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Abstract

Under the symmetric α-stable distributional assumption for the distur-

bances, Blattberg et al (1971) consider unbiased linear estimators for a re-

gression model with non-stochastic regressors. We consider both the rate of

convergence to the true value and the asymptotic distribution of the normal-

ized error of the linear unbiased estimators. By doing this, we allow the re-

gressors to be stochastic and disturbances to be heavy-tailed with either finite

or infinite variances, where the tail-thickness parameters of the regressors and

disturbances may be different.
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Nicht-technische Zusammenfassung 

 

Die Regressionsanalyse ist eine der am häufigsten verwendeten 

statistisch/ökonometrischen Methoden. Dabei wird üblicherweise die Normal-

verteilungsannahme für die Störprozesse getroffen. Für viele empirischen Daten, 

insbesondere im Finanzmarktbereich, erweist sich die Normalverteilung aber als 

unzutreffend, weil ihre Verteilung typischerweise durch übermässige Ausreißer 

dickere Enden besitzt als die Normalverteilung. Als Alternative bietet sich die 

sogenannte α-stabile Verteilung an, deren Eigenschaften durch den Stabilitäts-

parameter (α) bestimmt werden. Diese Verteilung ist besser geeignet das Verhalten 

solcher Variablen zu beschreiben; die Normalverteilung ist als Spezialfall enthalten. 

 

Unter der symmetrischen α-stabilen Verteilungsannahme für die Störprozesse haben 

Blattberg u.a. (1971) einen besten linearen unverzerrten Schätzer im Rahmen eines 

einfachen Regressionsmodells entwickelt. Dieser Schätzer ist bei nicht-stochastischen 

Regressoren abgeleitet worden, wodurch die Anwendung, insbesondere für die Fi-

nanzmarktanalyse eingeschränkt ist. Zum Beispiel sind sowohl die Rendite des je-

weils betrachteten Papiers (als Regressand) als auch die Marktrendite (als Regressor) 

im Capital-Asset-Pricing-Modell als stochastische Grössen anzusehen. Außerdem 

verzichteten Blattberg u.a. (1971) auf eine asymptotische Analyse über den Schätzer. 

 

Wir untersuchen sowohl die Konvergenzrate zum wahren Wert als auch die 

asymptotische Verteilung normalisierter Schätzfehler des besten linearen unver-

zerrten Schätzers. Bei der Analyse wird zugelassen, dass die Regressoren stochastisch 

sind. Die Störprozesse können sowohl unendliche als auch endliche Varianz besitzen, 

wobei die Stabilitätsparameter für die Regressoren und die Störprozesse divergieren 

können. Darüber hinaus untersuchen wir auch Schätzeigenschaften für einen 

endlichen Stichprobenumfang unter Verwendung der Response-Surface-Analyse. 

 

Es zeigt sich, dass sowohl die Konvergenzrate als auch die asymptotische Verteilung 

normalisierter Schätzfehler eine von α (für Regressoren und Residualprozesse) ab-

hängige Funktion ist. Eine Simulationsuntersuchung über die Verteilungen normali-

sierter Schätzfehler bei endlichen Stichproben zeigt, dass die asymptotische Vertei-

lung nur eine grobe Approximation ist. 



Nontechnical Summary 

 

Regression anaysis is one of the most widely used methods in econometrics and 

statisitcs, where the disturbances of a regression is usually assumed to be 

normally distributed. However, the normality assumption is not appropiate for 

many economic variables, especially financial markets. Financial data are 

typically fat-tailed and excessively peaked around zero. One altenative 

distributional assumption is α-stable distributions, whose shape is governed by the 

stability parameter, α. The α-stable distributions are more appropriate to describe 

such financial variables; the normal distribution is a special case of the α-stable 

distribution. 

 

Under the symmetric α-stable distributional assumption for the disturbances, 

Blattberg et al (1971) consider best linear unbiased estimators for a regression 

model. This estimator, however, is derived with non-stochastic regressors, which 

hardly enable us to apply it for finacial markets. For example, both individual 

returns and the market return in the usual capital asset pricing model are 

stochastic. An asymptotic analysis of the  estimator is not provided in Blattberg et 

al (1971) . 

 

We consider both the rate of convergence to the true value and the asymptotic 

distribution of the normalized error of the linear unbiased estimators. In so doing, 

we allow the regressors to be stochastic and disturbances to be heavy-tailed with 

either finite or infinite variances, where the tail-thickness parameters of the 

regressors and disturbances may be different. Furthermore, using simulation and 

response-surface methods we investigate the properties of the estimator. 

 

Both the convergence rate and the asymptotic distributions of the estimator turn 

out to be a function of α of the regressors and the disturbances. A simulation 

result shows that the asymptotic distributions are only a rough approximation for 

finite samples. 
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1 Introduction

For the estimation of the coefficients of a regression model one typically applies ordi-

nary least squares (OLS), which is equivalent to the maximum likelihood estimation

if the disturbances are normally distributed. Furthermore, according to the Gauss-

Markov theorem, the OLS estimator has the minimum variance of all linear unbiased

estimators if the disturbances follow a distribution with finite variance. However, if

the disturbances follow a distribution with infinite variance, but with finite mean, the

OLS estimator is still unbiased but no longer a minimum variance estimator.

Relaxing the normality assumption by allowing disturbances to have a symmetric

α-stable distribution with infinite variance (1 < α < 2), Blattberg et al (1971) gen-

eralize the OLS estimator to a different linear unbiased estimator that minimizes the

α-stable scale of the estimator. That generalization is performed in the framework of

a regression model in which the independent variable is assumed to be non-stochastic.

We consider both the rate of convergence to the true value and the asymptotic

distribution of the normalized error of the linear unbiased estimators of coefficients in

the regression model with both stochastic regressors and disturbances being heavy-

tailed with either finite or infinite variances,1 and the tail-thickness parameters of the

regressors and disturbances may be different. Even though our distributional assump-

tions are more general than the assumptions of α-stability, the limiting distributions

of the estimators will often be expressed through stable random variables.

For any random variable X there is a number α ∈ (0, 2] satisfying Cα = Aα +Bα.

Exponent α is called the stability parameter. A random variable with exponent α is

said to be α-stable distributed. Closed-form expressions of α-stable distributions exist

only for a few special cases. However, the logarithm of the characteristic function of

the α-stable distribution can be written as (see Zolotarev (1986) and Samorodnitsky

et al (1994) for more details on α-stable distributions)

ln ϕ(t)=

⎧⎪⎨
⎪⎩
−σα|t|α[1 − iβ sign(t)tanπα

2
] + iµt, for α �= 1,

−σ|t|[1 + iβ π
2

sign(t) ln |t|] + iµt, for α = 1,

where α is the stability parameter (or tail-thickness parameter ); σ is the scale pa-

1There is some controversy on whether the variance of financial returns is always infinite. We

avoid this controversy by using a heavy-tailed model that allows for both finite or infinite variance.
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rameter; β ∈ [−1 1] is the skewness parameter; and µ is the location parameter. If β

= 0, the distribution is symmetric. The shape of the symmetric α-stable distribution

(SαS) is determined by the tail-thickness parameter α ∈ (0, 2]. For 0 < α < 2 the

tails of the distribution are thicker than those of the normal distribution; and the

tail-thickness increases as α decreases. When α = 2, the SαS distribution coincides

with the normal distribution with variance 2σ2, the only member of the family with

finite variance. When α = 1, the SαS distribution reduces to the Cauchy distribu-

tion. If α < 2, moments of order α or higher do not exist, which means the variance

is infinite. If X is an α-stable random variable, 0 < α < 2, with scale σ, skewness β,

and location µ, then a common notation is X ∼ Sα(σ, β, µ). In that case the tails of

X are given by

P (±X > λ) ∼ Cα
1 ± b

2
σαλ−α (1)

as λ → ∞, where

Cα =
(∫ ∞

0
x−α sin x dx

)−1

. (2)

Some more basic information and notation on stable random variables we use,

unless otherwise specified, can be found in Samorodnitsky et al (1994).

One distinct example for a possible application of our results in the paper can

be found in financial market analysis. For econometric analysis of a dynamic capital

asset pricing model, it is necessary to add an assumption concerning the distributional

behavior of stock returns. Since Bachelier (1900) the traditional and most widely

adopted distributional assumption on financial return process has been the Gaussian

assumption. Due to the influential works of Mandelbrot (1963) and Fama (1965),

however, the α-stable distributions with 0 < α < 2 have often been considered to

be a more realistic distribution assumption for asset returns than that of a normal

distribution, because asset returns are typically fat–tailed and excessively peaked

around zero—phenomena that can be captured by α-stable distributions with α < 2.

This is the so-called stable Paretian assumption. In a certain sense the stable Paretian

assumption is a generalization rather than an alternative to the Gaussian assumption.

Indeed, according to the generalized central limit theorem, the limiting distribution

of the sum of a large number of independent, identically distributed (iid) random

variables is α-stable with 0 < α ≤ 2; see Zolotarev (1986). For more applications of
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the α-stable distributions in economics and finance; see Rachev et al (1999), Rachev

et al (2000) and Kim (2000).

The rest of the paper is organized as follows. In Section 2 we present our new

estimator and analyze the asymptotic distribution of the estimator. Section 3 summa-

rizes various scenarios by the different α for regressors and disturbances. In Section

4 we discuss the choice of the optimal θ in the new estimator both analytically and

numerically. In Section 5, using simulation and response surface analysis, we present

both the limiting and finite-sample distributions of our new estimator. Section 6

contains some concluding remarks.

2 Rate of convergence and the limiting distribu-

tion for the regression coefficient estimator

Consider a simple regression model like the one below.

Yj = βXj + Uj, j = 1, 2, . . . . (3)

We assume that the regressors {Xj} are iid random variables with polynomially

decaying tails. Specifically,

P(|X1| > λ) ∼ D1λ
−αx , λ → ∞, some αx > 0 and D1 > 0. (4)

Furthermore, we assume that the noise (disturbances) {Uj} are also iid random vari-

ables, which we assume to be symmetric, with

P(|U1| > λ) ∼ D2λ
−αu , λ → ∞, some αu > 0 and D2 > 0. (5)

We assume, further, that the sequences {Xj} and {Uj} are independent.

Note that no assumptions on the symmetry of either dependent observations or

regressors are made. We remark, further, that it is relatively straightforward (at

least, away from the boundary cases) to extend the results below to the case where

the tails of the regressors and noise variables are regularly varying (ie adding slowly

varying factors in (4) and (5)). Since such slowly varying functions are not practically

observable, we decided against including extra technical arguments in an already
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highly technical paper. Finally, we allow values of αx and αu in the interval (0, 1] as

well, since our methods cover those cases equally well.

The goal is to estimate the regression coefficient β in (3), and our estimator is

β̂θ,n =

∑n
j=1 X

<1/(θ−1)>
j Yj∑n

j=1 |Xj|θ/(θ−1)
(6)

for some θ > 1 with < · > defined as a signed power.2 Note that the OLS estimator

corresponds to θ = 2 in (6).

Our immediate task is to understand the behavior of the difference

∆n := β̂θ,n − β =

∑n
j=1 X

<1/(θ−1)>
j Uj∑n

j=1 |Xj|θ/(θ−1)
(7)

d
=

∑n
j=1 |Xj|1/(θ−1)Uj∑n

j=1 |Xj|θ/(θ−1)
,

where the last distributional equality follows from the symmetry of the noise. That

is, we are interested in the rate of convergence of the estimator β̂θ,n to the true value

depending on the choice of θ. When such convergence actually takes place, this will

also establish consistency (in probability) of our estimator.

It is clear that the rate of convergence to zero of the difference ∆n depends signif-

icantly on the tail exponents αx and αu, and on the choice of θ. What is interesting

is that we will see below that there are basically 7 different cases of possible values

of αx and αu, in each of which the rate of convergence is a different function of θ.

A common feature of our results will be the existence of an exponent d such that

nd∆n ⇒ W as n → ∞ (8)

for some non-degenerate weak limit W . Occasionally, on certain boundaries we will

have to modify (8) to allow for a slowly varying factor in the left-hand side. That is,

we will have

ndL(n) ∆n ⇒ W as n → ∞ (9)

where L is a slowly varying function.3 In any case we will view the exponent d in

either (8) or (9) as measuring the rate of convergence. In particular, the exponent d

2a<p> = |a|p−1a.
3L(x) is a slowly varying function as x → ∞, if for every constant c > 0 and limx→∞

L(cx)
L(x) exists

and is equal to 1.
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turns out to be a different function of θ in the 7 different cases of possible values of

αx and αu we mentioned above.

The reader will find it easier to follow the different technical detail below after

noticing the existence of several critical boundaries. The first boundary is that

θ − 1

θ
αx > 1. (10)

Note that on one side of that boundary |Xj|θ/(θ−1) has a finite mean and hence the

denominator in (7) is governed by the law of large numbers (LLN). On the other side

of that boundary |Xj|θ/(θ−1) is in the domain of attraction of a positive stable law

and the corresponding heavy-tailed central limit theorem governs the behavior of the

denominator in (7). On the boundary itself, the mean is infinite, but the (weak) LLN

is still in force.

The second critical boundary is that of

min
(
(θ − 1)αx, αu

)
> 2. (11)

Here on one side of the boundary the random variables |Xj|1/(θ−1)Uj have a finite

variance and hence the Gaussian central limit theorem (CLT) governs the behavior

of the numerator in the second expression in (7). On the other side of that boundary

these random variables are in the domain of attraction of a symmetric stable non-

Gaussian law and hence the corresponding CLT will be responsible for the behavior

of the numerator. On the boundary itself the variance is infinite, but the CLT will

still be in force.

We now proceed to consider the different ranges of αx and αu mentioned above.

Scenario 1 Suppose that

0 < αx ≤ 1 and αu ≥ 2. (12)

Note that under this scenario (10) fails independently of θ. Consider, therefore, the

second part of the critical boundary (11)

(θ − 1)αx ≥ 2 or, equivalently, θ ≥ 2 + αx

αx

. (13)

We will see that, in this case, the exponent d governing the rate of convergence of ∆n

to zero in (8) or (9) is given by

d =
2θ − (θ − 1)αx

2(θ − 1)αx

. (14)
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Consider first the non-boundary case

αu > 2 and θ >
2 + αx

αx

. (15)

Then, we claim that the following version of (8)

nd∆n ⇒ (EU2
1 )1/2(E|X1|2/(θ−1))1/2

C
−θ/((θ−1)αx)
αx(θ−1)/θ D

θ/αx(θ−1)
1

N(0, 1)

S (θ−1)αx
θ

(1, 1, 0)
(16)

holds weakly, where N(0, 1) and S (θ−1)αx
θ

(1, 1, 0) in the right-hand side above are

independent. Furthermore, D1 is the constant in the tail in (4). See the end of the

previous section for the description of the constant Cα for 0 < α < 2 (given in (2))

as well as for other basic information on stable random variables.

Indeed, in this case,

nd∆n =
n−1/2∑n

j=1 |Xj|1/(θ−1)Uj

n−θ/(θ−1)αx
∑n

j=1 |Xj|θ/(θ−1)
. (17)

Let ε > 0, and

Kn(ε) = {j = 1, 2, . . . , n : |Xj| > εn1/αx}. (18)

Note that

kn(ε) := Card(Kn(ε)) ⇒ IPoiss(D1ε
−αx) as n → ∞ (19)

weakly, where IPoiss(µ) stands for a Poisson random variable with mean µ.

Write (by giving names to the numerator and denominator in the right hand side

of (17))

nd∆n =
NUn

DEn

, (20)

and let

N̂n = n−1/2
n∑

j=1

|X̂j|1/(θ−1)Uj, (21)

D̂n = n−θ/(θ−1)αx
∑

j∈Kn(ε)

|Xj|θ/(θ−1), (22)

where

X̂j =

⎧⎪⎨
⎪⎩

Xj, if j = {1, 2, . . . , n} \ Kn(ε)

X̃j, if j ∈ Kn(ε).
(23)

In (23) {X̃j} is an iid sequence with a common law IP(Xj ∈ · | |Xj| ≤ εn1/αx), and

independent of the sequences {Xj} and {Uj}.
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Note that N̂n and D̂n are independent. By the CLT for triangular arrays we see

that

N̂n ⇒ N(0, E[|X1|2/(θ−1)] E[U2
1 ])) (24)

(eg Theorem 5.1.2 in Laha et al (1979)).

Furthermore, we claim that

D̂n ⇒
Nε∑
j=1

Zj(ε), (25)

where Nε is IPoiss(D1ε
−αx), independent of an iid sequence {Zj(ε)} with a common

law

IP(Zj(ε) > λ) =

(
λ(θ−1)/θ

ε

)−αx

, λ ≥ εθ/(θ−1) . (26)

This is, however, clear because of (19) and the fact that

IP
(
n−θ/(θ−1)αx |X1|θ/(θ−1) > λ

∣∣∣ |X1| > εn1/αx

)
⇒ IP(Z1(ε) > λ), n → ∞ ∀λ .

(27)

We conclude that

N̂n

D̂n

⇒
(
E[|X1|2/(θ−1)]E[U2

1 ]
)1/2 N(0, 1)∑Nε

j=1 Zj(ε)
, (28)

with the numerator and the denominator on the right-hand side of (28) being inde-

pendent.

Note that

E
[
e−θ

∑Nε
j=1

Zj(ε)
]
→ exp

{
−D1

∫ ∞

0
(1 − e−θx)

(θ − 1)αx

θ
x−(θ−1)αx/θ−1 dx

}

= E
[
exp

{
−θC

−θ/((θ−1)αx)
(θ−1)αx/θ D

θ/((θ−1)αx)
1 S(θ−1)αx/θ(1, 1, 0)

}]
(29)

for θ > 0 as ε → 0. Therefore, (16) will follow once we show that for all δ > 0

lim
ε→0

lim
n→∞ IP

(∣∣∣∣∣NUn

DEn

− N̂n

D̂n

∣∣∣∣∣ > δ

)
= 0; (30)

see Theorem 3.2 in Billingsley (1999). To this end, it is enough to prove that

lim
ε→0

lim
n→∞ IP

(∣∣∣∣∣NUn

DEn

− N̂n

DEn

∣∣∣∣∣ > δ

)
= 0, (31)

and

lim
ε→0

lim
n→∞ IP

(∣∣∣∣∣N̂n

D̂n

− N̂n

DEn

∣∣∣∣∣ > δ

)
= 0. (32)
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We will start with (31). Since ( 1
DEn

) is tight, it is enough to prove that for every

δ > 0

lim
ε→0

lim
n→∞ IP

(∣∣∣Nn − N̂n

∣∣∣ > δ
)

= 0. (33)

We have

∣∣∣NUn − N̂n

∣∣∣ = n−1/2

∣∣∣∣∣∣
∑

j∈Kn(ε)

(
|Xj|1/(θ−1) − |X̃j|1/(θ−1)

)
Uj

∣∣∣∣∣∣
≤ n−1/2

∑
j∈Kn(ε)

|Xj|1/(θ−1)Uj + n−1/2
∑

j∈Kn(ε)

|X̃j|1/(θ−1)Uj, (34)

and so (31) will follow once we show that for all δ > 0

lim
ε→0

lim
n→∞ IP

⎛
⎝n−1/2

∑
j∈Kn(ε)

|Xj|1/(θ−1)Uj > δ

⎞
⎠ = 0, (35)

lim
n→0

lim
n→∞ IP

⎛
⎝n−1/2

∑
j∈Kn(ε)

|X̃j|1/(θ−1)Uj > δ

⎞
⎠ = 0. (36)

Note that as n → ∞

E

⎛
⎝n−1/2

∑
j∈Kn(ε)

|Xj|1/(θ−1)Uj

⎞
⎠

2

(37)

= n (E[kn(ε)]) E[U2
1 ] E

[
|X1|2/(θ−1)

∣∣∣ |X1| > εn1/αx

]
=

n

IP(|X1| > εn1/αx)
E[kn(ε)] E[U2

1 ] E
[
|X1|2/(θ−1)1(|X1| > εn1/αx)

]
∼ C−1

1 ε−αx D1ε
−αx E[U2

1 ] · 0
= 0,

and (35) follows. The proof of (36) is similar and even easier. Hence we have estab-

lished (31).

We now switch to proving (32). Since (N̂n), ( 1
D̂n

) and ( 1
DEn

) are all tight, it is

enough to prove that

lim
ε→0

lim
n→∞ IP

(
|DEn − D̂n| > δ

)
= 0. (38)

Notice that

DEn − D̂n = n−θ/((θ−1)αx)
∑

j={1,2,...,n}\Kn(ε)

|Xj|θ/(θ−1) (39)

and hence

DEn − D̂n ⇒n→∞
∫ εθ/(θ−1)

0
xN∗(dx), (40)

8



where

N∗ =
∞∑

j=1

δ{Dθ/((θ−1)αx)
1 Γ

−θ/(θ−1)αx
j }, (41)

is the appropriate Poisson random measure. Here (Γj) represents the arrival times

of a unit rate homogeneous Poisson process on (0,∞). See, e.g., problem 4.4.2.8 in

Resnick (1987). Since ∫ εθ/(θ−1)

0
xN∗(dx) →ε→0 0 a.s., (42)

we have established (38), and so have proved (32). That completes the proof of (16).

Consider now the boundary case

αu = 2 and θ >
2 + αx

αx

. (43)

With d still given by (14), this time we have the following version of (9):

nd

(log n)1/2
∆n ⇒

(
D2 E[|X1|2/(θ−1)]

)1/2

C
−θ/αx(θ−1)
αx(θ−1)/θ D

θ/αx(θ−1)
1

N(0, 1)

S (θ−1)αx
θ

(1, 1, 0)
, (44)

the random variables on the right-hand side of (44) being, once again, independent.

The proof is similar to that of (16) above, but instead of the CLT for triangular arrays

with a finite variance it uses the general CLT for triangular arrays as in, for example,

Theorem 5.3.2 in Laha et al (1979). Recall that here D2 is the tail constant in (5).

The second boundary case

αu > 2 and θ =
2 + αx

αx

(45)

is similar. In that case d still given by (14) and

nd

(log n)1/2
∆n ⇒ (D1 E[|U1|2])1/2

C
−θ/αx(θ−1)
αx(θ−1)/θ D

θ/αx(θ−1)
1

N(0, 1)

S (θ−1)αx
θ

(1, 1, 0)
, (46)

where the random variables on the right-hand side of (46) are independent. Finally,

in the boundary case

αu = 2 and θ =
2 + αx

αx

(47)

we find out, in a similar manner, that d is given by (14) and

nd

log n
∆n ⇒ (D1 D2)

1/2

C
−θ/αx(θ−1)
αx(θ−1)/θ D

θ/αx(θ−1)
1

N(0, 1)

S (θ−1)αx
θ

(1, 1, 0)
, (48)
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and the random variables on the right-hand side of (48) are independent. The reason

for the extra power of the logarithm is that in this boundary case

IP
(
|X1|2/(θ−1)U2

1 > y
)
∼ D1 D2

log y

y

as y → ∞.

Consider now the other side of the critical boundary (11)

(θ − 1)αx < 2 or, equivalently, θ <
2 + αx

αx

. (49)

Here, the exponent d turns out to be given by

d =
1

αx

, (50)

and we will see that the following version of (8) holds:

nd∆n ⇒ D
−1/αx

1

∑∞
j=1 Γ

−1/((θ−1)αx)
j Uj∑∞

j=1 Γ
−θ/((θ−1)αx)
j

(51)

Here, as usual, (Γj) represents the arrival times of a unit rate homogeneous Poisson

process on (0,∞), independent of the sequence (Uj).

Note that, unlike the limits in (16) and its versions (44), (46) and (48), the

numerator and denominator on the right-hand side of (51) are NOT independent

(and, of course, the numerator in the latter expression is no longer a Gaussian random

variable but, rather, a symmetric stable random variable with parameter of stability

equal to (θ − 1)αx.)

Indeed, here

nd∆n =
n−1/((θ−1)αx)∑n

j=1 |Xj|1/(θ−1)Uj

n−θ/((θ−1)αx)
∑n

j=1 |Xj|θ/(θ−1)
.

Let ε > 0 and write

nd∆n =

∑n
j=1 |n−1/αxXj|1/(θ−1)1(|n−1/αxXj| > ε)Uj∑n

j=1 |n−1/αxXj|θ/(θ−1)
(52)

+

∑n
j=1 |n−1/αxXj|1/(θ−1)1(|n−1/αxXj| ≤ ε)Uj∑n

j=1 |n−1/αxXj|θ/(θ−1)

:= Mn(ε) + Rn(ε), n = 1, 2, . . . .

Note that

Mn(ε)
d
=

∑Nn((ε,∞))
i=1 K

1/(θ−1)
i,n Ui∫∞

0 xθ/(θ−1)Nn(dx)
, n = 1, 2, . . . , (53)

10



where

Nn =
n∑

j=1

δ{n−1/αx |Xj |}, n = 1, 2, . . . , (54)

and K1,n ≥ K2,n . . . ≥ Kn,n are the size-ordered points of Nn.

Recalling (see, once again, Resnick (1987)) that

Nn ⇒
∞∑

j=1

δ{D1/αx
1 Γ

−1/αx
j } := N, as n → ∞ (55)

weakly in [−∞, +∞]\{0}, we see that

Mn(ε) ⇒
∑N((ε,∞))

i=1 K
1/(θ−1)
i Ui∫∞

0 xθ/(θ−1)N(dx)
(56)

= D
−1/αx

1

∑∞
j=1 Γ

−1/((θ−1)αx)
j 1(Γ

−1/αx

j > ε)Uj∑∞
j=1 Γ

−θ/((θ−1)αx)
j

:= L(ε),

weakly as n → ∞, where (Ki) stands for the size-ordered points of N . Note that,

almost surely,

L(ε) −→ε→0 D
−1/αx

1

∑∞
j=1 Γ

−1/(θ−1)αx

j Uj∑∞
j=1 Γ

−θ/((θ−1)αx)
j

(57)

:= L,

the right-hand side of (51). Therefore, an appeal to Theorem 3.2 in Billingsley (1999)

shows that, to prove the latter, it remains to be demonstrated that for any λ > 0

lim
ε→∞ lim

n→∞P(|Rn(ε)| > λ) = 0. (58)

Clearly the sequence {(∑n
j=1 |n−1/αxXj|θ/(θ−1))−1} is (asymptotically) tight. Given

δ > 0 we can choose M > 0 and n0 such that

P

⎛
⎝ n∑

j=1

|n−1/αxXj|θ/(θ−1) ≤ M

⎞
⎠ ≤ δ, all n ≥ n0. (59)

Then for all n ≥ n0 and λ > 0

P(|Rn(ε)| > λ) ≤ δ (60)

+ P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

|n−1/αxXj|1/(θ−1)1(n−1/αx |Xj| ≤ ε)Uj

∣∣∣∣∣∣ > λM

⎞
⎠ .

11



For K > 0 we have

P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

|n−1/αxXj|1/(θ−1)1(n−1/αx |Xj| ≤ ε)Uj

∣∣∣∣∣∣ > λM

⎞
⎠ (61)

≤ P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

|n−1/αxXj |1/(θ−1)1
(
n−1/αx |Xj | ≤ ε, n−1/αx |Xj ||Uj |θ−1 ≤ K

)
Uj

∣∣∣∣∣∣ > λM

⎞
⎠

+ n P
(
|X1||U1|θ−1 > Kn1/αx

)
.

Keeping K fixed, we have by the symmetry, using the equivalence of different moments

of Bernoulli random variables (see eg Proposition 3.4.1 in Kwapień et al (1992)), also

known as the Khinchine inequalities,

P
(∣∣∣∑n

j=1 |n−1/αxXj |1/(θ−1)1
(
n−1/αx |Xj | ≤ ε, n−1/αx |Xj ||Uj |θ−1 ≤ K

)
Uj

∣∣∣ > λM
)

≤ 1
λM E

[∣∣∣∑n
j=1 |n−1/αxXj |1/(θ−1)1

(
n−1/αx |Xj | ≤ ε, n−1/αx |Xj ||Uj |θ−1 ≤ K

)
Uj

∣∣∣]
≤ cn−1/((θ−1)αx)E

(∑n
j=1 |Xj |2/(θ−1)1

(
|Xj | ≤ εn1/αx , |Xj ||Uj |θ−1 ≤ Kn1/αx

)
U2

j

)1/2

≤ cn1/2−1/((θ−1)αx)
(
E
(
|X1|2/(θ−1)U2

11
(
|X1| ≤ εn1/αx , |Xj ||Uj |θ−1 ≤ Kn1/αx

)))1/2
.

Here and in the sequel c is an arbitrary finite and positive constant that does not

have to be the same every time it appears. By the assumption (49) we have

E
(
|X1|2/(θ−1)U2

11
(
|X1| ≤ εn1/αx , |Xj||Uj|θ−1 ≤ Kn1/αx

))
∼ a(ε)(n1/αx)2/(θ−1)−αx

:= a(ε) nρ, n → ∞

where a(ε) → 0 as ε → 0, so that the right-hand side of (61) is

≤ c (a(ε))1/2 + n P
(
|X1||U1|θ−1 > Kn1/αx

)
.

since αu ≥ 2. Now (58) follows after letting K → ∞ (we are using, once again, the

fact that αu ≥ 2) and so we have proved (51).

Scenario 2 Suppose that

0 < αx ≤ 1, 0 < αu < 2 and αu ≥ αx. (62)

12



We are now on one side of both critical boundaries (10) and (11), and the different

ranges of θ appear here depending on which of the two elements under the minimum

in (11) is smaller. Consider first the range

(θ − 1)αx ≥ αu or, equivalently, θ ≥ αu

αx

+ 1. (63)

In this case it turns that that the exponent d is given by

d =
αuθ − (θ − 1)αx

(θ − 1)αuαx

. (64)

Again, we start with a non-boundary case

θ >
αu

αx

+ 1. (65)

We claim that here

nd∆n ⇒ C−1/αu
αu

D
1/αu

2 (E[|X1|αu/(θ−1)])1/αu

C
−θ/((θ−1)αx)
(θ−1)αx/θ D

θ/((θ−1)αx)
1

Sαu(1, 0, 0)

S (θ−1)αx
θ

(1, 1, 0)
(66)

weakly, with the random variables on the right-hand side of (66) being independent.

Indeed, here

nd∆n =
n−1/αu

∑n
j=1 |Xj|1/(θ−1)Uj

n−θ/((θ−1)αx)
∑n

j=1 |Xj|θ/(θ−1)
. (67)

The proof is parallel to that of (16). We use the notation of (18), (19), (20) and (22),

while instead of (21) we use, obviously,

N̂n = n−1/αu

n∑
j=1

|X̂j|1/(θ−1)Uj, (68)

with {X̂j} given by (23). In particular, (25) still holds. We will show now that

N̂n ⇒ C−1/αu
αu

D
1/αu

2 (E[|X1|αu/(θ−1)])1/αuSαu(1, 0, 0) (69)

weakly as n → ∞. Since by the CLT,

Nn ⇒ C−1/αu
αu

D
1/αu

2 (E[|X1|αu/(θ−1)])1/αuSαu(1, 0, 0) (70)

weakly as n → ∞ (see eg Chapter XVII in Feller (1966)), (69) will follow if we check

that

N̂n − Nn →n→∞ 0 in probability. (71)
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Now,

N̂n − Nn = n−1/αu
∑

j∈Kn(ε)

Uj(|X̂j|1/(θ−1) − |Xj|1/(θ−1))

= n−1/αu
∑

j∈Kn(ε)

Uj|X̂j|1/(θ−1) − n−1/αu
∑

j∈Kn(ε)

Uj|Xj|1/(θ−1). (72)

Hence, (71) will follow once we prove that

n−1/αu
∑

j∈Kn(ε)

Uj|Xj|1/(θ−1) →n→∞ 0 in probability. (73)

n−1/αu
∑

j∈Kn(ε)

Uj|X̂j|1/(θ−1) →n→∞ 0 in probability. (74)

Consider (73). Let 0 < p < 1 ∧ αu. This gives us

E

⎡
⎣
∣∣∣∣∣∣n−1/αu

∑
j∈Kn(ε)

Uj|Xj|1/(θ−1)

∣∣∣∣∣∣
p⎤
⎦

≤ n−p/αu · E[kn(ε)]E[U1]
pE
[
|X1|p/(θ−1)|1(|X1| > εn1/αx)

]
= n−p/αu

(
nIP(|X1| > εn1/αx)

)
E[U1]

p

(
1

IP(|X1| > εn1/αx)
E
[
|X1|p/(θ−1)1(|X1| > εn1/αx)

])

∼ cn−p/αu+1 n−1+p/((θ−1)αx)

= cn−p(1/αu−1/((θ−1)αx)) −→n→∞ 0.

Hence (73) holds, and the proof of (74) is the same, but easier. The rest of the proof

of (66) is the same as that of (16) above.

In the boundary case

θ =
αu

αx

+ 1. (75)

the exponent d is still given by (66), and the convergence statement is

nd

(log n)1/αu
∆n ⇒ C−1/αu

αu
(D1D2)

1/αu

C
−θ/((θ−1)αx)
(θ−1)αx/θ D

θ/((θ−1)αx)
1

Sαu(1, 0, 0)

S (θ−1)αx
θ

(1, 1, 0)
(76)

weakly, the random variables on the right-hand side above still being independent.

The proof of (76) is the same as that of (66), except that (70) is now replaced by

n−1/αu(log n)−1/αu

n∑
j=1

|Xj|1/(θ−1)Uj ⇒ C−1/αu
αu

(D1D2)
1/αuSαu(1, 0, 0) (77)
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weakly as n → ∞ (see Feller (1966)).

The second possibility for the minimum in (11) is the range

(θ − 1)αx < αu or, equivalently, θ − 1 <
αu

αx

+ 1. (78)

Here, once again,

d =
1

αx

,

and (51) still holds, with the same argument.

Scenario 3 Suppose that

0 < αu ≤ 1 and αu < αx. (79)

and consider the following 3 ranges for θ:

θ ≥ αx

αx − αu

, (80)

αu

αx

+ 1 ≤ θ <
αx

αx − αu

, (81)

and

θ >
αu

αx

+ 1. (82)

We claim that under (80) ∆n does not converge in probability to 0. That is, in the

case that the estimator (6) is not consistent.

Indeed, let d be given by (64), and notice that now d ≤ 0. Since the reciprocal

of the fraction on the right-hand side of (67) is clearly tight, we see that ∆n cannot

converge to zero (it is not even tight if θ > αx

αx−αu
.)

Consider now the θ range (81). Here d is the same as in (64):

d =
αuθ − (θ − 1)αx

(θ − 1)αuαx

.

Now d is positive, and, in the non-boundary case, (66) still holds, with the same

argument, while on the (only) boundary (76) holds in the same way.

Finally, we consider the range (82). Here, once again,

d =
1

αx

,

and (51) holds.
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Scenario 4 Suppose that

1 < αx ≤ 2 and αu ≥ 2 . (83)

The first range of θ we consider is on one side of the boundary (10)

θ ≥ αx

αx − 1
. (84)

Here the exponent d turns out to be

d =
1

2
. (85)

Specifically, in the non-boundary case

αu > 2 and θ >
αx

αx − 1
, (86)

we actually have

nd∆n ⇒ (E[|X1|2/(θ−1)])1/2(E[U2
1 ])1/2

E[|X1|θ/(θ−1)]
N(0, 1) (87)

weakly as n → ∞. Indeed, here

nd∆n =
n−1/2∑n

j=1 |Xj|1/(θ−1)Uj

n−1
∑n

j=1 |Xj|θ/(θ−1)
, (88)

and the strong LLN applies in the denominator, while the CLT for iid random vari-

ables with a finite variance applies in the numerator.

Let us look at the boundary cases. If

αu = 2 and θ >
αx

αx − 1
(89)

then (87) is modified to

nd

(log n)1/2
∆n ⇒ (D2E[|X1|2/(θ−1)])1/2

E[|X1|θ/(θ−1)]
N(0, 1) (90)

by using the general CLT for iid random variables in the numerator (see eg Proposition

5.3.3 in Laha et al (1979)).

In the second boundary case

αu > 2, αx > 2 and θ =
αx

αx − 1
(91)
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the CLT for iid random variables with a finite variance still applies in the numerator

in (88), but the finite law means LLN no longer holds in the denominator. Instead,

we will use the weak LLN

1

n log n

n∑
j=1

|Xj|θ/(θ−1) → D1 (92)

in probability as n → ∞; see Theorem VII.7.2 in Feller (1966). This leads to the

convergence result

(
nd log n

)
∆n ⇒ (E[|X1|2/(θ−1)])1/2(E[U2

1 ])1/2

D1

N(0, 1) (93)

weakly as n → ∞.

The next boundary case is

αu > 2, αx = 2 and θ =
αx

αx − 1
. (94)

Here we use both the general CLT for iid random variables and the weak LLN (94)

and obtain

nd (log n)1/2 ∆n ⇒ (E[|U1|2])1/2

D
1/2
1

N(0, 1) . (95)

Similarly, in the boundary case

αu = 2, αx > 2 and θ =
αx

αx − 1
(96)

we have

nd (log n)1/2 ∆n ⇒ (D2E[|X1|2/(θ−1)])1/2

D1

N(0, 1) . (97)

Finally, in the boundary case

αu = 2, αx = 2 and θ =
αx

αx − 1
(98)

we will have

nd∆n ⇒ D
1/2
2

D
1/2
1

N(0, 1) ; (99)

see the discussion after (48).

The next range of θ we consider is on the other side of the boundary (10), but

still on the same side of the boundary (11)

2 + αx

αx

≤ θ <
αx

αx − 1
. (100)
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The exponent d here is given by (14):

d =
2θ − (θ − 1)αx

2(θ − 1)αx

and, in fact, in the non-boundary case (15), the convergence result (16) holds, with

the same argument as before, whereas in the three boundary cases (43), (45) and

(47), we obtain the convergence results (44), (46) and (48) respectively, once again

with the same argument as in Scenario 1.

Finally, consider the range of θ on the other side of the boundary (11):

θ <
2 + αx

αx

. (101)

Here, the exponent d is given by (50):

d =
1

αx

,

and as above, the convergence result (51) holds.

Scenario 5 Suppose that

αx > 1, 1 < αu < 2 and αu ≤ αx

αx − 1
. (102)

Once again, we start with θ on one side of the critical boundary (10):

θ ≥ αx

αx − 1
. (103)

Here it turns out that

d = 1 − 1

αu

. (104)

Consider first the non-boundary case

θ >
αx

αx − 1
. (105)

Since

nd∆n =
n−1/αu

∑n
j=1 |Xj|1/(θ−1)Uj

n−1
∑n

j=1 |Xj|θ/(θ−1)
, (106)

we can use the CLT in the numerator and the LLN in the denominator to obtain

immediately that

nd∆n ⇒ C−1/αu
αu

D
1/αu

2 (E[|X1|αu/(θ−1)])1/αu

E[|X1|θ/(θ−1)]
Sαu(1, 0, 0) (107)
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weakly as n → ∞.

In the boundary case

θ =
αx

αx − 1
and αu <

αx

αx − 1
, (108)

we can still the CLT in the numerator, but this time we need to use the weak LLN

(92) in the denominator, and obtain

(
nd log n

)
∆n ⇒ C−1/αu

αu
D

1/αu

2 (E[|X1|αu/(θ−1)])1/αu

D1

Sαu(1, 0, 0) (109)

weakly as n → ∞. Furthermore, in the second boundary case

θ =
αx

αx − 1
and αu =

αx

αx − 1
, (110)

and with the same treatment of the denominator, we need to use the version of the

CLT given in (77) to obtain

nd (log n)1−1/αu ∆n ⇒ C−1/αu
αu

(D1D2)
1/αu

D1

Sαu(1, 0, 0) (111)

weakly as n → ∞.

In the second range of θ we consider, as we are now on the other side of the critical

boundary (10),
αu

αx

+ 1 ≤ θ <
αx

αx−1

(112)

(note that this range is non-empty only if αu < αx/(αx − 1).) Here, we take

d =
αuθ − (θ − 1)αx

(θ − 1)αuαx

. (113)

In fact, the convergence results obtained here are (66) in the non-boundary case

(65), and (76) in the boundary case (75), all with the same arguments as above.

In the final range of θ we preserve the side of the critical boundary (10) we are

on, but the relationship between the heaviness of the tails of the random variables

under the sum defining the numerator of ∆n in the second equality in (7) changes:

θ <
αu

αx

+ 1. (114)

Here the exponent d is again given by (50),

d =
1

αx

,
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and, as before, we obtain the convergence result (51).

Scenario 6 Suppose that

αx > 2 and αu ≥ 2 . (115)

The first range of θ we consider puts us on one side of the critical boundary (11):

θ ≥ 2 + αx

αx

. (116)

Here d is given by (85):

d =
1

2
.

Specifically, in the non-boundary case

θ >
2 + αx

αx

and αu > 2 (117)

we have the convergence result (87). In the boundary case

θ >
2 + αx

αx

and αu = 2 (118)

we have the weak convergence in (90), and in the boundary case

θ =
2 + αx

αx

and αu = 2 (119)

we have
nd

log n
∆n ⇒ (D1 D2)

1/2

E[|X1|θ/(θ−1)]
N(0, 1) (120)

weakly as n → ∞. Once again, see the discussion after (48).

The second range of θ we consider puts us on the other side of the critical boundary

(11), but keeps us on the same side of the critical boundary (10):

αx

αx−1

≤ θ <
2 + αx

αx

. (121)

It turns out that in this case the exponent d is given by

d =
(θ − 1)αx − 1

(θ − 1)αx

. (122)

Consider first the non-boundary case

θ >
αx

αx−1

(123)

20



and observe that here

nd∆n =
n−1/(θ−1)αx

∑n
j=1 |Xj|1/(θ−1)Uj

n−1
∑n

j=1 |Xj|θ/(θ−1)
. (124)

By using the CLT for sums of iid random variables with a finite variance in the

numerator and the LLN for iid random variables with a finite mean in the denominator

we immediately obtain

nd∆n ⇒ C
−1/((θ−1)αx)
(θ−1)αx

D
1/((θ−1)αx)
1 (E[|U1|(θ−1)αx ])1/((θ−1)αx)

E[|X1|θ/(θ−1)]
(125)

× S(θ−1)αx(1, 0, 0)

weakly as n → ∞.

In the boundary case

θ =
αx

αx − 1
(126)

we use, similarly, the general weak LLN in the denominator to obtain

(nd log n)∆n ⇒ C
−1/((θ−1)αx)
(θ−1)αx

D
1/((θ−1)αx)
1 (E[|U1|(θ−1)αx ])1/((θ−1)αx)

D1

× S(θ−1)αx(1, 0, 0) (127)

weakly as n → ∞.

The final range of θ puts us on the other side of the critical boundary (10):

θ <
αx

αx − 1
. (128)

Here d is still given by (50):

d =
1

αx

and the weak convergence (51) still holds.

Scenario 7 Suppose that

αx > 2 and
αx

αx − 1
< αu < 2 . (129)

The first range of θ specifies which of the two elements under the minimum in

(11) is smaller:

θ ≥ αu

αx

+ 1. (130)
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Here d turns out to be still given by (104):

d = 1 − 1

αu

.

In the non-boundary case

θ >
αu

αx

+ 1. (131)

and the weak convergence in (107) still holds. In the boundary case

θ =
αu

αx

+ 1 (132)

the usual appeal to the general CLT for iid summands gives us

nd

(log n)1/αu
∆n ⇒ C−1/αu

αu
(D1D2)

1/αu

E[|X1|θ/(θ−1)]
Sαu(1, 0, 0) (133)

weakly as n → ∞.

The next range for θ changes which of the two elements under the minimum in

(11) is smaller, but still keeps us on the same side of the critical boundary (10):

αx

αx − 1
≤ θ <

αu

αx

+ 1. (134)

Here, d is given by (122):

d =
(θ − 1)αx − 1

(θ − 1)αx

.

In the non-boundary case

θ >
αx

αx − 1
(135)

the weak convergence in (125) still holds, and with the same argument. In the bound-

ary case

θ =
αx

αx − 1
(136)

the weak convergence in (127) holds.

The final range for θ puts us on the other side of the critical boundary (10):

θ <
αx

αx − 1
. (137)

Here d is given by (50):

d =
1

αx

,

and we have the weak convergence in (51).
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3 Summary of different scenarios

In this section we summarize the seven possible scenarios considered above. We start

with a plot showing how the scenarios partition the positive quadrant.

αx

αu

1 2

1

2

0

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Figure 1: All possible scenarios

Recall that the exponent d describes the rate of convergence of the estimator (6);

see (8) and (9). Under each one of the seven scenarios this exponent is a different

function of the parameter θ.

In the sequel we look at each scenario separately and state the behavior of the

exponent d = d(θ) for θ > 1.
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Scenario 1: 0 < αx ≤ 1 and αu ≥ 2

Here

d(θ) =

⎧⎪⎨
⎪⎩

1
αx

if 1 < θ ≤ 2+αx

αx

2θ−(θ−1)αx

2(θ−1)αx
if θ > 2+αx

αx

.

See the plot below.

 d

1/αx

(2 αx)/2αx

(2+αx)/2αx θ1

Figure 2: Scenario 1
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Scenario 2: 0 < αx ≤ 1, 0 < αu < 2 and αu ≥ αx

Here

d(θ) =

⎧⎪⎨
⎪⎩

1
αx

if 1 < θ ≤ αu

αx
+ 1

θαu−(θ−1)αx

(θ−1)αuαx
if θ > αu

αx
+ 1

.

See the plot below.

 d

1/αx

(αu αx)/αuαx

αu/αx+1 θ1

Figure 3: Scenario 2
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Scenario 3: 0 < αu ≤ 1 and αu < αx

Here

d(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
αx

if 1 < θ ≤ αu

αx
+ 1

θαu−(θ−1)αx

(θ−1)αuαx
if αu

αx
+ 1 < θ < αx

αx−αu

no consistency if θ ≥ αx

αx−αu

.

See the plot below.

 d

1/αx

αu/αx+1 αx/(αx αu) θ1

Figure 4: Scenario 3

Note that in the range θ ≥ αx/αu + 1, the estimator (6) is not consistent and, in

particular, d is non-positive. We have chosen to plot d = 0 in this range.
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Scenario 4: 1 < αx ≤ 2 and αu ≥ 2

Here

d(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
αx

if 1 < θ ≤ 2+αx

αx

2θ−(θ−1)αx

2(θ−1)αx
if 2+αx

αx
< θ ≤ αx

αx−1

1
2

if θ > αx

αx−1

.

See the plot below.

 d

1/αx

1/2

(2+αx)/αx αx/(αx 1) θ1

Figure 5: Scenario 4
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Scenario 5: αx > 1, 1 < αu < 2 and αu ≤ αx

αx−1

Here

d(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
αx

if 1 < θ ≤ αu

αx
+ 1

θαu−(θ−1)αx

(θ−1)αuαx
if αu

αx
+ 1 < θ ≤ αx

αx−1

1 − 1
αu

if θ > αx

αx−1

.

See the plot below.

 d

1/αx

1 1/ αu

αu/αx+1 αx/(αx 1) θ1

Figure 6: Scenario 5

28



Scenario 6: αx > 2 and αu ≥ 2

Here

d(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
αx

if 1 < θ ≤ αx

αx−1

(θ−1)αx−1
(θ−1)αx

if αx

αx−1
< θ ≤ 2+αx

αx

1
2

if θ > 2+αx

αx

.

See the plot below.

 d

1/2

1/αx

αx/(αx 1) (2+αx)/αx θ1

Figure 7: Scenario 6
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Scenario 7: αx > 2 and αx

αx−1
< αu < 2

Here

d(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
αx

if 1 < θ ≤ αx

αx−1

(θ−1)αx−1
(θ−1)αx

if αx

αx−1
< θ ≤ αu

αx
+ 1

1 − 1
αu

if θ > αu

αx
+ 1

.

See the plot below.

 d

1 1/ αu

1/αx

αx/(αx 1) αu/αx+1 θ1

Figure 8: Scenario 7
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4 What θ should one use?

The knowledge of αx and αu allows us, from the results obtained above, to select

the θ that leads to the highest possible rate of decay of ∆n, ie the highest possible

d. In particular, from the plots in the previous section we know that d(θ) is a non-

increasing function of θ in Scenarios 1 through 5, and a non-decreasing function of θ

in Scenarios 6 and 7.

What θ do we choose if the αx and αu are unknown or rather we do not know

them precisely? This is a common situation since the precision of even the best non-

parametric estimators of the tail exponents is not very high; see eg Embrechts et al

(1997).

Clearly, the tighter bounds on αx and αu we have, the easier it is to select a good

θ. In this section we will consider several possible situations. The reader is invited to

consider additional possibilities. We will only consider the cases αx ≥ 1 and αu ≥ 1

here, as those are of relevance in empirical analysis.

Suppose first that we know that

αx ≥ 1 and αu ≥ 2. (138)

Then the choice of

θ = 2 (139)

always leads to the highest possible rate of decay of ∆n, ie the highest possible d.

Indeed, if αx ≤ 2, then Scenario 4 is in force (the boundary case αx = 1 does not

distinguish between Scenarios 1 and 4), and, since

2 + αx

αx

= 1 +
2

αx

≥ 2,

we obtain the optimal d = 1/αx. On the other hand, if αx > 2, then Scenario 6 is in

force, and since
2 + αx

αx

= 1 +
2

αx

< 2,

we obtain the optimal d = 1/2.

On the other hand, suppose we know that

1 ≤ αx < 2 and 1 ≤ αu < 2. (140)
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Then any choice of

1 < θ ≤ 3

2
(141)

always leads to the highest possible rate of decay of ∆n (highest possible d). Indeed,

Scenario 5 is in force and

αu

αx

+ 1 >
1

2
+ 1 =

3

2
≥ θ,

and we obtain the highest possible value of d = 1/αx.

Note that in the above cases, and with the choice of θ we are recommending, we

will always have d ≥ 1/2.

Unfortunately, in the range 1 ≤ αu < 2, if αx can be bigger than 2, no such

efficiency is possible.

To measure the relative efficiency of a given choice of θ, let us introduce the

notation

R(θ; αx, αu) =
d(θ; αx, αu)

d∗(αx, αu)
, (142)

where d(θ; αx, αu) is the value of d corresponding to θ, αx, αu and

d∗(αx, αu) = max
θ>1

d(θ; αx, αu). (143)

For a set A of (αx, αu) let

�A(θ) = inf
(αx,αu)∈A

R(θ; αx, αu) (144)

be the worst efficiency of a given choice of θ. We may then look for a maxmin value

θA such that

�A(θA) = max
θ>1

inf
(αx,αu)∈A

R(θ; αx, αu) := RA. (145)

If A ⊇ (2,∞) × (1, 2), then RA = 0.

Indeed, for a given θ > 1, choose αx so large that αx/(αx − 1) < θ and let αu ↓ 1.

Then we will be eventually within Scenario 5, and

R(θ; αx, αu) =
1 − 1/αu

1/αx

−→ 0.

Hence �A(θ) = 0 for all θ > 1, and so RA = 0, as claimed.

If, however, αx cannot be arbitrarily large, then things are better.
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Let α∗ > 2, and

A = [1, α∗] × [1, 2). (146)

Then any θ in the range

1 < θ ≤ α∗2 + 2

α∗2 − α∗ + 2
(147)

is a θA. Furthermore,

RA =
2

α∗ . (148)

To prove this, consider first the range

θ >
α∗

α∗ − 1
.

Here, as in the case A = (2,∞) × (1, 2), we see that �A(θ) = 0. Next, we consider

the range
α∗ + 1

α∗ < θ ≤ α∗

α∗ − 1
(149)

Note that

inf
(αx,αu)×A

αu≤αx/(αx−1)

R(θ; αx, αu) =
θ

θ − 1
− α∗ (150)

and is achieved when αx ↑ α∗, αu ↓ 1. On the other hand,

inf
(αx,αu)×A

αu>αx/(αx−1)

R(θ; αx, αu) =
2

α∗ (151)

and is achieved when αx ↑ α∗, αu ↑ 2. Therefore, in the range (149)

�A(θ) = min

(
θ

θ − 1
− α∗,

2

α∗

)
=

2

α∗ (152)

if (α∗ + 1)/α∗ < θ ≤ (α2
x + 2)/(α2

x − αx + 2). Furthermore, �A(θ) < 2/α∗ if (α2
x +

2)/(α2
x − αx + 2) < θ ≤ α∗/(α∗ − 1).

Similarly in the range

1 < θ ≤ α∗ + 1

α∗ , (153)

we obtain, in a similar way, that

�A(θ) =
2

α∗ , (154)

Therefore, both (147) and (148) follow. In this situation we can guarantee d ≥ 2/(α∗)2

with the choice of θ recommended above.
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The above discussion of the ways to select the parameter θ focuses on the rate of

convergence to the true value, which is, clearly, the single most important criterion.

With the rate of convergence kept fixed, however, other things become important.

Among them is the spread of the limiting distribution. To compare such spreads and,

hence, to be able to tell more about good ways to select θ, we performed a simulations

study.

Design of simulation. From the viewpoint of empirical evidence, we consider

αx ∈ [1, 2) and αu ∈ [1, 2). To implement data-generating processes, we have selected

αx, αu = 1, 1.2, 1.4, 1.6, 1.8, 1.99.4 For sample size we choose n = 50, 100, 250, 500,

1,000, 2,000, 5,000, 10,000 and ∞, where the limiting distributions are calculated

from Scenario 5. We use a length of quantile ξ0.975 − ξ0.025 as a spread measure,

where ξp is the pth quantile of the simulated distribution of (7).5 According to the

recommendation in (141), we use θ ∈ (1, 1.5]. For implementation we have selected θ

= 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5. To determine simulated densities

for each estimate, 10,000 replications were made. Figure 9 shows the θ minimizing

the spread for selected αx, αu and sample sizes.

The selected θ shows noticeable irregularity, even for large samples. Nevertheless,

some useful rules for choosing the θ can be formulated as

θ =

⎧⎪⎨
⎪⎩

αu if αu < 1.5

1.5 if αu ≥ 1.5

Here, the parameter αu plays a key role, while the role of αx and the sample size seem

to be less important.

4In order to better see the behavior of the estimates near the boundary points 1 and 2, a more

detailed selection was used in another simulation. The results show that the transition from 1 to

numbers bigger than 1 (1.01 and 1.05 were additionally chosen in the simulation) and from 2 to

numbers smaller than 2 (1.99 and 1.95) is smooth.
5The results are very robust against taking other quantiles and other spread measure such as

variation; see Samorodnitsky and Taqqu (1994, Ch 2) for an explanation of the variation.
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Figure 9: θ for selected αx and αu

5 Limiting and finite-sample distributions of ∆n

under Scenario 5

In this section we consider the most interesting scenario in practice, Scenario 5. Since

the limiting distribution in (51) is a non-standard one, we perform simulations and

response surface analysis and give both the limiting distributions by given αx and αu,

and finite-sample distributions.

5.1 Limiting distributions of ∆n

The behavior of the limiting distribution in (51) based on Scenario 5 is numerically

analyzed. Figure 10 shows simulated limiting distributions for selected αx and αu.

For this simulation we used θ according to the choice rule described above.

A comparison of the limiting distributions for various αx and αu shows that they

become more dispersed if αu decreases or αx increases. For example, 0.0113, 0.0032,

0.0017 for αu = 1.0, 1.5, 1.99, respectively, for a given αx = 1.5, and 0.0366, 0.0032,

0.0001 for αx = 1.99, 1.5, 1.0, respectively, for a given αu = 1.5. For the spread of the

limiting distributions, αx plays a more important role than αu.
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Figure 10: Simulated limiting distributions for selected αx and αu

Rather than simply tabulating critical values for a few selected sample sizes, αx–

values and αu–values, we employ response surface techniques to present our simu-

lation results in a compact fashion. In addition, this approach allows us to derive

approximate critical values for wide ranges of αx– and αu–values and facilitates com-

putational implementation. Response surface methodology has been used in various

statistical and econometric applications (see Myers et al 1989).

Response surface analysis was applied to approximate selected quantiles of the

limiting distributions ∆n given in (51) generated from the 10,000 replications. Specif-

ically, we focused on the 50, 60, 70, 80, 90, 95 and 99% quantile values and, hence,

for the fitting of a response surface, on the 175 (αx, αu, q)–combinations considered.

For the surface a functional form was specified, a high–order polynomial in αx, αu

and q. Specifically, we estimated

ξ(αx, αu, q) =
4∑

h=1

3∑
i=2

2∑
j=0

ah,i,j α4i
x α−2j

u (1 − q)−h/2 + εαx,αu,q,

αx, αu ∈ [1, 2); q ∈ [0.5, 0.99].

To derive the approximate response surface, we selected the subset of regressors which
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maximized the adjusted–R2 value. To take possible heterogeneity of the approxima-

tion error ε∞,αx,αu,q into account, the generalized least squares method was used for

estimation, although there did not seem to be systematic heterogeneity due to varia-

tions of the characteristic exponent α. The estimation results are reported in Table 1.

Table 1.

Estimated coefficients (ahij) in the response surface functiona

h 1 2 3 4

j i 2 3 2 3 2 3 2 3

1 -443.1 309.7 -55.32 -33.61 2.6767 -1.6330

(-0.97) (1.34) (-1.17) (-1.06) (2.14) (-4.79)

2 38.51 -8.0838 0.1374 0.5719

(2.42) (-2.85) (1.65) (3.90)

3 -0.0019 0.0020

(-3.21) (3.12)

aThe estimates are multiplied by 106. t-values are given in brackets.

Various measures of fit, namely R2 = 0.9991, adjusted–R2 = 0.9990,6 σ̂ε = 0.0050,

mean |ε̂| = 1.7706 − 10−3, and max |ε̂| = 0.0398 indicate adequate fits. As expected,

the absolute goodness of fit deteriorates as the significance level decreases, especially

when αx and αu approach 2.7

6The negligibility of the constant terms justifies the use of the adjusted–R2 value for selecting

the regressor subset. Its use would be inappropriate if the zero restrictions on the constant terms

did not hold.
7To obtain better response surface approximations, simulations with additional intermediate val-

ues for αx and αu could have been conducted. However, the surfaces turn out to be rather smooth

with respect to both variables, which means additional simulations would have led to only negligible

improvements in the response surface approximations. Selected comparisons between simulations

with intermediate (αx, αu)–combinations and corresponding response surface approximations sup-

port this conclusion.
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5.2 Finite-sample distributions of ∆n

To examine the finite-sample behavior of ∆n, we simulated samples of length n = 50,

100, 250, 500, 1,000, 2,000, 5000 and 10,000. Both regressors xt and disturbances

ut were drawn from symmetric standard stable Paretian distributions (ie c = 1 and

δ = 0) with the characteristic exponent αx and αu assuming values 1.0, 1.25, 1.5, 1.75,

1.99, θ having been chosen by the rule in the previous subsection. For each of the

200 possible (αx, αu, n)–combinations, 10,000 replications with the same seed were

generated with the algorithm of Weron (1996) as a modified version of Chambers et

al (1976).8

Overall properties of the distributions for finite samples with respect to αx and

αu are similar to those of the limiting distributions. For supplying critical values for

finite samples, response surface analysis was again applied to approximate selected

quantiles of ∆n generated from the 10,000 replications. Specifically, we focused on

the 1, 5 and 10% critical values and, hence, for the fitting of a response surface

on the 600 (n, αx, αu, q)–combinations considered. For the surface a functional form

was specified, a high–order polynomial in n, αx and αu accompanied by quantiles.

Specifically, we estimated the following regression and the estimated coefficients of

the response surface regression are summarized in Table 2.

ξ(n, αx, αu, q) =
5∑

h=1

4∑
i=1

3∑
j=2

ah,i,j n−h/2α4i
x α−2j

u (1 − q)−1 + εn,αx,αu,q,

n ∈ [50, 10000]; αx, αu ∈ [1, 2); q ∈ [0.9, 0.99].

Various measures of fit, namely R2 = 0.9964, adjusted–R2 = 0.9962, σ̂ε = 0.1034,

mean |ε̂| = 0.0613 and max |ε̂| = 0.7816 indicate adequate fits. As expected, the

absolute goodness of fit deteriorates as the significance level decreases, especially

when αx and αu approach 2.

Next, we use a Kolmogorov-Smirnov test to check how close the finite-sample dis-

tributions of ∆n are to the limiting distributions. Figure 11 shows the QQ plots of the

empirically estimated distributions Fn against the limiting distribution F0 (51) with

8This algorithm is analytically identical with the widely used stable random number generator

written by J.H. McCulloch which is available on McCulloch’s website: http://economics.sbs.ohio-

state.edu/jhm/jhm.html

38



Table 2.

Estimated coefficients (ahij) in the response surface function

i 1 2 3 4

h j 2 3 2 3 2 3 2 3

1 0.0103 3.5-10−5

(2.6127) (2.1876)

2 0.6069 0.1480 -0.2907 -0.0130 0.0221

(1.1815) (1.5720) (-2.6026) (-2.0952) (3.2541)

3 9.6392 -8.5434 7.2154 -5.4666 9.0033 0.4135 -0.7028

(2.4731) (-1.3986) (1.0088) (-1.4808) (2.3214) (1.7690) (-2.8803)

4 -127.5576 13.242 60.999 -94.389 -4.3110 7.3192

(-1.1743) (1.0160) (1.3993) (-2.1930) (-1.6067) (2.6787)

5 433.11 -199.83 307.22 13.970 -23.981

(1.0254) (-1.2848) (2.0620) (1.4796) (-2.5249)

j = 50, 000, for αx = 1.5 and αu = 1.5, where n = 50, 100, 250, 500, 1, 000, 2, 000, 5, 000

and 10, 000. The dotted 45◦ line from (0,0) to (1,1) corresponds to the limiting dis-

tribution. The empirical values of the Kolmogorov-Smirnov (KS) test statistic:

sup
x

|Fn(x) − F0(x)| (155)

are obtained by taking the largest deviations from the dotted line.
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Figure 11: Simulated limiting distributions for selected αx = 1.5 and αu = 1.5

Note that the critical value at the 95% significance level is 1.3851/
√

n. As is

clearly shown in Figure 11, the finite-sample distributions differ significantly from
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the limiting distributions even at n = 10, 000. For all cases the null hypothesis

that Fn = F0 cannot be accepted. For various αx and αu the KS test shows the

same result. This means that for empirical work the limiting distributions is only a

poor approximation of the finite sample distributions, which means we need tables of

critical (quantile) values of each combination of (αx, αu) for a range of sample sizes

n.

6 Concluding remarks

One can see that blindly using the OLS approach θ = 2 can lead to very inefficient

estimators of the regression coefficient. A much better approach is to take the tails

into account. Even if the tails of the regressors and disturbances are known only

approximately, this can still provide valuable information for selecting a good value of

θ and, hence, constructing a more efficient estimator. Iterated procedures in which the

tails and the regression coefficient are estimated simultaneously should be considered.
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