bn.19 The German banking system is composed of three major types of
MFIs: 282 commercial banks (including four big banks and 110 branches of foreign banks)
that hold approximately 36% of total assets, 439 saving banks (including 10 Landesbanken)
that hold roughly 30% of system’s assets and 1140 credit cooperatives (including 2 regional
institutions) that hold around 12% of market share. Other banks (i.e. mortgage banks,
building and loan associations and special purpose vehicles) are in total 60 MFIs and
represent approx. 21% of the system’s balance sheet.

Our interbank (IB) network consists of 1764 active banks (i.e. aggregated banking
groups). These banks are actively lending and/or borrowing in the interbank market.
They hold total assets worth €7,791 bn, from which 77% represent large loans and 23%
small loans.

Table 2 presents the descriptive statistics of the main characteristics and network
measures of the German banks utilized in our analysis. The average size of a bank-
individual IB exposure is around €1 bn. As figures show, there are few very large total IB
exposures, since the mean is between the 90th and 95th percentile, making the distribution
highly skewed. Similar properties are observed for total assets, the total of large loans

18Tables with these measures are available on request.
19Source: Deutsche Bundesbank’s Monthly Report, March 2011.
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Table 2: Interbank (IB) market and network properties
Quantiles mean std dev

5% 10% 25% 50% 75% 90% 95%
Total IB Assets1 7591 13,089 35,553 100,450 310,624 868,299 1,647,666 990,433 7,906,565
Total IB Liabilities1 2640 6,053 19,679 61,450 180,771 527,460 1,212,811 990,433 7,782,309
Total Assets1 37,798 63,613 160,741 450,200 1,290,698 3,412,953 7,211,608 4,416,920 37,938,474
Total Large Loans1 8719 17,293 60,692 208,475 675,199 2,054,840 4,208,323 3,424,445 30,221,363
Total Small Loans1 8906 34,932 85,741 217,516 550,855 1,287,390 2,253,149 992,475 8,748,757
Out Degree 1 1 1 2 4 9,1 16 13 82
In Degree 1 1 4 9 14 19 25 13 37
Total Degree 2 3 5 11 18 27 38 26 111
Opsahl Centrality 51.5 80.6 165.8 345.9 791.6 2071.2 4090 3342 24,020
Eigenvector Centrality 0.000003 0.000019 0.000078 0.000264 0.001092 0.004027 0.009742 0.003923 0.023491
Weighted Betweenness 0 0 0 0 0 401.5 6225.8 10,491 82,995
Weighted Eigenvector 0.000004 0.000012 0,000042 0,000142 0.000611 0.002217 0.004839 0.003148 0.023607
Closeness Centrality 253.2 328.8 347.8 391.8 393.6 411.5 427.4 371.22 69.13
Clustering Coefficient 0 0 0 0.00937 0.04166 0.12328 0.16667 0.0379 0.0677
Number of banks2 1764
Number of links 22,752
Note: 1in thousands euro; 2number of banks active in the interbank market. Data point: Q1 2011.
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and Out Degrees, supporting the idea of a tiered system with few large banks that act as
interbank broker-dealers connecting other financial institutions (see e.g., Craig and von
Peter, 2014).20

4 Modeling contagion
As introduced in Section 2, we differentiate between fundamental defaults and contagious
defaults (see also Elsinger et al. (2006) or Cont et al. (2013), for instance). Fundamental
defaults are related to losses from the credit risk of “real economy” exposures, while
contagious defaults are related to the interbank credit portfolio (German only). 21

Moreover, we construct an interbank clearing mechanism based on the standard as-
sumptions of interbank contagion (see e.g., Upper, 2011): First, banks have limited liabil-
ity. Next, interbank liabilities are senior to equity but junior to non-bank liabilities (e.g.,
deposits). Losses related to bank defaults are proportionally shared among interbank cred-
itors, based on the share of their exposure to total interbank liabilities of the defaulted
bank. In other words, its interbank creditors suffer the same loss-given-default.22 Finally,
non-bank assets of a defaulted bank are liquidated at a certain discount. This extra loss
is referred to as fire sales and is captured by bankruptcy costs, defined in Section 4.1. The
clearing mechanism follows the idea of Eisenberg and Noe (2001) which, however, is not
designed to include bankruptcy costs. To account for these costs, we follow Rogers and
Veraart (2013) who propose a simple algorithm which converges to the fixed point with
minimum losses.

When a group of banks default, they trigger losses in the interbank market. If in-
terbank losses (plus losses on loans to the real economy) exceed the remaining capital of
the banks that lent to the defaulted group, this can develop into a domino cascade. At
every simulation when interbank contagion arises, we follow Rogers and Veraart (2013)
to compute losses that take into account the above assumptions.

More formally, first recall that each bank makes a (euro) return on its large and small
loans, defined in Section 2.1. We switch the sign and define fundamental losses as:

Lfund
i ≡ − (retlarge,i + retsmall,i) .

Each bank incurs total portfolio losses Li equal to its fundamental losses and losses on its
interbank loans:

Li = Lfund
i + LIB

i , (5)

where LIB
i is yet to be determined. A bank defaults if its capital Ki cannot absorb the

20One aspect that needs to be mentioned here is that the observed IB network is not the complete
picture, since interbank liabilities of German banks raised outside Germany are not reported to the LED.
For example, the LED captures a loan made by Goldman Sachs to Deutsche Bank only if it is made
by Goldman Sachs’ German subsidiary. This aspect might bias downwards centrality measures of big
German banks that might borrow outside Germany.

21Foreign bank exposures are included in Sector 17 of the “real economy” portfolio, since we have to
exclude them from the interbank network. Loans made by foreign banks to German financial entities are
not reported to the LED, except they are made by a subsidiary registered in Germany. These subsidiaries
are part of our interbank network.

22We do not have any information related to collateral or the seniority of claims.
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portfolio losses. We define the default indicator as

Di =

1 if Ki < Li,

0 otherwise.

Below, bankruptcy costs are modeled so that their (potential) extent BCi is known before
contagion; i.e., they are just a parameter of the contagion mechanism, but only accrue
when Di = 1.

Total portfolio losses and bankruptcy costs are now distributed to the bank’s claimants.
If capital is exhausted, further losses are primarily borne by interbank creditors since their
claim is junior to other debt. Bank i causes its interbank creditors an aggregate loss of

ΛIB
i = min (li,max (0, Li +BCiDi −Ki)) ,

which is zero if the bank does not default. The Greek letter signals that ΛIB
i is a loss on

the liability side of bank i, which causes a loss on the assets of its creditors.
The term xij denotes interbank liabilities of bank i against bank j, and the row sum

li = ∑N
j=i xij defines total interbank liabilities of bank i. This gives us a proportionality

matrix π to allocate losses, given by

πij =


xij

li
if li > 0;

0 otherwise.

If the loss amount ΛIB
i is proportionally shared among the creditors, bank j incurs a loss

of πijΛIB
i because of the default of i. Also the bank i we have started with may have

incurred interbank losses; they amount to

LIB
i =

N∑
k=1

πjiΛIB
j , (6)

which provides the missing definition in eq. (5). This completes the equation system
(5)–(6), which defines our allocation of contagion losses.

Let us write the system in vector form, for which we introduce l =
(∑N

j=i xij
)
i
as

the vector of interbank liabilities, ∧ as the element-wise minimum operator, and B̃ as
a diagonal matrix with bankruptcy costs BCi on the diagonal. Default dummies are
subsumed in the vector D so that the product B̃D defines actual bankruptcy costs, i.e.
the ones that become real. Losses in the IB market caused by bank i and incurred by the
other banks, can then be written as

ΛIB = l ∧
[
L+ B̃D −K

]+
.

With Π being the proportionality matrix, interbank losses – now on the asset side –
amount to

LIB = Π>ΛIB.

We consider the total portfolio losses L = Lfund + LIB (not containing bankruptcy costs)
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as a solution.23 Altogether, we have to solve the equation

L = Φ (L) ≡ Lfund + Π>
(
l ∧

[
L+ B̃I[L>K] −K

]+)
,

where the indicator function and the relational operator are defined element-by-element.
According to our definition of default, the operator Φ is left-continuous on RN .

Rogers and Veraart (2013) show that a simple repeated application of the monotonic
operator Φ to Lfund generates a sequence of losses that must converge to a unique loss
vector L∞, simply because the sequence is monotonic in each dimension and the solution
space is compact. Since the operator Φ is left-continuous in our setup, L∞ is also a fixed
point. As shown by Rogers and Veraart (2013), it has minimum losses among all fixed
points.

4.1 Bankruptcy costs
In our analysis, we are particularly interested in bankruptcy costs (henceforth BCs) since
they represent a dead-weight loss to the economy. We model them as the sum of two
parts. The first one is a function of a bank’s total assets, because there is empirical
evidence for a positive relationship between size and BCs of financial institutions; see
Altman (1984). The second part incorporates fire sales and their effect on the value
of the defaulted bank’s assets. For their definition, recall that we want to model BCs
such that their extent is known before contagion, which is why we make them exclusively
dependent on the fundamental portfolio losses Lfund

i . If that loss of bank i exceeds capital
Ki, the bank’s creditors suffer a loss equal to max

(
0, Lfund

i −Ki

)
. In the whole economy,

fundamental losses add up to

Lfund ≡
∑
i

max
(
0, Lfund

i −Ki

)
.

It is this total fundamental loss in the system by which we want to proxy lump-sum effects
of fire sales. The larger Lfund, the more assets will the creditors of defaulted banks try
to sell quickly, which puts asset prices under pressure. We proxy this effect by defining a
system-wide relative loss ratio λ that is a monotonic function of Lfund. In total, if bank i
defaults, we define BCs as the sum of two parts related to total assets and fire sales:

BCi ≡ φ
(
TotalAssetsi − Lfund

i

)
+ λ

(
Lfund

)
max

(
0, Lfund

i

)
. (7)

We consider φ to be the proportion of assets lost due to litigation and other legal costs. In
our analysis we set φ = 5%.24 It is rather for convenience than for economic reasons that
we set the monotonic function λ equal to the cumulative distribution function of Lfund.
Given this choice, the larger total fundamental losses in the system are, the closer λ gets

23We could also search for a solution for Lall ≡ L + B̃D, which turns out to be equivalent but more
complicated.

24Our results remain robust also for other values φ ∈ {1%, 3%, 10%}. Alessandri, Gai, Kapadia, Mora,
and Puhr (2009) and Webber and Willison (2011) use contagious BCs as a function of total assets, and
set φ to 10%. Given the second term of our BC function that incorporates fire sales effects, we reach at
a stochastic function with values between 5% and 15% of total assets.
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to 1.25

In the optimization process we minimize a measure of system losses (i.e. the target
function). The mechanism of contagion proposed by us has several sets of agents, each of
whom suffers separate kinds of losses. There are many conflicting arguments which agent’s
losses the regulator should particularly be interested in, for instance those of depositors
(as a proxy for “the public” that is likely to be the party that ultimately bails banks out)
or even those of bank equity holders (who are at risk while offering a valuable service to
the real economy). While all of them may be relevant, our primary target function are
the expected BCs, which is just the sum of the expected BCs of defaulted banks:

EBC = E
∑
i

BCiDi , (8)

whereDi is the default indicator of bank i. BCs are a total social deadweight loss that does
not include the initial portfolio loss due to the initial shock. While this is a compelling
measure of social loss, there are distributional reasons that it might not be the only
measure of interest.

Losses of eq.(8) are free of distributional assumptions. However some amount of BCs
can be well acceptable as a side-effect of otherwise desirable phenomena (e.g., the plain
existence of bank business), such that minimizing expected BCs does not necessarily lead
to a “better” system in a broader sense. For example, minimum expected BCs might
entail an undersupply of credit more harmful to the real economy than the benefits from
low BCs.

The expected total loss to equity holders as well as the expected total loss to non-bank
debt holders are therefore at least of interest, if not justifiable alternative target functions.
Also their sum appears as a natural choice for a target function, this way treating the
interests of bank owners and non-bank debt holders equally important. However, it can
easily be shown that this sum is equivalent to our target function, the expected BCs.

It is important to note that we consider banks as institutions only, meaning that any
loss hitting a bank must ultimately hit one of its non-bank claimants. In our model, these
are simply non-bank debtors and bank equity holders, as we split bank debt into non-bank
an interbank debt only. Counting total losses on the asset side of banks’ balance sheets
(or just their credit losses) makes little sense anyway, as they involve interbank losses and
therefore a danger of double counting.

We considered all of the above losses in our simulations, but we report only those
related to eq. (8) with the purpose of exposition in this paper.

5 Optimization
In this section, we define the way we reallocate capital. Several points should be made
about it.

25We acknowledge that real-world BCs would probably be sensitive to the amount of interbank credit
losses, which we ignore. This simplification, however, allows us to calculate potential BCs before we know
which bank will default through contagion, such that we do not have to update BCs in the contagion
algorithm. If we did, it would be difficult to preserve proportional loss sharing in the Eisenberg-Noe
allocation.
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First, the rules themselves are subject to a variety of restrictions. These include the
fact that the rules must be simple and easily computed from observable characteristics,
and they should preferably be smooth to avoid cliff effects. Simplicity is important not
just because of computational concerns. Simple formal rules are necessary to limit dis-
cretion on the ultimate outcome. Too many model and estimation parameters set strong
incentives for banks to lobby for a design in their particular interest. While this is not
special to potential systemic risk charges, it is clear that those banks who will most likely
be confronted with increased capital requirements are the ones with the most influence
on politics. Vice versa, simplicity can also help to avoid arbitrary punitive restrictions
imposed upon individual banks. In this sense, the paper cannot offer deliberately fancy
first-best solutions for capital requirements.

Second, as noted in the introduction, the rules must keep the total capital requirement
the same so that we do not mix the effects of capital reallocation with the effect of
increasing the amount of capital in the entire system.

Finally, for reasons of exposition, we focus on capital reallocations based on a single
centrality measure. While we did explore more complicated reallocation rules that were
optimized over combinations of centrality measures, these reallocations gave only marginal
improvements and so are not reported.

We introduce a range of simple capital rules over which our chosen loss measure, the
expected BCs, is minimized. We minimize over two dimensions, the first being the choice
of a centrality measure and the second being represented by a gradual deviation from
a VaR based benchmark allocation towards an allocation based on the chosen centrality
measure.

In our benchmark case, capital requirements focus on a bank’s individual portfolio risk
(and not on network structure). For our analysis we require banks to hold capital equal to
its portfolio VaR on a high security level of α = 99.9%, which is in line with the level used
in Basel II rules for the banking book.26 There is one specialty of this VaR, however. In
line with Basel II again, the benchmark capital requirement treats interbank loans just as
other loans. For the determination of bank i’s benchmark capital Kα,i (and only for this
exercise), each bank’s German interbank loans (on the asset side of the balance sheet) are
merged with loans to foreign banks into portfolio sector no. 17 where they contribute to
losses just as other loans.27

In the whole system, total required capital adds up to TKα ≡
∑
i
Kα,i. To establish a

“level playing field” for the capital allocation rules, TKa is to be the same for the various
allocations tested.

The basic idea is that we give banks a – hypothetical – proportional capital relief from
their benchmark capital, which we then redistribute according to a rule in which capital
is scaled up or down by a centrality measure.

Given Ci to be one of the centrality measures introduced in Section 2.2, we subtract
26To check the numerical stability of our results, we re-ran several times the computation of VaR

measures at quantile α = 99.9%. For this computation we employed a new set of one million simulations,
and kept the same PDs for loans where unreported values had been reported by random choices. Results
are very similar with an average variance of under 2%. VaR measures at 99% have a variance of under
0.5%.

27Default probabilities for these loans are taken from the Large Exposure Database in the same way
as for loans to the real economy.
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a fraction β from each bank’s benchmark capital Kα,i for redistribution. Some required
capital is added back, again as a fraction of Kα,i, which is proportional to the centrality
measure:

Ksimple,i (β) ≡ Kα,i (1− β + βaCi) . (9)

The parameter a is chosen such that total system capital remains the same as in the
benchmark case, which immediately leads to

a =
∑
jKα,j∑

jKα,jCj
, for all β.

This simple capital rule is not yet our final allocation because it has a flaw, although
it is almost exactly the one we use in the end. Among those banks for which capital
decreases in β (these are the banks with the lowest Ci), some banks’ capital buffer may
get so small that its probability of default (PD) rises to an unacceptable level. We want
to limit the PDs (in an imperfect way) to one percent, which we assume to be politically
acceptable. To this end, we require each bank to hold at least capital equal to bank i’s
VaR at α = 99%, which we denote by Kmin,i. In other words, we set a floor on Ksimple,i (β).
The VaR is again obtained from the model used for benchmark capital, which treats IB
loans as ordinary loans and hence makes the upper PD limit imperfect.28

If we plainly applied the floor to Ksimple,i (β) (and if the floor was binding somewhere),
we would require more capital to be held in the system than in the benchmark case. We
therefore introduce a tuning factor τ (β) to reestablish TKα. The final capital rule is:

Kcentr,i (β) ≡ max (Kmin,i, Kα,i [1− β + β τ (β) aCi]) . (10)

For a given β, the tuning factor τ (β) is set numerically by root finding. To anticipate
our results, tuning is virtually obsolete. Even if 30% of benchmark capital is redistributed
– which is by far more than in the optimum, as will turn out – we find 0.999 < τ (β) ≤ 1
throughout, and there is a maximum of only 14 banks for which the floor becomes binding.

In general, the approach is not limited to a single centrality measure. As regards the
formal approach, we could easily replace Ci in eq. (10) by a linear combination of centrality
measures∑k akC

k
i and optimize the ak along with β; the degree of freedom would be equal

to the number of centrality measures included. However, optimization quickly becomes
prohibitively expensive as every step requires its own extensive simulation. We carry
out a couple of bivariate optimizations, focusing on the centrality measures found most
powerful in one-dimensional optimizations. Improvements over the one-dimensional case
are negligible and therefore not reported.

In this section we have dealt only with capital requirements. To assess their conse-
quences on actual systemic risk, we also have to specify in which way banks intend to
obey these requirements. In practice, banks hold a buffer on top of required capital in
order to avoid regulatory distress. However, as our model runs over one period only, we
do not lose much generality when we abstract from additional buffers and assume banks

28 If banks held exactly Kmin,i as capital, actual bank PDs after contagion could be below or above
1 percent, depending on whether quantiles of portfolio losses in a risk model where interbank loans are
directly driven by systematic factors are larger than in presence of contagion (but without direct impact
of systematic factors). However, the probability of bank defaults through fundamental losses cannot
exceed 1 percent, given that asset correlations in the factor model are positive.
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Figure 1: Comparison of centrality based capital allocations
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to hold exactly the amount of capital they are required to hold.

6 Results
Our main results from the reallocation of capital are depicted in Figure 1. Table 3
presents the corresponding optimum values in numbers. As defined in (8), the target
function that we compare across centrality measures is the total expected bankruptcy
costs. Our benchmark allocation (based only on VaR(α = 99.9%)) is represented by the
point where β = 0. As β increases, more of the capital is allocated to an allocation rule
based upon the centrality measure as described in eq. (10). The extreme right end of
the diagram still allocates 75% of the capital based on the original VaR(α = 99.9%). To
allocate less would probably be difficult to support politically and, as can be seen in the
figure, covers the area for the minimum losses in all cases but one. Even in this case, the
minimum for the closeness centrality is very close to the minimum in the plotted range.

Several patterns are clearly evident in the diagram and supported by findings in Ta-
ble 3. The first observation in Figure 1 is that some centrality measures are completely
dominated by others. Over the region of 0 ≤ β ≤ 24%, capital reallocations based on
three of the centrality measures were destructive to the system over the entire region:
Clustering, IB Assets, and the Second Principal Component.

Capital allocations based on all other centrality measures help to improve the stability
of the banking system in terms of expected total bankruptcy costs over at least some of
the region of β.

One measure stands out among all of them: the Adjacency Eigenvector. With about a
12% reallocation of capital from the baseline capital to one based on the Adjacency Eigen-
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Table 3: Total expected bankruptcy costs after contagion, applying optimized centrality
based capital allocation
Centrality measure Expected BCs Saving Optimal beta

(T-EUR) (percent) (percent)
Eigenvector (adjacency) 861,000 14.6 12
Eigenvector (weighted normalized) 898,000 10.9 8
Closeness 900,000 10.7 24
Opsahl Centrality 910,000 9.8 8
Out Degree 912,000 9.6 8
IB Liabilities 917,000 9.1 8
Degree 920,000 8.7 10
Eigenvector (weighted) 928,000 8.0 6
1st Principal Component 946,000 6.2 4
Weighted Betweenness 991,000 1.8 4
In Degree 995,000 1.3 2
Total Assets 998,000 1.0 2
IB Assets 1,008,000 0.0 0
Clustering 1,008,000 0.0 0
2nd Principal Component 1,008,000 0.0 0
(Benchmark, purely VaR based) 1008,000 — —
Note: Expected BCs include fundamental and contagious defaults. Saving in percent refers to the
benchmark case. β has been optimized in bins of two percent size.

vector saves the system 14.6% in system losses as measured by expected BCs. Radically
giving 24% of the allocation to one based on Closeness saves the system less (10.7%), but
these two capital allocations behave differently from the rest in two senses. First, they are
more effective at reducing losses, meaning that the next most effective group of central-
ity measures, Opsahl, Weighted Eigenvector, Out-Degree, Total Degree, and Weighted
Normalized Eigenvector, stabilize the system so that it reduces losses between 9% and
10%, in contrast to 14.6%. Second, they all do so at a level of capital reallocation that
involves only 8% being reallocated from the benchmark to the centrality based allocation.
The two most successful reallocations redistribute more. Finally the rest of the centrality
measures generate even smaller savings at even smaller amounts redistributed. Because
the allocations based on Closeness and Adjacency Eigenvector perform best, we focus
on them in the discussion that follows (although the Weighted Normalized Eigenvector
actually performs second-best, we skip it from further analyzes because of its similarity to
the Adjacency Eigenvector). To a lesser extent we also discuss the effect of the next-best
performing allocations, Opsahl Centrality and Out-Degree.

Figure 2 presents expected BCs under the best-performing centrality measures for
both pre- and post-contagion losses. The case of Closeness stands out from the other
three. For Closeness, the fundamental defaults mimic the baseline case throughout the
range of capital reallocation. They barely increase despite changes in the distribution of
bank defaults. As β increases, the decline in losses from contagion are not matched by
an increase in pre-contagion losses, and the total losses decrease. The best performing

23



Figure 2: Expected bankruptcy costs: All defaults, fundamental defaults and contagious
defaults
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Note: Y-axes represent expected Bankruptcy Costs (as measured by Equation 7) from fundamental
defaults, contagious defaults, and all defaults, under different capital allocations. On the X-axis, β
represents the redistributed fraction of benchmark capital, VaR(α = 99.9%).

allocation, based on the Adjacency Eigenvector, for the smaller range of β, does not
increase the fundamental losses much over the benchmark and gives striking savings in
post-contagion losses compared to all other measures. It does exactly what one would
expect from a capital reallocation based on a wider set of information: strongly reduce
the cascading losses at a small expense of fundamental ones. Once the fundamental losses
start increasing steeply, at an inflection point of about β = 15%, the total costs rise rapidly
as well. Below this value, the increase in fundamental costs is relatively smooth, just as
the fall-off in benefits from the post-contagion savings are smooth. This reflects the large
range of β where the capital reallocation is very effective. The other two measures are
similar to the behavior of the allocation based on Adjacency Eigenvector. As before, the
inflection points of fundamental losses lead to a minimum, but featuring some differences.
First, the post-contagion losses stop decreasing at around the same value of β; second,
the inflection points are sharper; and finally, all of this happens at smaller values of β,
and with smaller declines in post-contagion bankruptcy costs. These are less effective
measures upon which to base capital reallocations.

Figure 3 displays frequency distributions of all banks’ default probabilities before and
after contagion in the benchmark case (VaR based capital)29 and compares them with

29Recall that the VaR used for capital is not identical with the actual loss quantile in the model that
includes contagion, be it before or after contagion; see Section 5.
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Figure 3: Frequency distributions of individual bank PDs

0 1 2 3 4 5

x 10−3

0

200

400

600

800

1000

1200

1400

1600

PD before contagion

 

 

0 1 2 3 4 5

x 10−3

0

500

1000

1500

2000

PD after contagion

Eigenv (adjacency)
Closeness
Opsahl
Out Degrees
Benchmark allocation (VaR)

Note: On Y-axis is presented the estimated density of the distribution of bank PDs. On X-axis, are
represented PDs (per bank). Results obtained with 500,000 simulations.

distributions generated by the best centrality based allocations. These four capital real-
locations are taken at their optimal β, according to the values presented in Table 3. All
densities show a similar picture for the fundamental defaults (“PD before contagion”).
The reallocations all spread the distribution to the right on fundamental defaults. Indeed,
fundamental defaults for the best basis, the Adjacency Eigenvector, spread the fundamen-
tal defaults most to the right. We know from the costs of the fundamental defaults that
total bankruptcy costs remain the same. They were redistributed such that more (pre-
sumably smaller) banks defaulted to save a few whose default triggers potentially larger
bankruptcy costs. This is most pronounced for the Adjacency Eigenvector based capital
allocation, but it is true for all the other three measures as well: pre-contagion default
frequencies shift to the right with a longer and fatter tail than in the benchmark case.
This is not surprising as the PDs before contagion are limited to 0.1% by construction (cf.
Equation 28); any exceedance is caused by simulation noise. The best allocations based
on the other three centrality measures lie somewhere in between the fat-tailed Adjacency
Eigenvector based distribution and the thin-tailed benchmark. Still the lesson from the
left-hand side of Figure 3 is that the capital allocations based on each of our centrality
measures in the initial set of defaults sacrifice a large number of less relevant banks by
shifting capital to the relevant banks. There is also, of course, a relationship to size, but
we cannot present related graphs for confidentiality reasons.

Post-contagion probabilities of default on the right-hand side of Figure 3 show further
interesting patterns with respect to the benchmark case. The capital reallocation based
on each of our centrality measures continues to sacrifice more of the (presumably) smaller
banks in order to reduce the probability of default, post contagion, for the larger banks.
The end result of this is a distribution that is considerably wider in its default probability
both pre- and post-contagion. The cost in terms of the banks that are more likely to
fail is made up through a few banks (otherwise suffering – or elsewhere causing – large
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losses, in expectation) that are less likely to fail during the contagion phase of the default
cycle. It is remarkable that each of our reallocations behave in this way. The extra
capital gained from the reduction in the benchmark capital rule which focuses on pre-
contagion default has not reduced post-contagion defaults across-the-board for any tested
reallocation. Instead, in contrast to benchmark allocation our centrality based capital
rules perform less consistently (at least in this sense), sacrificing many defaults to save
those which matter in terms of our loss function.

Figure 3 can also be used as a validation of the “traditional” way of measuring the
risk of interbank loans, that is, by treating them as in the benchmark case; cf. Section 5.
In the latter case they are part of an ordinary industry sector and driven by a common
systematic factor. This treatment is very much in line with the approach taken in the
Basel III framework. The bank PDs sampled in Figure 3 are default probabilities from
the model including contagion. If the bank individual loss distributions generated under
the “traditional” treatment were a perfect proxy of the ones after contagion, we should
observe the histogram of PDs after contagion in the VaR based benchmark case to be
strongly concentrated around 0.1%. Instead, the PDs are widely distributed and even on
average 35 percent higher than that possibly concluded from the label “99.9-percent VaR”.
While the link to the Basel framework is rather of methodological nature, our analysis
clearly documents that interbank loans are special and that correlating their defaults by
Gaussian common factors may easily fail to capture the true risk. As there are, however,
also good reasons to remain with rather simple “traditional” models, such as those behind
the Basel rules, our modeling framework lends itself to a validation of the capital rules
for interbank credit. This exercise is beyond the scope of this paper.

In Figure 4, each observation represents a bank for which we calculate the probability
of fundamental defaults (x-axis) and the PD including both fundamental and contagious
defaults (y-axis). (Obviously there is nothing lower than the 45 degree line in these
diagrams.) In the case of the VaR based benchmark allocation (black markers), the rela-
tionship is clearly non-linear. Most banks, although their fundamental PD is effectively
limited to 0.1%, experience much higher rates of default due to contagion. Suggested by
the graph, there seems to be a set of around 30 events where the system fully breaks
down, leading to the default of most banks, irrespectively of their default propensity for
fundamental reasons. The benchmark capital requirement does a very good job in limit-
ing the probability of fundamental defaults to 0.1%, which is what causes the relationship
between fundamental and total default probabilities to be nonlinear.

In contrast to the benchmark capital, the optimized capital allocation based on our
best-performing measure, the Adjacency Eigenvector, has a stronger linear relationship
between fundamental and total PD although with heteroskedastic variance that increases
with fundamental default probability. Indeed, it looks as if the probability of total default
could be approximated by the probability of fundamental default plus a constant. This
leads us to a conclusion that imposing a capital requirement based on the Adjacency
Eigenvector causes many banks to have a higher probability of default than in the baseline
case, but because these tend to be smaller banks, they impose smaller bankruptcy costs
on the system as a whole. The reallocation based on the Closeness does this less. There
are more banks with a lower default probability in the post-contagion world than with the
Adjacency Eigenvector based allocation. The Closeness allocation induces less of a linear
relationship between fundamental and total default probabilities. The lesson here is much
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Figure 4: Relationship between default probabilities of individual banks before and after
contagion
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the lesson of Figure 3: the sacrifice of a lot of small banks to reduce the system losses
caused by default of the few banks which are most costly. The additional information of
these diagrams is that the same banks sacrificed in the pre-contagion phase are those banks
sacrificed in the contagion phase. This relationship is strongest for our best-performing
allocation basis, the Adjacency Eigenvector.

In order to get the full picture, we now focus on the distribution of bankruptcy costs.
We provide in Figure 5 the tail distribution of BCs for benchmark capital and for capital
based on the Adjacency Eigenvector and Closeness, plotted for BCs exceeding 100 Billion
euros (note that the lines are ordinary densities plotted in the tail; they are not tail-
conditional). One is cautioned not to place too much emphasis on the BCs being multi-
modal. The default of an important bank might trigger the default of smaller banks which
are heavily exposed to it, creating a cluster.

Several things are apparent from Figure 5. Both Closeness and Adjacency Eigenvector
perform better than the benchmark in precisely those catastrophic meltdowns where we
would hope they would help. The benchmark is dominated by both reallocations at each
of the three modes exhibited by the benchmark allocation. Second, the optimal Adjacency
Eigenvector reallocation dominates Closeness although to a lesser extent than the savings
from benchmark allocation. Our optimal capital rule, based on the Adjacency Eigenvector,
shows the best performance in the area where the banking authority would like capital
requirements to have teeth. Finally, all rules perform equally poorly for extreme BCs of
greater than 780 Billion. When the catastrophe is total, allocating an amount of capital
that is too small does not make much difference. Almost the entire capital is used and
plenty of banks fail.

At this point the question arises whether a capital reallocation combining two central-
ity measures might perform better than one based on a single measure. Indeed, it could
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Figure 5: Kernel density of BCs greater than 100 Billion euros
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not perform worse, by definition. However, Figure 5 shows one of the problems with this
logic. Although the two centrality measures perform differently in the end, and despite
their low correlation compared with other combinations of centrality measures, the way
in which they reshape the loss tail in Figure 5 is rather similar though; in a sense, there is
a lack of “orthogonality” in their impact on the loss distribution. As a consequence, the
resulting optimum from the combined allocation rule leads only to a 0.2% improvement
in expected BCs. We also combined other centrality measures and never observed an
improvement; all optimal choices were boundary solutions that put full weight on only
one of the two centrality measures.

Finally, Figure 6 shows, under various capital allocations, bank individual ratios of
centrality based capital divided by VaR based benchmark capital. The first observation
for all of the measures is that ratios involve a cut to the capital requirement for the vast
majority of banks, and the cut is highly concentrated at the same amount within the
centrality measure. Each centrality measure cuts a different amount for the majority of
the banks, except that Opsahl and Out-Degree have very similar effects in the distribution
of their capital requirements. The Adjacency Eigenvector cuts most drastically by 12%
of benchmark capital and the Closeness is least drastic at a 5% decrease for the vast
majority of banks.

To conclude, we infer for each allocation that the capital reallocation is a comparably
“mild” modification of the benchmark case for almost all of the banks because the extra
capital allocated to some banks is not excessive. Another intuitive inference is that
the other centrality measures might mis-reallocate capital. For example, let’s say that
benchmark capital for a bank represents 8% of the total assets. Forcing this bank to hold
13 times more capital under the new allocation rule would mean it would have to hold
more capital than total assets. Due to this mis-allocation likelihood, we infer that more
constraints should be set in order to achieve better performing allocations using centrality
measures. We leave this extra mile for future research. Clearly, our general approach to
capital reallocation is focused on a few particular banks for each of the centrality measures,
simply because the measures focus on them. Beyond that, we cannot say much without
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Figure 6: Relative changes of required capital for different capital allocations
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revealing confidential information about individual banks.
For most of our centrality-based capital reallocations, there is a reduction of the ex-

pected BCs in the whole system, at least over a range of capital redistributed. In the
allocations we examined most closely, these new requirements function on the same prin-
ciple of shifting capital away from those banks that were presumably small and had little
effect on contagion towards a few banks that had a large effect. The shift has the outcome
one might expect: more banks are likely to fail in the fundamental defaults phase of our
experiment, even in those instances where total costs due to bankruptcy do not increase
during this phase. The less expected outcome is that even in the post-contagion phase,
more banks fail under the capital reallocation. However, failed banks have a lower sys-
temic cost in terms of bankruptcy, on average, than those banks that are saved through
the reallocation. Under some circumstances, this is true even in the pre-contagion phase
of defaults. Our two most effective reallocations, based on Adjacency Eigenvector and
Closeness, give considerable savings in terms of total bankruptcy costs: 14.6% and 10.7%,
respectively. The reallocations based solely on these measures perform just about as well
as when the capital requirement is based on a combination of both.

7 Conclusion
In this paper we present a tractable framework that allows us to analyze the impact of
different capital allocations on the financial stability of large banking systems. Further-
more, we attempt to provide some empirical evidence of the usefulness of network-based
centrality measures. Combining simulation techniques with confidential bilateral lending
data, we test our framework for different capital reallocations. Our aim is twofold. First,
to provide regulators and policymakers with a stylized framework to assess capital for
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systemically important financial institutions. Second, to give a new direction to future
research in the field of financial stability using network analysis.

Our main results show that there are certain capital allocations that improve financial
stability, as defined in this paper. Focusing on the system as a whole and defining capital
allocations based on network metrics produces results that outperform the benchmark
capital allocation which is based solely on the portfolio risk of individual banks. Our
findings come with no surprise when considering a stylized contagion algorithm. The
improvement in our capital allocations comes from the fact that they take into account
the “big picture” of the entire system where interconnectedness and centrality play a
major role in triggering and amplifying contagious defaults. As for the best network
measure, we find that the capital allocation based on Adjacency Eigenvector dominates
any other centrality measure tested. These results strengthen the claim that systemic
capital requirements should depend also on interconnectedness measures that take into
account not only individual bank centrality but also the importance of their neighbors. In
the optimal case, by reallocating 12% of capital based on Eigenvector centrality, expected
system losses (measured by expected bankruptcy costs) decrease by almost 15% from the
baseline case.

As shown by Löffler and Raupach (2013), market-based systemic risk measures can
be unreliable when they assign capital surcharges for systemically important institutions
(as can other alternatives such as the systemic risk tax proposed by Acharya, Pedersen,
Philippon, and Richardson (2012)). What we propose in this paper is a novel tractable
framework to improve system stability based on network and balance sheet measures.
Our study complements the methodology proposed by Gauthier et al. (2012). As in that
paper, we take into account the fact that market data for all financial intermediaries does
not exist when dealing with large financial systems. Instead we propose a method that
relies mainly on the information extracted from a central credit register.

We are not providing further details on how capital reallocation in the system could
be implemented by policymakers. This aspect is complex, and the practical application
involves legal and political issues. Further, we assume the network structure to be ex-
ogenous. In reality, banks will surely react to any capital requirement that is based on
measurable characteristics by adjusting the characteristics. Such considerations are be-
yond the scope of the paper. Future research is needed to measure the determinants
of endogenous network formation in order to make a more precise statement about the
effects of a capital regulation as suggested in this paper.

Further future research could go in several directions. For example, bailout rules used
for decisions on aid for banks that have suffered critical losses could be based on informa-
tion gained from centrality measures. How this bailout mechanism would be funded and
the insurance premium assessed to each bank are central to this line of research. Finally,
the method can be extended by including information on other systemically important
institutions (e.g., insurance companies or shadow banking institutions), although further
reporting requirements for those institutions would be necessary.
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